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Optimization of a MALDI TOF-TOF Mass
Spectrometer for Intact Protein Analysis

Zhaoyang Liu and Kevin L. Schey

Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston,
South Carolina, USA

A MALDI TOF-TOF instrument was optimized and evaluated for intact protein analysis by
tandem mass spectrometry. Ion source voltages and delay times were adjusted to affect an up
to a 10-fold improvement in fragment ion yield compared to data obtained using default
settings employed in peptide analysis. For large peptides (3—4.5 kDa), up to 90% of all possible
b- and y-fragment ions were observed, which provides sufficient information for de novo
sequencing and unambiguous protein identification. Product ion signals associated with
preferential cleavages C-terminal to aspartic acid and glutamic acid residues and N-terminal
to proline residues became dominant with increased protein molecular weight. Matrix effects
were also evaluated and, among the eight matrices examined, a-cyano-4-hydroxycinnamic
acid (CHCA) was found to produce the best intact protein tandem mass spectra for proteins
up to 12 kDa. Optimized performance yielded detection limits of 50-125 fmol for proteins of
4 and 12 kDa, respectively. This improved performance has yielded an instrument with

potential to be a useful tool in proteomic investigations via analysis of intact proteins.

(J Am

Soc Mass Spectrom 2005, 16, 482—-490) © 2005 American Society for Mass Spectrometry

ince the introduction of matrix-assisted laser desorp-
tion/ionization (MALDI) [1-3] and electrospray ion-
ization (ESI) [4], mass spectrometry has become the
primary tool for the analysis of protein primary structure.
Coupling of 2-D gel electrophoresis or chromatographic
separation approaches with mass spectrometry has be-
come the standard approach for proteome analysis [5, 6];
however, technological improvements continue to be
made to improve performance in the demanding analysis
of proteomes. The introduction of MALDI TOF-TOF tech-
nology [7] represents one such advancement offering the
advantages of MALDI ionization with tandem mass spec-
trometry in a time-of-flight instrument. The high through-
put and sensitivity features of the instrument make it an
attractive platform for proteomics research. Furthermore,
the theoretical unlimited mass range of time-of-flight and
the high collision energy employed in the TOF-TOF in-
strument are capabilities that make the exploration of
tandem mass spectrometric analysis of larger peptides
and intact proteins possible. This strategy, termed the
“top-down” approach, has been successfully imple-
mented in Fourier transform mass spectrometers [8] and
quadrupole ion traps [9].
An attractive feature of the “top-down” approach is
that no enzymatic digestion is required, so that the
analysis time is dramatically shortened and sensitivity
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potentially enhanced. The key objective in “top-down”
analysis is to efficiently fragment intact proteins to
obtain sequence-specific information for database
searching and protein identification. To date, the most
successful technique for “top-down” analysis is the
coupling of electron capture dissociation (ECD) and ESI
with high resolution FTICR mass spectrometry [10, 11],
where proteins with masses up to 42,000 Da have been
sequenced [12]. In early studies, the upper mass limit
for fragmentation by CID has been reported to be
approximately 2500 Da for singly charged precursor
ions [13, 14]; however, multiply charged proteins as
large as 150 k Da have been dissociated by CID [15].
ECD and CID efficiencies depend on the internal
energy deposition after ionization and precursor ion
selection. Until recently, fragmentation observed in
MALDI experiments has relied on internal energy ac-
quired during ionization as observed by ion-source
decay (ISD) and post-source decay (PSD); the two
differing by the time-frame for fragmentation. ISD
occurs within several hundred nanoseconds after laser
firing while PSD occurs in the microsecond range. The
most abundant fragment ions observed in ISD of a
variety of proteins are c- and y-ions [16-19]. ISD of
peptides has been examined to determine the influence
of the matrix, the susceptibility of amino-acid residues
to ISD, and the effect of extraction delay times [20]. The
most suitable matrix for ISD was 2,5-dihydroxybenzoic
acid (DHB). The influence of the nature of the constit-
uent amino acids on positively charged product ions
was also investigated, including strong dependence on
the location(s) of basic arginine and lysine residues [19,
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21]. Proteins as large as thioredoxin, 12 kDa, have been
observed to fragment by PSD [22] where sequence-
specific cleavage N-terminal to proline residues was
observed.

