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We construct the Eilenberg—Moore spectral sequence for some generalized cohomology theories, along the lines of
Smith and Hodgkin. We prove its multiplicativity and give some sufficient conditions for its convergence to the
desired target. As applications, we compute the K-theory of various spaces associated to p-compact groups.
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INTRODUCTION

The topology of homogeneous spaces constitutes an important aspect of Lie theory. The
celebrated works of Borel, Bott, Baum, Smith and others completely describe their rational
cohomology and provide important informations on their integral cohomology. For the
K-theory of homogeneous spaces, the Eilenberg—Moore-type spectral sequence constructed
by Hodgkin has been the most successful tool.

Recently, Dwyer and Wilkerson [7] have introduced a homotopical generalization of
the Lie groups, namely the p-compact groups. In this homotopy Lie theory, the notions of
Weyl group, maximal torus, homogeneous space are well defined, even if there is still no
‘‘differentiable structure’’ in sight.

The present work originates in understanding the topology of the p-compact homogene-
ous spaces of Dwyer and Wilkerson. An important invariant of these spaces is their p-adic
cohomology. Its rational part can be computed by combining a classical Eilenberg—Moore
spectral sequence argument with the result of [7]. At the moment, the main indications
about the torsion in p-adic cohomology are conjectural (see however the results of [16]).
Because of the ‘‘lack of differentiability’’, the K-theoretical constructions of Hodgkin do not
apply to the p-compact setting. To circumvent this difficulty, we have to go back to the
original definition of the spectral sequence, basing all the constructions on the geometric
cobar resolution. This has led us to rewrite, adapt and simplify many classical arguments.
This approach turns out to be successful and allows us to deal with other generalized
cohomology theories. To be more precise, let E*(!) be a generalized multiplicative
cohomology theory such that E*(pt) is a graded field. Examples of such theories are given
by singular cohomology with coefficient in a field, complex mod p K-theory and Morava
K-theories. With our assumption, E* (X) is a complete Hausdorff topological E* (pt)-
algebra for any space X. Moreover, E*(!) satisfies the Künneth isomorphism (with
completed tensor products). These two properties are the crucial ingredients for the
construction and the study of the Eilenberg—Moore spectral sequence for E*(!). Our main
result can be stated as follows:
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MAIN THEOREM. ¸et B be a connected space and E* (!) as above. For any pull-back
diagram

there exists a strongly convergent spectral sequence ME*,*
r

(X,½); d
r
N
r*2

satisfying the follow-
ing properties:

1. ¹he spectral sequence is multiplicative and compatible with the stable operations of
E*(!).

2. Ei,*
2

+Tor~iE*(B)
(E*(X), E*(½)) as algebras, where Tor~iE*(B)

(!,!) is the ith derived
functor of the completed tensor product.

3. If p : XPB is a fibration and E*()B) is an exterior algebra on a finite number of odd
degree generators, then the spectral sequence converges to E*(X ]

B
½).

The third point of the theorem deserves the following comment. As easily seen, if E*()B)
is an exterior algebra, then )B is connected; hence B is 1-connected. It is well known that
this weaker property of B suffices to ensure the convergence of the spectral sequence when
E*(!)"H*(!; K), the singular cohomology with coefficient in a field K (see [20]).

With respect to our original aim, we apply the main theorem to compute the K-theory of
various p-compact homogeneous spaces. These computations lead to a new proof of the
main result in [12]. We refer to Section 5 for more precise statements.

The paper is organized as follows. The construction of the spectral sequence is given in
Sections 1 and 2. The ideas are standard but our methods are slightly different from those in
[20, 11]. The multiplicative structure is discussed in Section 3. The reader will notice that
this is the most delicate part of the paper; we assure her/him that we did our best to present
the ideas as clearly as possible. The convergence questions are treated in Sections 2 and 4.
Proposition 2.2 of Section 2 is already stated in Hodgkin’s paper, but the proof presented
here is new and hopefully simpler. Section 4 is crucial for the application to the p-compact
groups. In contrast to Hodgkin, we are able here to get rid of the ‘‘differentiability
hypothesis’’. In addition, the geometrical nature of our constructions readily implies that
the spectral sequence is compatible with the stable operations of E*(!). We mention that
the results of Sections 1—4 are stated for sectioned spaces over B and imply the main
theorem, via the basepoint adjunction trick discussed in Section 1. The applications are
discussed in Section 5. We end with an appendix on profinite rings and modules. The theme
of the appendix is well known and has been considered by some topologists (see [3, 24]). We
have decided to discuss it in some details because of its central role in our arguments and
also because we did not find any reference suitable to our needs.

1. THE GEOMETRIC COBAR RESOLUTION

For the main construction of this section, we need some recollections about fiberwise
topology. Until further notice, B is a fixed pointed and connected space; ¹op/B will denote
the category of spaces over B with fibre maps as morphisms. The base point inclusion
MptN)B, viewed as an element of ¹op/B, will simply be denoted pt. The categorical
product in ¹op/B is the familiar fibred product.
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In the sequel we will work in the pointed version of this category, namely the category
(¹op/B)

*
of sectioned spaces over B. The objects are triples BPs XPp B such that p ° s"id

and morphisms are commutative diagrams

When there is no danger of confusion, we simply write X (respectively ' :X
1
PX

2
)

instead of BPs XPp B (respectively the diagram above). As the reader may have noticed, we
recover the categories ¹op of topological spaces and ¹op

*
of pointed topological spaces by

setting B"pt. It is well known that all the usual homotopic theoretic constructions can be
performed in the category (¹op/B)

*
. For instance, we have fiberwise homotopy, fiberwise

mapping cone C
B
(!), fiberwise suspension &

B
(!), fiberwise wedge !¨

B
!, etc. We refer

to [20] for the definitions. Two other constructions play a role in what follows:

1. If (X; x
0
) is a pointed space, (X;x

0
)
B

will denote the sectioned space over B

B s0&"X]B pr2&" B

where pr
2

is the projection on the second factor and s
0
(b)"(x

0
, b).