Recently, a MALDI TOF mass spectrometer with the
novel “LIFT” technique (MALDI LIFT-TOF/TOF MS)
was developed [23] featuring the ability to analyze
fragment ions generated by any one of three different
modes of dissociation: laser-induced dissociation (LID),
high-energy CID, and ISD. N-terminal and C-terminal
fragment ion series, providing near terminal sequence
tags from undigested protein, were obtained by ISD.
The ISD fragments were selected in the timed ion gate
of a MALDI-TOF/TOF mass spectrometer for MS/MS
analysis [24].

The emergence of a new MALDI TOF-TOF mass
spectrometer, the Applied Biosystems 4700 proteomics
analyzer (Foster City, CA), makes it possible to obtain
sequence specific information from intact protein with-
out proteolytic treatment. The initial report of the
instrumental capabilities successfully demonstrated
this approach for proteins up to molecular weight of 12
kDa [25]. As was observed previously by CID [26],
product ions resulting from preferential cleavage at
aspartyl and prolyl residues dominate the tandem mass
spectrum. Nonpreferential cleavage, which provides
additional information in protein identification, was
also observed. Given the fact that the ion optics of the
Applied Biosystems 4700 instrument were designed for
tandem mass spectrometry analysis of tryptic peptides,
we attempted to optimize the instrumental parameters
for the analysis of large peptides and intact proteins.
Here we report the results of this optimization as well
as the matrix effects on MS/MS spectra from MALDI
TOF-TOF experiments.

Experiment
Materials

Recrystallized a-cyano-4-hydroxycinnamic acid (CHCA)
was purchased from Bruker (Billerica, MA). All other
matrices, 3-indoleacetic acid (IAA), 2-mecaptobenzothia-
zole (MBT), umbelliferone (UBF), tetrahydroxyquinone
(THBP), sinapinic acid (SA), ferulic acid (FA), and 2-(4-
hydroxyphenylazo)benzoic acid (HABA), as well as pep-
tides/proteins were obtained from Sigma (St. Louis, MO),
and used without any further treatment. Matrix solutions
were prepared at a concentration of 10 mg/ml in 50:50
acetonitrile/water (0.1% TFA). For matrices with solubil-
ity less than 10mg/ml, saturated solutions were em-
ployed. Except where specified, the concentration of all
peptide/protein solutions is 10 pmol/ul. Aliquots of 1 ul
of a 1:1 mixture of matrix and peptide/protein solutions
were spotted on a sample plate and allowed to air dry
prior to insertion into the mass spectrometer; therefore,
the amount of sample spotted is 5 pmol/ ul.
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Mass Spectrometry

All experiments were carried out on an Applied Biosys-
tems 4700 proteomics analyzer equipped with TOF/
TOF ion optics and a diode pumped Nd:YAG laser with
200 Hz repetition rate. The operating principle of this
mass spectrometer was detailed previously [27]. The
MS/MS capabilities of the instrument are facilitated
through a timed ion selector (TIS), a deceleration lens, a
collision cell, and a second ion source. After decelera-
tion by the deceleration lens, the mass-selected precur-
sor ions collide with collision gas in a field-free collision
cell. The potential difference between acceleration volt-
age and floating collision cell defines the collision
energy, which is 1 keV in all experiments. All fragments
formed from precursor ions in the collision cell travel
with essentially the same velocity as the precursor ion,
and thus, enter the second source at the same time as
the precursor ion. When the collection of precursor and
fragment ions has entered the second source, a high
voltage pulse is applied to the source and the ions are
accelerated towards the detector. When the instrument
is operated in MS/MS mode, the first source is operated
as a two stage, delayed extraction, linear TOF MS with
an 8 kV acceleration voltage. For a given precursor ion
mass, instrument geometry and operation voltages, the
extraction delay times in both ion sources, and the
arrival time of the precursor ion to the TIS are calcu-
lated by the instrument control program.