2. Let XPp B be a space over B and A a closed subspace of X. The fiberwise collapse of
X with respect to A is the sectioned space

B sN&"X/
B
A pN&" B

defined by

f X/
B
A"(X²B)/a&p(a) ∀a3A,

f pN (x)"p (x) ∀x3X and pN (b)"b ∀b3B,
f sN (b)"b ∀b3B.

In order to simplify the notation, we write X/A for X/
B
A and X` for X/

B
0"X²B (base

point adjunction). We mention in passing that X/A is fiberwise homotopy equivalent to the
fiberwise cone of the obvious inclusion A`)X`.

We turn to an important fact, also treated in [20, 11]: for any map ' : X
1
PX

2
in

(¹op/B)
*

there is a Puppe sequence of maps in (¹op/B)
*

X
1

'&"X
2

i(')&"C
B
(') j(')&"&

B
X

1
&B(')&" &

B
X

2
P2 (1)

with the following properties:

1. For any Z in (¹op/B)
*
, the Puppe sequence of the map ''

B
id is obtained from (1) by

smashing with Z.
2. If s

1
, s

2
, s, respectively, denote the sections of X

1
, X

2
and C

B
(') then

X
1
/s

1
(B) '1&"X

2
/s

2
(B) i('1 )&"C

B
(')/s(B)

is a cofibration sequence in the category ¹op
*
.
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Definition 1.1. A cohomology theory on (¹op/B)
*

consists of a sequence of contravariant
functors MhI i : (¹op/B)

*
PAbN

i|Z
(Ab is the category of abelian groups) and a sequence of

natural transformations MdiN such that

1. di : hI i (X
1
)PhI i`1(C

B
(')) is defined for any cofibration sequence X

1
P' X

2
&"i(') C

B
(')

and the following sequence is exact:

2PhI i~1(X
1
) di~1

&" hI i(C
B
(')) i(')*&" hI i (X

2
) '*
&" hI i (X

1
)P2

2. (Dold’s cylinder axiom) For any space X and any h :X][0, 1]PB, we have
hI *(X][0, 1]/X)"0, where the inclusion of X into X][0,1] is given by x Â (x, 0).

3. (Strong additivity) For any family MXbNb|J of sectioned spaces over B, we have

hI * (¨
B

Xb) +<hI * (Xb).

It can be checked that these axioms imply that a cohomology theory hI *(!) on (¹op/B)
*

is homotopy invariant and possesses a natural suspension isomorphism, that is

hI *`1(&
B
X)+hI *(X)

for any X in (¹op/B)
*
.

Before giving examples, we would like to discuss product structures. A cohomology
theory hI * (!) on (¹op/B)

*
is called multiplicative if it is equipped with a natural pairing of

graded abelian groups

iN : hI * (X)? hI * (½)PhI *(X'
B
½), X, ½3(¹op/B)

*

which is associative and has a unit 13hI 0((S0, *)B
). The sectioned space (S0, *)B

plays the role
of a point in our category, since (S0, *)B

'
B

X"X for any X in (¹op/B)
*
. Consequently

hI * ((S0, *)B
) is a ring, called the coefficient ring of hI * (!), and hI *(X) is a two-sided module

over it. In [11, Lemma 4.1] it is shown that the pairing iN factors through:

i : hI * (X) ?
hM
hI *(½)PhI *(X '

B
½), X, ½3(¹op/B)

*

where hM is short hand for hI * ((S0, *)B
).

Example. Let EI * (!) be a multiplicative cohomology theory on the category ¹op
*

and
E*(!) the associated unreduced theory. Then

EI *
B

(!) : (¹op/B)
*
PAb, XÂE*(X/s (B))

defines a multiplicative cohomology theory on (¹op/B)
*
. The coefficient ring is

EI *
B
((S0, *)B

)+E*(B), so that any EI *
B
(X) is an E*(B)-module. More generally, for any

fibration XPB the functor

(¹op/B)
*
PAb, ½ÂEI *

B
(X` '

B
½)

is also a multiplicative cohomology theory on (¹op/B)
*
, whose coefficient ring is E*(X). The

interested reader might consult the details in [5, Section 3.4].

From now on, EI *(!) will denote a multiplicative cohomology theory on the category
¹op

*
and E*(!) the associated unreduced theory. We will always assume that E*(pt) is
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a graded field; that is, its non-zero homogeneous elements are invertible. This assumption
implies that EI * (!) satisfies the Künneth isomorphism (see [3]).

After all these preliminaries, we are now ready to present the geometric cobar resolution.
To this end, we suppose that we are given a space X in (¹op/B)

*
. From this datum, we

perform the following construction:

1. First we set X
0
"X.

2. For each integer i)0 we suppose that BPs X
i
Pp B has been constructed and we

successively define

f XI
i
"(X

i
/s (B))

B
,

f /
i
: X

i
PXI

i
, /

i
(x)"([x], p (x)),

f X
i~1

"C
B
(/

i
) .

The most important properties of this construction are given in

LEMMA 1.2. ¼ith the notations above and for any integer i)0, the following statements
are true:

1. For any space ½3(¹op/B)
*
, the spaces (XI

i
'

B
½)/s (B) and X

i
/s(B)'½/s(B) are

homotopy equivalent in ¹op
*
.

2. EI *
B
(XI

i
) +EI *

B
(X

i
)?ª E*(pt)

E*(B) as E*(B)-modules, where the E*(B)-action on the right
hand side is given by right multiplication.

3. ¹his induced morphism /*
i
:EI *

B
(XI

i
)PEI *

B
(X

i
) is surjective.