All the MS/MS spectra resulted from accumulation
of at least 4000 laser shots. Air was used as the collision
gas such that nominally single collision conditions were
achieved. Since there is only one component in the
sample, a wide mass window was utilized so that all the
precursor ions could pass the gate to enter the collision.
Generally, the width of mass window is set to 50 Da if
the mass of precursor ion is less than 5000 Da, 100 Da
for precursor masses between 5000 Da and 9000 Da, and
200 Da for masses between 9000 Da and 12,000 Da.
MS/MS data were acquired using the instrument de-
fault calibration, without applying internal or external
calibration.

Results and Discussion
Tuning of the Instrument

The influence of voltages on einzel lens and grid. Optimi-
zation of the instrument tuning parameters was at-
tempted in an effort to improve MS/MS performance
for intact proteins with molecular weights up to 12 kDa.
A schematic is presented in Figure 1 to indicate ion
optical elements of the instrument. The voltages applied
to source 1 (8 kV), source 2 (15 kV), ion mirror 1 (10.23
kV), ion mirror 2 (15.885 kV), and collision cell (7 kV)
were kept at their default values. The deflector voltages
(X1,Y1, X2, Y2 and X3, Y3) were optimized according to
the manufacturer’s protocol. The function of einzel lens
1, as well as the deceleration stack, is to focus the ion
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Figure 1. Schematics of MALDI TOF-TOF mass spectrometer. (a)
Sample plate; (b) grid 1; (c) X1/Y1 deflectors; (d) einzel lens 1; (e)
X2/Y2 deflectors; (f) timed-ion selector; (g) retarding lens; (h)
collision cell; (i) second ion source; (j) einzel lens 2; (k) X3/Y3
deflectors; 1) linear detector; (m) 2-stage ion mirror; (n) reflector
detector.
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beam so as to maximize transmission of precursor ions
to the collision cell. The voltages applied to einzel lens
1 and grid 1 were found to dramatically influence
product ion intensity. In contrast, variation of the volt-
ages applied to einzel lens 2 does not have a significant
effect on product ion signal. The delayed extraction
time for ion source 1 (DE1) is an additional parameter
that affects MS/MS sensitivity, especially for proteins
with higher molecular weight. Hereafter, we refer to the
optimized settings as modified settings and manufac-
turer’s settings as standard settings. Table 1 lists all the
parameter values before and after optimization. A com-
parative experiment was conducted using ubiquitin
(MW 8564.72 Da) and thioredoxin (MW 11674.4 Da) as
samples. Three replicates were spotted for each sample.
Operating in batch mode, MS/MS spectra were initially
acquired employing standard settings, followed by ac-
quisition using modified settings. Five thousand laser
shots were accumulated for each sample spot. Overall,
a 6-fold increase in product ion intensity was achieved
with the modified settings.

The MS/MS spectra of ubiquitin from bovine eryth-
rocytes (MW 8564.72 Da) in Figure 2 demonstrate the
increase of fragment ion signals after optimization. The
intensities of product ions obtained under modified
settings are almost four times greater than those ac-
quired with standard settings. Due to higher sensitivity,
more product ions were observed in the low mass
region (m/z <2000 Da), such as y9, y10, y11-NH;, y12,
y13,y13, y15, y16, and y17-NH,, and the peaks between
y18 and y24, such as y19-NH; and y22-NH;. The
observation of those peaks provides sufficient informa-
tion to obtain the sequence tag and furthermore to
identify the protein. Note that the broad peak centered
at 5452 Da is caused by electronic noise from the
metastable suppression.

Table 1. Parameter values before and after optimization

Parameters Standard (kV) Modified (kV)
Grid 1 6.85 7.05
Lens 1 4.10 3.95
Deceleration Stack 4.1 3.9
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Figure 2. MALDI TOF-TOF spectra of ubiquitin (m/z 8564.7 Da
selected) obtained using standard settings (a) and modified set-
tings (b). All other experimental parameters are the same. Five
pmol of ubiquitin was spotted.