Proof. The first part can be safely left to the reader. For the second part, take
½"(S0, *)B

in the first part to obtain XI
i
/s(B)"X

i
/s (B)'B

`
. It suffices then to apply the

Künneth isomorphism. Concerning the third part, let

t
i
: X

i
/s(B)'B

`
PX

i
/s(B)

denote the collapsing of B to a point. Then t
i °

/M
i
"id, where /M

i
: X

i
/s(B)PXI

i
/s(B) is

induced by /
i
. Consequently t*

i
is a right inverse for /*

i
and we are done. h

Owing to this lemma, the long exact sequences of the /
i
’s break into short exact

sequences:
0PEI *

B
(X

i~1
)PEI *

B
(XI

i
)PEI *

B
(X

i
)P0.

As usual, in homological algebra, we splice all these sequences together as follows:

As a result, we obtain a long exact sequence of E*(B)-modules:

0QEI *
B
(X)QEI *

B
(XI

0
)QEI *

B
(XI

~1
)Q2. (2)
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Fix i)0 and write EI *
B
(X

i
)"EI *(X

i
/s(B))" lim$&

»a
i
, where each »a

i
is a finite dimensional

E*(pt)-module (see Example A.1 in the appendix). By Lemma 1.2 and Theorem A.3(ii), we have

EI *
B
(XI

i
)+ ( lim$&

»a
i
)?ª E*(pt)

E*(B)+ lim$&
(»a

i
?ª E*(pt)

E*(B)) .

Since each »a
i
?ª E*(pt)

E*(B) is obviously a free E*(B)-module, we can invoke Theorem A.1(ii)
to conclude that EI *

B
(XI

i
) is a projective E*(B)-module. Consequently, the sequence (2) is

a projective resolution of the E*(B)-module EI *
B
(X).

2. THE SPECTRAL SEQUENCE

The aim of this section is to construct the spectral sequence announced in the introduc-
tion, to identify its E

2
-term and to discuss its convergence. This spectral sequence will be

defined by means of derived exact couples. In order to simplify the presentation, we will
always replace finite sequences of maps by inclusions in (¹op/B)

*
, via the fibrewise mapping

cylinder construction. With this convention, the cofibre of a map f :APC will simply be
written C/A.

Let X, ½ be spaces in (¹op/B)
*

and let MX
i
PXI

i
PX

i~1
N
i)0

be the geometric cobar
resolution of X. Set

¼
i
(X,½)"¼

i
"X

i
'

B
½ for all i)0.

For a fixed integer i)0, we iterate the Puppe construction of the /
j
’s to obtain the

sequence X
i~1

P&
B
X

i
P&~i`1

B
X

0
. The latter induces a cofibration

&
B
¼

i
/¼

i~1
bi&"&~i`1

B
¼

0
/¼

i~1
ai&"&~i`1

B
¼

0
/&

B
¼

i
. (3)

To introduce the spectral sequence we define, for i)0,

Di,j
1
"EI j`1

B
(&~i`1

B
¼

0
/¼

i~1
)

Ei,j
1
"EI j`1

B
(&

B
¼

i
/¼

i~1
)

and for i'0
Di,j

1
"Ei,j

1
"0.

The cofibration (3) induces a long exact sequence in EI *
B
-cohomology which can be

written as

2PDi`1,j~1
1

a*i&"Di,j
1

b*
i&"Ei,j

1
c*i&" Di`1,j

1
P2

where c*
i

is induced by the Puppe map

c
i
: &~i`1

B
¼

0
/&

B
¼

i
P&

B
(&

B
¼

i
/¼

i~1
) .

We splice all these exact sequences to form the following unraveled exact couple (in the
sense of Boardman [2])

Observe that the bidegree of a*
i

(respectively b*
i
, c*

i
) is (!1, 1) (respectively (0, 0), (1, 0)).

By standard techniques this yields a spectral sequence ME*,*
r

(X,½) ; d
r
N
r*1

(or simply
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ME*,*
r

; d
r
N
r*1

when X and ½ are understood), with differentials d
r
: Ei,j

r
PEi`r,j`1~r

r
. As

usual, for any r*2, the cycles and boundaries are defined as

Z*,*
r

"Ker(d
r~1

), B*,*
r

"Im(d
r~1

).

Since E*,*
r

"Z*,*
r

/B*,*
r

, it is important to have a geometric description of the groups
Z*,*

r
and B*,*

r
. For this purpose, we write

f ı for the natural inclusion (¼
i~1

; &
B
¼

i
)L(¼

i~1
;&r

B
¼

i`r~1
).

f d"d
1 °p, where d

1
is the coboundary of the triple (¼

i~r
,&r~1

B
¼

i~1
,&r

B
¼

i
) and p the

suspension isomorphism

EI j`r
B

(&r
B
¼

i
/&r~1

B
¼

i~1
) +EI j`1

B
(&

B
¼

i
/¼

i~1
) .

Then we have

Zi,j
r

+ ImMı* :EI j`1
B

(&r
B
¼

i`r~1
/¼

i~1
)PEI j`1

B
(&

B
¼

i
/¼

i~1
)N

Bi,j
r

+ ImMd :EI j`r~1
B

(&r~1
B

¼
i~1

/¼
i~r

)PEI j`1
B

(&
B
¼

i
/¼

i~1
)N .

With these identifications the differentials d
r
are induced by the composite

where d
2

is the coboundary of the triple (¼
i`1

,&r
B
¼

i`r`1
,&~i`1

B
¼

0
) and b*

i`r
is as above.

The proof of these facts is standard; the interested reader might want to perform it by
chasing on diagrams like the one on the top of p. 661 in [23].

Everything is now in place for the identification of the E
2
-term of that spectral sequence.

This is based on the following:

LEMMA 2.1. For any i)0 and any space ½ in (¹op/B)
*
, the product in EI *

B
-cohomology

induces an isomorphism

EI *
B
XI

i
?ª E*(B)

EI *
B
(½)+EI *

B
(XI

i
'

B
½) .

Proof. Consider the diagram

We proceed as in [11, p. 49] to show that it commutes. By Lemma 1.2, the two vertical maps
are isomorphism. The lower horizontal map is also an isomorphism (this is the ordinary
Künneth isomorphism in E*-cohomology). This completes the proof of the lemma. h
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Let us now deal with the differential d
1
:Ei~1,*

1
PEi,*

1
. By definition it is the composite

b*
i ° c*

i~1
. As easily checked, the following diagram commutes:

The horizontal composition is equivalent to

&
B
XI

i`1
'

B
½ (i`1

'Y&&"&2
B
XI

i
'

B
½ (i

'Y&"&2
B
XI

i
'

B
½ .

This observation and Lemma 2.1 imply that the complex

0QE0,*
1

d1$&E~1,*
1

d1$&E~2,*
1

d1$&2

is isomorphic to the one obtained by applying the functor !?K E*(B)
EI *
B
(½) to the complex

0QEI *
B
(XI

0
)QEI *

B
(XI

~1
)Q2

described at the end of Section 1. We have thus shown that

Ei,*
2

+Tor~iE*(B)
(EI *

B
(X),EI *

B
(½))

where Tor~iE*(B)
(!,!) is the ith derived functor of the completed tensor product (see the

appendix).
We now turn to the convergence questions. Let us introduce the graded group

H*(X,½) by taking Hr (X,½) as the direct limit of the sequence

D0,r
1

PD~1,r`1
1

P2PDi,r~i
1

P2

The group H*(X,½) is filtered (as graded group) by

F
i
Hr(X,½)"ImMDi,r~i

1
PHr (X,½)N .

According to Boardman [2, Section 6], this filtration is Hausdorff and complete and the
spectral sequence constructed in the previous section converges to H*(X,½), that is,

Ei,r~i
=

+F
i
Hr(X,½)/F

i`1
Hr (X,½), for all i .

The expected target group is EI *
B
(¼

0
)"EI *

B
(X'

B
½). In this section we will give conditions

under which H*(X,½) is isomorphic to EI *
B
(X'

B
½).

For each i)0, we consider the exact triangle induced in E*-cohomology by the
cofibration ¼

i~1
P&~i`1

B
¼

0
P&~i`1

B
¼

0
/¼

i~1
. The direct limit of these triangles is the

exact triangle

(4)

where Gr (X,½) is the direct limit of the sequence

EI r`1
B

(¼
~1

)PEI r`2
B

(¼
~2

)P2PEI r~i`1
B

(¼
i~1

)P2 .
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If the group G*(X,½) vanishes, then the map ' of the triangle (4) will be an isomorphism so
that our spectral sequence will have the expected abutment. The following proposition
describes the main property of this obstruction group and gives a sufficient condition for the
convergence to EI *

B
(X'

B
½).

PROPOSITION 2.2. Assume that E*(B) has finite global dimension. If X is an element of
(¹op/B)

*
such that the projection p :XPB is a fibration, then the functor ½ÂG* (X,½) is

a cohomology theory on (¹op/B)
*
. Consequently, if G*(X, pt )"0, then G*(X, ½)"0 for all

spaces ½ in (¹op/B)
*
.

Proof. The first axiom of Definition 1.1 is easily checked using the exactness of the direct
limits and the properties of the smash product and cofibrations in the category (¹op/B)

*
.

The cylinder axiom requires the extra assumption on the projection p. By Proposition 4.8 of
[20] and Section 3.4 of [5], the functors ½ÂEI *

B
(X

i
'

B
½) are cohomology theories for each

i)0. We invoke one more time the exactness of the direct limits to conclude that the second
axiom in Definition 1.1 is satisfied. We are left to show that G*(X, ½) is strongly additive;
this is where we use the hypothesis on the global dimension of E*(B). Let M½bNb|J be a family
of spaces in (¹op/B)

*
. We want to prove that the natural injections ½b)¨

B
½b induce an

isomorphism

G*(X, ¨
B
½b) + <G*(X, ½)b .

We start with three observations:

1. ¼
0
(X,¨

B
½b) is homotopy equivalent to ¨

B
¼

0
(X,½b).

2. EI *
B
(¨

B
¼

0
(X,½b)) is naturally isomorphic to <EI *

B
(¼

0
(X,½b)).

3. The following triangle is exact (the direct product preserves exactness):

We filter the group <H*(X,½b) by setting F
i
<H*(X,½b)"< F

i
H*(X,½b). This filtration

is Hausdorff and complete. The natural injections ½b)¨
B
½b induce a continuous

homomorphism

t
0
:H*(X,¨

B
½b)P<H*(X, ½b) . (5)

Because of the three observations above, it is sufficient to prove that t
0

is an isomorphism.
From the definition of the spectral sequence and exactness of the direct product, one

checks easily that M< E*,*
r

(X,½b); < d
r
N
r*1

is a spectral sequence. Moreover, the natural
injections ½b)¨

B
½b induce a morphism of spectral sequences

t
r
:E*,*

r
(X,¨

B
½b)P< E*,*

r
(X,½b) . (6)

As the completed tensor product commutes with the direct products (see the appendix), the
morphism

t
2
:Tor*E*(B)

(EI *
B
(X),EI *

B
(¨

B
½b))P<Tor*E*(B)

(EI *
B
(X),EI *

B
(½b))
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is an isomorphism. Thus the spectral sequences of (6) are isomorphic. As the global
dimension d of E*(B) is finite, we have E*,*

r
(X,!)"E*,*

=
(X,!) for every r larger than d.

This uniform bound implies that the t
r
’s induce an isomorphism

t
=

:E*,*
=

(X,¨
B
½b)P<E*,*

=
(X,½b) .

The latter is nothing but the graded homomorphism associated to t
0
. As the two groups

involved in (5) are Hausdorff and complete, t
0
has to be an isomorphism. The last assertion

follows from the Comparison Theorem 4.1 of [5]. h

3. THE MULTIPLICATIVE STRUCTURE

The discussion of the multiplicative structure of the Eilenberg—Moore spectral sequence
requires more general definitions than those given in Section 2. Since this material will be
used only in the present section, we have chosen to introduce it here.