The influence of delay time. Delayed extraction is widely
employed in TOF mass spectrometry to improve mass
resolution [28]. The abundance of protonated analyte
ions generated by MALDI can be maximized at an
optimum delay time of a few hundred nanoseconds,
varying with the geometry of instrument. The ion
abundance at the optimum delay time exceeds that of
prompt extraction by a factor of two or more [29]. Since
the dissociation rate is fixed for a given set of experi-
mental conditions (collision energy, matrix and laser
irradiance), more precursor ions extracted from the ion
source will yield more product ions. Figure shows the
MS/MS mass spectra of thioredoxin (MW 11674.4 Da)
with delay times of 650 ns and 2530 ns, the latter being
the default delay time calculated by the instrument
control software. The product ion abundance increased
gradually with decreasing delay time from 2530 ns to
650 ns. Further decreasing delay time leads to weaker
product ion signals. The product ion intensities of
thioredoxin obtained at optimum delay time (650 ns)
are more than five times greater than those obtained at
2530 ns. One possible explanation for this observation is
that shorter delay times select for “hotter” ions thereby
improving observed product ion intensities. With the
enhanced sensitivity, more product ions were observed,
both at the lower mass region and high mass region. In
the low mass region of Figure 3a, there are many product
ions, corresponding to non-preferential cleavages of
amide bonds, which are not observed in Figure 3b. The
y93 and y95 peaks in high mass region of Figure 3b are
barely distinguishable from the noise and the y98 and
y99 ions are totally absent. It is notable that for proteins
with lower molecular weight, the change of delay time
did not have such a dramatic effect on product ion
yields. For all proteins less than 12,000 Da, the optimum
delay time falls in the range of 400 to 700 ns, which is in
good agreement with previous investigation [29].



J Am Soc Mass Spectrom 2005, 16, 482—-490

100 57
3 A L3ET4
p 55
Z 50 yol, ¥
o y45 ¥65 y88 |
2 Y827, ol y98
o 1 |} | L Y93 T y00,
2 P IN——" B i S| W
1200 3360 55200 .. 7680 9840 12000
v47
100 - 4910.68 2
3 g 23941
3
2 y61 y65
= 50 y45 6434.69 v88
2 :.,J y82"
;E MMM'W’U LTI Y R
OIEOO 3360 5520 . 7680 9840 12000

m/z

Figure 3. MALDI TOE-TOF spectra of thioredoxin (1m/z 11674 Da
selected) obtained with delay time of ion source 1 at (a) 650 ns and
(b) 2530 ns. The default delay time (2530 ns), based on the
molecular weight of precursor and other parameters, is calculated
by the instrument control software. All other experimental param-
eters are identical for both spectra. Approximately 22 pmol of
thioredoxin was spotted.

Matrix Effects on MALDI MS/MS

It is well known that matrix plays an important role in
the ion yield and fragmentation efficiency in desorp-
tion/ionization of proteins from crystalline matrices.
Thus, the choice of matrix has a large effect on the
recorded mass spectrum. During the desorption/ion-
ization process, proteins not only acquire a proton from
the matrix, but also receive internal energy through the
proton transfer reaction. The amount of internal energy
transferred to protein ions defines the “hot” or “cold”
characteristics of matrix. Here, a variety of matrices,
from “hot” to “cold”, were selected to study the matrix
effects on the fragmentation efficiency and fragmenta-
tion patterns of intact proteins. Among all the matrices
used for UV-MALDI, CHCA is widely used for peptide
mass mapping experiments. This matrix is known for
its tendencies to induce post-source decay (PSD) [30]
and higher charge state ions [31]. Sinapinic acid [32] and
HABA [33] are particularly beneficial for ionization of
higher molecular weight proteins. MBT was found to be
able to produce ions of various analytes [34]. IAA was
employed as matrix for the ionization of synthetic
polymers [35]. In this study, THBP was selected because
of its ability to produce abundant PSD signals [36], and
UBF was chosen because of its (presumably) much
different proton transfer process, suggested by its
chemical structure. CHCA, MBT, and IAA were consid-
ered as “hot” matrices as determined by the simulta-
neous measurement of neutral and ion abundances [37].
In addition, the location of protonation sites could differ
because of different proton transfer processes, thereby
affecting the fragmentation pattern, according to the
mobile proton mode proposed by Wysocki et al. [38].
MALDI TOF-TOF mass spectra of insulin obtained
using various matrices are presented in Figure 4a, b, c,
d, e, and f. All the spectra were acquired at the same
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experimental conditions with the exception of laser
irradiation, which was optimized for each matrix. Based
on the sequence and structural information (detailed
below) acquired using CHCA as the matrix, the tandem
mass spectrum is composed of four segments: (1) the
low mass region to m/z 1500 Da containing product ions
of the insulin chain B, (2) the segment from 1800 Da to
2600 Da dominated by cleavage of the one of the
inter-disulfide bonds with intact A-chain signal, (3) the
region between 3200 Da and 3500 Da characterized by
B-chain signals after asymmetric dissociation of disul-
fide bonds linking the A-chain and B-chain, and (4) the
high mass region, 3700 Da to 5500 Da, featuring cleav-
age of amino acid residues from the N-terminus of the
A-chain. According to the “hot” or “cold” nature of
matrix, not all segments are observed for each matrix,
especially for the mass regions from 1800 Da to 2600 Da
and 3700 Da to 5500 Da. For example, it is hard to obtain
any useful information when SA was used as matrix, as
shown in Figure 4d. There are no ion signals in regions
from 1800 Da to 2600 Da and 3700 Da to 5500 Da, using
IAA and UBF as matrix. Except for the product ion
using CHCA as matrix, the relative intensities of prod-
uct ion are almost the same, indicating different proton
distributions among the protein ions when ionized by
CHCA.

The quintet centered at m/z 3396.49, formed by
asymmetric cleavage of both disulfide bonds connect-
ing the A-chain and B-chain [39] dominates the tandem
mass spectra, regardless the matrix employed. The
relative intensity of the quintet, compared with the
precursor ion, reveals the internal energy transferred to
insulin during the desorption/ionization process. The
intensities of survived precursor ions are almost the
same using CHCA, TAA, MBT, and UBF; however, the
intensities of product ion differ dramatically. CHCA
and HABA were found to most efficiently produce
product ions; MBT ranking slightly lower in sequence
information.

Figure 5a, b, ¢, and d show tandem mass spectra of
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Figure 4. MALDI TOF-TOF spectra of insulin (m/z 5733.49 Da
selected) obtained using various matrices. (a) CHCA, (b) IAA, (c)
MBT, (d) SA, (e) THBP, and (f) HABA.
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Figure 5. MALDI TOF-TOF spectra of thioredoxin (1m/z 11674 Da
selected) obtained using different matrices. (a) CHCA, (b) MBT, (c)
THBP, and (d) HABA.

thioredoxin acquired using CHCA, MBT, THBP and
HABA as matrices, respectively. The signal intensities
of product ions obtained using CHCA are much higher
than other matrices, yielding more sequence informa-
tion, particularly in the low-mass region (m/z less than
4900 Da), where nonpreferential cleavages were found
[25]. As for preferential cleavages in the higher mass
region, although the ion signals are not as strong as
those with CHCA, all the fragments detected using
other matrices are essentially the same, e.g., y61, y65,
y82, y88, y93, y95, y98, and y99. Fewer fragments and
lower intensities were detected when other matrices,
such as SA and IAA, were employed.

Although the product ions obtained using different
matrices vary (both ion species and intensities), no new
fragment types were observed. Previous investigations
on in-source decay showed the observed ion series
varied significantly depending on the matrix used [24,
40]. For example, c-ions dominate the ISD spectrum,
regardless of the matrix, a- and y-ions increase if DHB
is used, and the formation of a-ions is dramatically
enhanced by CHCA. The significant difference of the
matrix effect on ISD compared to PSD/CID is possibly
caused by the different fragmentation mechanisms or
energy transfer pathway. It has been proposed that the
reaction of free electrons in the MALDI plume with
analyte ions (possibly multiply-charged ions) leads the
very fast decay of precursor ions [41]. This is consistent
with the observed ISD ion series being similar to those
of electron-capture dissociation.