Definition 3.1. Let m*1 and X3(¹op/B)
*
. A negative m-filtration of X is a sequence

º
*

of spaces Mº
i
N
i)0

and maps t
i
:º

i~1
P&m

B
º

i
in (¹op/B)

*
, with º

0
"X. A morphism

f
*

:º
*
P»

*
of negative m-filtrations is a sequence of maps f

i
:º

i
P»

i
making the obvious

diagrams commutative.

Example. (1) For X in (¹op/B)
*

and m*1 the geometric cobar resolution of degree
m!1 of X is inductively defined by setting X

0
"X and for i)0,

f XI
i
"(X

i
/s(B))

B
,

f /
i
: X

i
PXI

i
, /

i
(x)"([x], p(x)),

f X
i~1

"C
B
(&m~1

B
/
i
).

We set X
i
(m) :"X

i
and take t

i
: X

i~1
(m)P&m

B
X

i
(m) to be the next map in the Puppe

sequence of the cofibration

&m~1
B

X
i
(m)P&m~1

B
XI

i
(m)PX

i~1
(m) .

The resulting negative m-filtration will be denoted X
*
(m) and called the cobar m-filtration.

When m"1, we recover the 1-filtration associated to the geometric cobar resolution of
Section 1; we will then simply write X

*
:"X

*
(1).

2. Let º
*

be a negative m-filtration of X3(¹op/B)
*

and let ½3(¹op/B)
*
. One constructs

a negative m-filtration º
*
'½ by smashing all the constituents of º

*
by ½. In particular, we

suspend negative filtrations by smashing them with ½"(Sk; *)B
.

We recall here a construction of Hodgkin, since it will play a central role in our
discussion. It might be illuminating to view this construction as the geometric counterpart
of the tensor product of chain complexes in homological algebra. To begin our construc-
tion, we fix X3(¹op/B)

*
and let º

*
be a negative m-filtration of º

0
"X. For any integer

i)0 we consider the sequence

º
i
ti`1&"&m

B
º

i`1
ti`2&"2 t0&"&~im

B
º

0
. (7)

We may, and will, assume (in accordance with our convention) that all the maps in this
sequence are inclusions.

Let Z
i
be the subspace in (¹op/B)

*
of &~im

B
º

0
'

B
&~im
B

º
0

defined by

Z
i
" Z

k`l/i

&~km
B

º
i~k

'
B

&~lm
B

º
i~l

.
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By comparing the sequence (7) for the index i and i!1, Hodgkin constructed a natural map
s
i
:Z

i~1
P&2m

B
Z

i
and showed (see [11, p. 24]) that

&2m
B

Z
i
/Z

i~1
K ¨

k`l/i

&~(i~k)m
B

(&m
B
º

k
/º

k~1
) '

B
&~(i~l)m

B
(&m

B
º

l
/º

l~1
) . (8)

As in [11], the negative 2m-filtration MZ
i
; s

i
N
i)0

will be denoted º
*
?º

*
.

We continue our recollection of Hodgkin’s work, by explaining how negative filtrations
give rise to spectral sequences. Let º

*
be a negative m-filtration and EI *

B
(!) a cohomology

theory on (¹op/B)
*
. We fix an integer i)0 and extract the part of the sequence (7) given by

the inclusions º
i~1

)&m
B
º

i
)&(~i`1)m

B
º

0
. This sequence induces a cofibration

&m
B
º

i
/º

i~1
P&(~i`1)m

B
º

0
/º

i~1
P&(~i`1)m

B
º

0
/&m

B
º

i
.

With respect to this cofibration we define

Di,j
1
"EI j`1`(~i`1)(m~1)

B
(&(~i`1)m

B
º

0
/º

i~1
)

Ei,j
1
"EI j`1`(~i`1)(m~1)

B
(&m

B
º

i
/º

i~1
) .

We extend to all integers by setting, for i'0,

Di,j
1
"Ei,j

1
"0.

As in Section 2 we obtain an unravelled exact couple; the associated spectral sequence is
written MEi,j

r
(º

*
) ; d

r
N
r*1

. Here also, the result of Boardman [2] implies that the spectral

sequence strongly converges to H*(º
*
) :" lim

&"
(D0,*

1
PD~1,*`1

1
P2). The latter is re-

lated to the desired abutment via a natural map ' :H*(º
*
)PEI *

B
(º

0
).

LEMMA 3.2. ¸et X,½3(¹op/B)
*

and m*1. ¼rite X
*
(m) (respectively X

*
) for the cobar

m-filtration (respectively 1-filtration) of X. ¹hen there is a natural morphism of spectral
sequences

E*,*
r

(X
*
(m)'½)PE*,*

r
(X

*
'½)

which is an isomorphism for r*2.

Proof. We construct inductively maps /
i
:X

i
(m)P&~i(m~1)

B
X

i
by taking /

0
"id and

requiring the commutativity of the diagram

where /I
i
is the composite

&m~1
B

XI
i
(m)P&m~1

B
(&~i(m~1)

B
X

i
/s (B)]B)P&(~i`1)(m~1)

B
XI

i
.

Then the map /
i
'id :X

i
(m) '

B
½P&~i(m~1)

B
X

i
'

B
½ induces the desired homomorphism

of spectral sequences. As in Section 1, one constructs a projective E*(B)-resolution

0QEI *
B
(X)QEI *

B
(XI

0
(m))QEI *

B
(XI

~1
(m))Q2 .

The comparison theorem of projective resolutions now implies that /
i
'id induces an

isomorphism of E
2
-terms and the lemma follows. h
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This is the right place to start the discussion of the multiplicative properties of the
spectral sequence.

PROPOSITION 3.3. ¸et X,½3(¹op/B)
*

and set ¼
*
"X

*
'½, where X

*
is the cobar 1-

filtration of X. For 1)r)R, there exist associative pairings

t
r
:Ei,j

r
(¼

*
)?Ep,q

r
(¼

*
)PEi`p,j`q

r
(¼

*
?¼

*
), a ? bÂa ) b

satisfying the following properties:

1. t
1

is induced by the multiplication of EI *
B
(!).

2. t
r`1

is induced by t
r
, via the isomorphism E

r`1
+H(E

r
).

3. For all a3Ei,j
r

(¼
*
) and b3Ep,q

r
(¼

*
), we have

d
r
(a ) b)"d

r
(a) ) b#(!1)j`1a ) d

r
(b) .

Proof. We begin with some notation. For any negative m-filtration º
*
, we set

f Ai,j
r

(º
*
)"EI j`1`(~i`1)(m~1)

B
((&rm

B
º

i`r~1
/º

i~1
)).

f For s)r, a
r,s

: Ai,j
r

(º
*
)PAi,j

s
(º

*
) is the morphism induced by the inclusion

(º
i~1

,&sm
B
º

i`s~1
)) (º

i~1
, &rm

B
º

i`r~1
).

f *i,j
r

: Ai,j
r

(º
*
)PAi`r,j~r`1

r
(º

*
) is the coboundary operator of the triple

(º
i~1

, &rm
B
º

i`r~1
, &2rm

B
º

i`2r~1
).

Let us observe that Ai,j
1

(º
*
)"Ei,j

1
(º

*
), the first term of the spectral sequence associated to

º
*
. By proceeding as in the case m"1 (see Section 2), we see that

Zi,j
r

+ImMa
r,1

:Ai,j
r

(º
*
)PAi,j

1
(º

*
)N

Bi,j
r

+ImMd : Ai~r`1,j`r~2
r~1

(º
*
)PAi,j

1
(º

*
)N

where d is defined as in Section 2. We set l"j#1#(!i#1) (m!1) and consider the
commutative diagram (obtained by playing around with suitable triples):

As in Section 2 and with the identifications above, the differential d
r

is equal b*
i`r °

d.
Consequently, d

r
is induced by the morphism **,*

r
.

We now go back to our data and define pairings

/
r
: Ai,j

r
(¼

*
)?Ap,q

r
(¼

*
)PAi`p,j`q

r
(¼

*
?¼

*
)

in the following manner. First we use the product of EI *
B
(!) and the suspension isomor-

phism to send Ai,j
r

?Ap,q
r

into

EI *
B
(&~p`1

B
(&r

B
¼

i`r~1
/¼

i~1
) '

B
&~i`1

B
(&r

B
¼

p`r~1
/¼

p~1
)) .

Then we proceed as in [11, p. 30] to send the latter into Ai`p,j`q
r

(¼
*
?¼

*
). We observe

that the arguments in Hilfsatz 13 and 14 of [13] apply verbatim to our situation. To be
entirely honest, we should mention that Kulze’s proofs are based on two hypothesis (the
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axioms M1 and M2 (p. 290) of [13]). Fortunately, these hypotheses are satisfied in our case
(see Theorem 9.10, p. 238, of [1]). h

As in the classical case, the next step consists in comparing the spectral sequences of the
negative filtrations ¼

*
?¼

*
and ¼

*
, via the diagonal map. Unfortunately we have not

been able to proceed directly. However, as we will see in a moment the suspensions of these
filtrations can be compared. This will be sufficient for our purpose. The reason is the
following: For any negative m-filtration º

*
, the suspension isomorphism induces an

isomorphism of spectral sequences. (This is easily checked at the level of exact couples.)

p : Ei,j
r

(º
*
)P: Ei,j`1

r
(&º

*
). (9)

LEMMA 3.4. ¸et º
*

be a negative m-filtration of º
0
"». As above, we write »

*
(m) for

the cobar m-filtration of ». ¹here exists a negative m-filtration Z
*

of » and two morphisms
of negative filtrations

&»
*
(m) g*$&Z

*
f*$&&º

*

such that f
0
"g

0
"id.

Proof. To begin with we set Z
0
"» and f

0
"g

0
"id. Given f

i
: Z

i
P&

B
º

i
and

g
i
:Z

i
P&

B
»
i
(m), let

º@
i
"&m

B
º

i
/º

i~1
, »@

i
"&m

B
»I
i
(m) and Z@

i
"&m~1

B
ZI

i
/s(B)](º@

i
]

B
»@
i
) .

We define Z
i~1

as the fiberwise cone of the obvious map &m~1
B

Z
i
PZ@

i
and we construct

f
i~1

and g
i~1

by requiring that the following diagram commutes:

Here f @
i

and g@
i
are the obvious projections. h

THEOREM 3.5. ¸et X,½3(¹op/B)
*

and set ¼
*
"X

*
'½, where X

*
is the cobar 1-

filtration of X. ¹here exist associative pairings, for 2)r)R,

k
r
:Ei,j

r
(¼

*
)?Ep,q

r
(¼

*
)PEi`p,j`q

r
(¼

*
), a?b Â ab

satisfying the following properties:

1. If E*,*
2

(¼
*
) is identified with Tor*E(B)

(EI *
B
(X),EI *

B
(½)), then k

2
becomes the usual internal

product of Tor*E*(B)
(!,!).

2. k
r`1

is induced by k
r
, via the isomorphism E

r`1
+H(E

r
).

3. For all a3Ei,j
r

(¼
*
), b3Ep,q

r
(¼

*
) we have

d
r
(ab)"d

r
(a)b#(!1)j`1 ad

r
(b) .
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4. ¸et Hr (X,½) be the limit of the spectral sequence MEi,j
r

(¼
*
) ; d

r
N
r*1

. ¹here is a product
k :H*(X,½)?H*(X,½)PH*(X,½) which induces k

=
. In addition, the natural

homomorphism
' :H*(X,½)PEI *

B
(X'

B
½)

respects the products.