Complete Sequence Coverage

The ability to perform de novo sequencing of small
peptides using Applied Biosystems 4700 proteomic
analyzer was presented by Yergey et al. [27], where
only peptides with MW less than 2000 Da were
sequenced de novo. With our optimized instrument
settings and matrix choices described above, nearly
complete sequence coverage of a 31 amino acid
peptide, human B-endorphin (YGGFMTSEKSQT-
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PLVTLFKNAIIKNAYKKGE) was observed. The
MALDI TOF-TOF mass spectrum is shown in Figure
6 and Table 2 lists the calculated and observed y- and
b-ions. The entire y-ion series is observed with the
exception of the first (y1) and the last (y30). Although
most of the b-ion intensities are weak, only the b13
and b30 ion are not detected. Due to isotopic overlap,
the assignment of the y17 ion (m/z 1838.05) and the
b17 ion (m/z 1840.92) is precluded. Overall, only four
out of 59 total b- and y-product ions were not
observed in Figure 6. The most abundant peak in the
spectrum is the y19 ion, the intensity of which is more
than twice that of the next highest peak, the y16 ion.
The y19 fragment ion corresponds to the cleavage of
an Xxx-Pro amide bond. The preferential cleavage of
Xxx-Pro amide bond was first observed by Loo et al
on CID of multiply charged proteins produced by ESI
[42]. In agreement with previous observation [26], the
intensity of the adjacent y18 ion is weak. Further-
more, the signal for the complementary bl2 ion
(marked by an asterisk), is also relatively strong
among the observed b-ions. There are no other pref-
erential cleavages observed, even though there are
two acidic amino acid residues, glutamic acid, at the
position of 8 and 31. Another feature of the B-endor-
phin spectrum under our experimental conditions is
the enhanced b-ion signals in the higher mass region.
Below m/z 2200, y-ions dominate; however, at higher
mass region, the b-ion intensities are relatively
strong. With over 93% of b- and y-ions observed,
protein identification can be accomplished with con-
fidence.

As higher molecular weight peptides are examined,
more preferential cleavages are observed, as demon-
strated in Figure 7 with human glucagon-like peptide I
(HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKG-
RG, MW 416846 Da). The increase in preferential
cleavage may be caused by the additional arginine
risidue (2 Arg in glucagon, compared only 1 in B-en-
dophin) [38]. Similar to B-endorphin, more than 90% of
the b- and y-product ions are observed (as listed in
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Figure 6. MALDI TOF-TOF spectrum of human g-endorphin
(m/z 3465.4 selected) obtained under optimized experimental
conditions. The y- and b-ions detected are listed in Table 2. The
peak donated by an asterisk is the b12 ion, the complementary of
the y19 ion.
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Table 2. Theoretical and measured masses of MALDI TOF-TOF production ions of human &303B2;-endorphin. Over 93 percent

of b- and y-ions are observed under optimized condition

T Theoretical Measured Theoretical Measured
y1 148.06
y2 205.08 205.10 b2 221.09 221.09
y3 333.18 333.16 b3 278.11 278.13
\Z! 461.27 461.23 b4 425.18 425.16
y5 624.34 624.27 b5 556.22 556.21
y6 695.37 695.28 b6 657.27 657.27
y7 809.42 809.33 b7 744.3 744.29
y8 937.51 937.43 b8 873.35 873.28
y9 1050.59 1050.52 b9 1001.44 1001.43
y10 1163.68 1163.60 b10 1088.47 1088.39
y11 1234.72 1234.63 b11 1216.53 1216.45
y12 1348.76 1348.67 b12 1317.58 1317.49
y13 1476.85 1476.77 b13 1414.63
y14 1623.92 1623.84 b14 1527.72 1527.66
y15 1737.01 1736.94 b15 1626.78 1626.76
y16 1838.05 1837.99 b16 1727.83 1727.81
y17 1937.12 1937.06 b17 1840.92
y18 2050.21 2050.17 b18 1987.98 1987.93
y19 2147.26 2147.23 b19 2116.08 2116.08
y20 2248.31 2248.28 b20 2230.12 2230.12
y21 2376.37 2376.34 b21 2301.16 2301.14
y22 2463.4 2463.40 b22 2414.24 2414.25
y23 2591.49 2591.52 b23 2527.33 2527.33
y24 2720.54 2720.60 b24 2655.42 2655.44
y25 2807.57 2807.62 b25 2769.46 2769.52
y26 2908.61 2908.71 b26 2840.5 2840.56
y27 3039.66 3039.66 b27 3003.57 3003.62
y28 3186.72 3187.71 b28 3131.66 3131.68
y29 3243.75 3243.59 b29 3259.76 3259.73
y30 3300.77 b30 3316.78