Proof. For the construction of the k
r
’s, we already have the composite

(10)

where t
r
has been defined in Proposition 3.3, q

r
is induced by the twists X'

B
X

j
KX

j
'

B
X

and p
r
is the suspension isomorphism discussed above (see (9)). Next we apply Lemma 3.4

with º
*
:"X

*
?X

*
and » :"X'

B
X. This yields a negative 2-filtration Z

*
and two

morphisms of spectral sequences

(11)

We claim that g
*

is an isomorphism for any r*2. This can be checked as in Lemma 3.2,
using property (8) and the construction of Z

*
(see Lemma 3.4). To obtain the pairing k

r
, we

compose the diagrams (10) and (11) with the sequence

(12)

where p~1 is the inverse of the suspension isomorphism (9), ** is induced by the diagonals
XPX'

B
X and ½P½'

B
½ and the last arrow is the isomorphism of Lemma 3.2. Even

though suspensions appear in the construction, we note that the k
r
’s are bigraded mor-

phisms.
We now go through the claimed properties of the pairings. The first one follows from the

definition of the internal product ofTor*E*(B)
(!,!) (see [22, p. 65]). The next two properties

are consequences of Proposition 3.3.
Let us deal with the multiplicative structure of H*(X,½)"H*(¼

*
). First we proceed

as in Proposition 3.3 to define morphisms

Di,j
1

(¼
*
)?Dp,q

1
(¼

*
)PDi`p,j`q

1
(¼

*
?¼

*
).
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The direct limit of these morphisms yields a pairing

Hr (¼
*
)?Hs (¼

*
)PHr`s(¼

*
?¼

*
).

To obtain the desired product on H*(¼
*
), we compose this pairing with a sequence of

morphisms following the same pattern as in diagrams (10)— (12). Of course, one needs to
check that

g* :H*(&
B
»
*
(2)'(½'

B
½))PH*(Z

*
'(½'

B
½))

is an isomorphism, but this is true because the corresponding spectral sequences are
isomorphic (see the claim after diagram (11)). The naturality of these constructions implies
that ' is multiplicative and k induces k

=
. h

4. AN EXAMPLE OF CONVERGENCE

Let B be a pointed space and p :EBPB be the path space fibration. The adjoint of the
identity of )B will be denoted e :&)BPB. Assume that E*()B)+" (m

1
,2, m

n
) with

m
i
3E0$$(B) for i"1,2, n. An easy calculation with the Rothenberg—Steenrod spectral

sequence implies that E*(B)+E*[[o
1
,2, o

n
]] where o

i
3E%7%/(B) is chosen so that

e*(o
i
)"pm

i
for i"1,2, n.

THEOREM 4.1. ¸et B be a connected and pointed space, p :EBPB the path space fibration
and assume that E*()B)+"(m

1
,2, m

n
) with m

i
3E0$$(B). ¹hen the Eilenberg—Moore spectral

sequence of the pull-back diagram

converges strongly to E*()B).

Following the notation of Section 1, we write MX
i
PXI

i
PX

i~1
N
i)0

for the cobar
resolution of X

0
"EB` and we set

¼
i
:"X

i
'

B
pt` (i)0) .

The first steps of this construction are summarized in the following commutative diagram
(where the vertical maps are induced by the inclusion pt`)B`"(S0, *)B

) :

By definition EI *
B
(¼

0
)+E*()B) and the contractibility of EB implies that the composite

EI * (&)B))E*(&)B)+EI *
B
(&

B
¼

0
) i*0&"EI *

B
(¼

~1
) is an isomorphism. By abuse of notation,

we will identify the generators pm
i
3EI * (&)B) with their images in EI *

B
(¼

~1
). A similar

argument shows that EI *
B
(X

~1
)+EI * (B); here also we will identify the o

i
’s with their images

in EI *
B
(X

~1
).
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LEMMA 4.2. ¼ith the notation and identifications above, the morphism induced in EI *
B
-

cohomology by the map j
1
:¼

~1
PX

~1
satisfies j*

1
(o

i
)"!pm

i
, for i"1,2, n.

Proof. Let u : &)BPB be the adjoint of the map inv :)BP)B which sends a loop a to
its inverse a~1. We leave as an exercise to check that, in E*-cohomology, u*(o

i
)"!pm

i
,

for i"1,2, n.
We will construct two maps (in ¹op

*
)PF : X

~1
/s (B)PB and f :¼

~1
/s(B)P&)B

making the following diagram commutative:

The space X
~1

is by definition the cofiber of

/
0
:X

0
"EB`PXI

0
"X

0
/s(B)]B .

More precisely, X
~1

"C
B
(X

0
) ²XI

0
/(a ; 0)&/

0
(a), where C

B
(X

0
) denotes the reduced cone

over B of X
0

(see [20] for its definition). We construct a map X
~1

PB by sending

(a : t) >

([x]; b) >

G
a (1!t) if a3EB

a if a3B

b if ([x]; b)3XI
0
.

We leave as an exercise to check that this map is well defined and induces F : X
~1

/s(B)PB.
It is also easily checked that the composite

(EB]B) ² pt"XI
0
/s(B)PX

~1
/s(B)PF B

is the projection onto the second factor. This shows that F*(o
i
)"o

i
for i"1,2, n.

Similarly ¼
~1

is the cofiber of the map ¼
0
")B`PEB`. Thus ¼

~1
"

C
B
(¼

0
) ² EB`/(a ; 0)&a. We construct a map ¼

~1
P&)B by sending

(a ; t) >

a >

G
[(a, t)] if a3)B

[(e
0
, 0)] if a3B

[(e
0
, 0)] if a3EB`

where e
0
3EB`stands for the trivial loop. It is easily checked that this map is well defined

and induces f :¼
~1

/s(B)P&)B. We also leave as an exercice that the following diagram
commutes up to homotopy:

This implies that f * (pm
i
)"pm

i
for i"1,2, n.