Table 3). Note that some peaks cannot be unambigu-
ously assigned due to isotopic overlap. Those peaks
include b6 (m/z 814.35) and y7 (m/z 815.39), bl6 (m/z
1858.8) and y17 (m/z 1860.01), b20 (m/z 2309.01) and y21
(m/z 2310.22), and b30 (m/z 3353.54) and y31 (m/z
3354.68). Preferential cleavages at aspartic acid and
glutamic acid residues are observed giving rise to
intense product ion signals. There are two aspartic acid
residues (position 2, 15) and 5 glutamic acid residues
(position 3, 5, 9, 21, 27), which result in the strong
signals for y10, y16, y22, y28, y32, y34, and y35 ions, as
marked by asterisks in Figure 7. Formation of comple-
mentary b-ions produced from the preferential cleav-
ages described above is also detected, such as b9, b15
and b21. The peak intensities of the other complemen-
tary b-ions, namely b2, b3 and b5 are not outstanding. It
has been previously reported [26] that fragmentation of
peptides containing both arginine and aspartic acid/
glutamic acid yields intense y-ions if the Arg residue is
located C-terminal to the acidic residues, or b-ions if the
Arg residue is located N-terminal to the acidic residues.
The weak peaks of b2, b3, and b5 and the intense peaks
of b9, b15, and b21 confirm the conclusion of Q in and
Chait [26].

In addition to primary sequence determination,
the identification of post-translational modification is
also important, especially in regard to protein func-

tion. Here, we demonstrate the direct determination
of disulfide bonds in insulin using the TOF-TOF
tandem mass spectrometer. Using standard settings,
Lin et al. [25] only observed the quintet and partial
fragments of the insulin B-chain. Figure 8a, b, ¢, and
d show four segments of the mass spectrum of insulin
separated according to fragmentation features, as
well as mass region. In Figure 8a, two peaks, m/z
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Figure 7. MALDI TOF-TOF spectrum of human glucagon-like
peptide (m/z 4169.5 selected). The y- and b-ions detected are listed
in Table 3. Preferential cleavages at acidic residues and proline
residues are indicated by asterisks.
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Table 3. Theoretical and measured masses of MALDI TOF-TOF production ions of human glucagons-like peptide. Over 90%

of b- and y-ions are observed under optimized condition

T Theoretical Measured Theoretical Measured
y1 76.04

y2 232.14 232.14 b2 253.09 253.07
y3 289.16 289.14 b3 382.14 382.08
\Z! 417.26 417.19 b4 529.2 529.09
y5 516.33 516.24 b5 658.25 658.08
y6 629.41 629.26 b6 814.35 814.15
y7 815.49 815.29 b7 951.41 951.19
y8 886.53 886.32 b8 1022.44 1022.20
y9 999.61 999.38 b9 1151.49 1151.22
y10 1146.68 1146.41 b10 1208.51 1208.22
y11 1275.72 1275.42 b11 1309.56 1309.22
y12 1403.82 1403.50 b12 1456.62 1456.30
y13 1474.85 1474.48 b13 1557.67 1557.34
y14 1545.89 1545.54 b14 1644.7 1644.39
y15 1673.95 1673.57 b15 1759.73 1759.34
y16 1730.97 1730.58 b16 1858.8 1858.58
y17 1860.01 1859.58 b17 1945.83 1945.41
y18 1973.1 1972.65 b18 2032.86 2032.42
y19 2136.16 2135.71 b19 2195.93 2195.44
y20 2223.19 2222.72 b20 2309.01 2309.72
y21 2310.22 2310.70 b21 2438.05 2437.53
y22 2409.29 2408.77 b22 2495.08 2495.49
y23 2524.32 2523.79 b23 2623.13 2623.54
y24 2611.35 2610.81 b24 2694.17 2693.76
y25 2712.4 2711.83 b25 2765.21 2764.65
y26 2859.47 2858.87 b26 2893.3 2892.72
y27 2960.52 2959.95 b27 3022.35 3021.77
y28 3017.54 3016.93 b28 3169.41 3168.74
y29 3146.58 3145.91 b29 3282.5 3282.95
y30 3217.62 3217.00 b30 3353.54 3353.87
y31 3354.68 3354.02 b31 3539.61

y32 3510.78 3510.08 b32 3652.7

y33 3639.82 b33 3751.77

y34 3786.89 3787.96 b34 3879.86

y35 3915.93 3915.86 b35 3936.88 3937.89
y36 4030.96 b36 4092.98 4092.15

1086.43 and 1272.47, corresponding to the y9 and y11
ions of insulin B-chain, respectively, dominate this
region. Preferential cleavage occurring C-terminal of
glutamic acid (position 9) yields the intense y9 peak;
however, the intense y11 peak, results from cleavage
of a Cys—Gly bond. There is no previous suggestion
of the lability of Cys—Gly bond. Other products ions
apart from the two y-series product ions, both b-ions
and y-ions, of insulin B-chain, were also detected.
Although the intensities of these product ions are not
strong, their observation provides important se-
quence information.

The quintet in Figure 8c, formed by asymmetric
cleavage of both disulfide bonds connecting the two
chains with charge located on the B-chain, were
observed using both standard and modified settings.
The counterpart product ion with the charge located
on the A-Chain (Figure 8b) was only observed using
modified settings. In contrast to the quintet, several
triplets with mass difference of 32/33 Da were ob-
served in this region, indicating the sequential loss of
R, RS, or RSS groups.

Conclusions

Optimization of a MALDI TOF-TOF mass spectrometer
was performed on Applied Biosystems 4700 proteomics
analyzer instrument for direct analysis of proteins up to
12,000 Da. Both the focus of the precursor ion beam
before entering the collision cell (controlled by the
voltages applied to the grid and einzel lens) and the
delay time of ion extraction in ion source 1 are the two
significant factors that affected instrument sensitivity.
Eight matrices were evaluated and CHCA was found to
provide the most intense signal in TOF-TOF experi-
ments. Under optimal conditions, more than 90% of b-
and y-fragment ions were observed for peptides up to
4200 Da. Asymmetric and symmetric cleavages of insu-
lin disulfide bond as well as fragmentation of chain b
were also observed with enhanced intensity. These
results indicate that the MALDI TOF-TOF experiment
can provide structural information for proteins as large
as 12 kDa with sufficient sensitivity for protein identi-
fication and analysis of posttranslational modifications.
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Figure 8. Four segments of the tandem mass spectrum of insulin
revealing different structural information. (a) Low mass segment
representing the product ions generated from the cleavage of
insulin B-chain. (b) Cleavage of disulfide bonds linking chain A
and chain B (separated by mass difference 32/33 Da, shown by
brackets) and the cleavage of chain A and chain B, respectively. (c)
Product ions resulting from the asymmetric and symmetric cleav-
age of both S—S bonds connecting the A-chain and B-chain. (d)
High mass segment of MS/MS spectrum of insulin presenting the
cleavages of residues from N-terminus, leaving at least one
disulfide bond between A-chain and B-chain intact. Peak labeling:
1: [y17 of B-chain (-SH)-H,S+H]™, 2: [A-chain(-SH)-SH-SH+H] ",
3: [A-chain-Cys+H]", 4: [A-chain-Cys-Leu (-SH-SH)+H]", 5:
[B-chain(-SH-SH)-2H,S+H]*, 6: [B-chain(-SH-S)]*, 7: [B-chain-A-
chain-GIVEQCCASVC+H]*, 8: [B-chain-A-chain-GIVEQC+H]",
9: [B-chain-A-chain-GIVE+H] ™.
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