The commutativity of diagram (13) is straightforward and implies the lemma. h
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To proceed further we need to consider one more step in the cobar resolution. More
precisely, we will study the inclusions ¼

~1
)&

B
¼

0
and ¼

~2
)&

B
¼

~1
. For simplicity,

we will use the following identifications:

EI *
B
(&

B
¼

~1
/¼

~2
)+EI *

B
(&

B
XI

~1
'

B
pt`)+EI * (&B)+EI *~1(B) .

The second isomorphism follows from Lemma 1.2 and the others are obvious.

LEMMA 4.3. ¸et q
1

be the projection &
B
¼

~1
P&

B
¼

~1
/¼

~2
. ¼ith the identifications

above, we have q*
1
(o

i
)"!pm

i
, for i"1,

2
, n.

Proof. We consider the following commutative diagram in (¹op/B)
*
, obtained from the

nnatural map X
~2

)&
B
X

~1
:

With our usual identifications, we have

EI *
B
(&

B
X

~1
/X

~2
)+EI *

B
(&

B
XI

~1
)+EI *~1

B
(XI

~1
)+EI * (B)?E*(B).

The two homomorphisms j*
2

and q*
2

send o
i
?1 to o

i
. We note that these homomorphisms

behave differently, for example on the elements o
i
?o

j
. Lemma 4.2 and the commutative

diagram above now implies the assertion. h

Proof of ¹heorem 4.1. We will show, as claimed, that the map ':H*(EB`, pt`)P
EI *
B
¼

0
is a ring isomorphism. In our situation, the E

2
-term of the Eilenberg—Moore spectral

sequence is isomorphic to

Tor*E*(B)
(E*(pt),E*(pt))+"(y

1
,2, y

n
)

the argument is standard and involves the Koszul resolution (see [22]). For dimensional
reasons, the generators y

i
are permanent cycles. The multiplicative properties of the spectral

sequence imply that it collapses; that is, E
2
+E

=
. Hence, H*(EB`, pt`) is a free E*(pt)-

module of rank 2n. We next consider the diagram

Since Im(q*
1
)"Ker(i*

1
), Lemma 4.3 implies that the image of the generators

m
i
3EI *

B
¼

0
+E*)B are zero in the obstruction group G*(EB`, pt`)" lim

&" EI *
B
(¼

i
).

Therefore, the generators m
i
lie in the image of ', showing the surjectivity of the latter.

A dimension count now implies the claim. h

THEOREM 4.4. ¸et B be a connected and pointed space such that E*()B)+"(m
1
,2, m

n
),

with m
i
3E0$$(B). ¸et X, ½ in (¹op/B)

*
and assume that the projection p : XPB is a fibration.
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¹hen the Eilenberg—Moore spectral sequence ME*,*
r

(X,½) ; d
r
N
r*1

converges strongly to
EI *
B
(X'

B
½).

Proof. Recall that G*(!,!) denotes the obstruction to the ‘‘good behaviour’’ of the
Eilenberg—Moore spectral sequence (see Section 2). By Theorem 4.1, we have
G*(EB`, pt`)"0, where p :EBPB is the path space fibration. Note that
E*(B)+E*[[o

1
,
2

, o
n
]] is a ring of finite global dimension. It follows from Proposition 2.2

that G*(EB`, X) is also trivial. The argument of Hodgkin (see pp. 40—41 of [11]) shows that
0"G* (EB`,X)"G* (X, EB`). Since p : XPB is a fibration, its homotopy fiber is
homotopy equivalent to the fiber over the base point; hence G* (X,EB`)"G* (X, pt`)"0.
We invoke one more time Proposition 2.2 to obtain G*(X,½)"0 and this concludes the
proof. h

Remark. If E*()B) is not an exterior algebra, the spectral sequence may not converge to
the desired target. For instance, let E*(!)"K* (!, F

2
) be the mod 2 complex K-theory

and B"BSO(3), the classifying space of the Lie group SO(3). As is well known, we
have

K*(B, F
2
)+F

2
[[o]] and K*()B ; F

2
) + F

2
[m]/(m4) .

For the path space fibration )BPEBPB, the limit of the Eilenberg—Moore spectral
sequence is H*(EB`, pt`)+"(y), which is obviously different from K* ()B ;F

2
).

5. APPLICATIONS

In this section, we will use our main theorem to describe the K-theory of certain spaces
associated to p-compact groups. The basic references for the theory of p-compact groups are
[7, 15]; we refer to these papers for the relevant facts about these objects.

Throughout this section, p is a fixed prime and R denotes either the field F
p
of order p or

the ring Z
pL

of p-adic integers. The complex K-theory with coefficient R will be denoted
K*(!; R).

Our first result provides a large class of p-compact groups satisfying the hypothesis of
the third point in the main theorem. The result might be well known to the experts, but we
have not found any explicit reference.

THEOREM 5.1. ¸et X be a connected p-compact group. ¹hen K*(X;R) is an exterior
algebra on odd degrees generators if and only if n

1
(X) is torsion free.

Proof. A Bockstein spectral sequence argument shows that K*(X;F
p
) is an exterior

algebra on odd degrees generators if and only if K*(X; Z
pL
) is an exterior algebra, if and only

if K*(X;Z
pL
) is torsion free. This reduces our problem to the case R"Z

pL
.

Observe that n
1
(X) is a finitely generated Z

pL
-module, hence n

1
(X)+Zr

pL
=n where n is

a finite abelian p-group. We combine the arguments of Theorem 4.3 (p. 63) in [14] and
Corollary 3.3 of [15] to show that X is homotopy equivalent (only as a space) to ½](S1

pL
)r,

where ½ is a connected p-compact group with n
1
(½)+n.

If n
1
(X) is torsion free, then ½ is a 1-connected p-compact group and we can invoke

a theorem of Kane and Lin (see [12, Theorem 1.2]) to conclude that K*(X;Z
pL
) is an exterior

algebra. The argument for the converse is implicit in [10]. Suppose that n is non-trivial
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and choose a cyclic subgroup i : Z/p)n. Let ½S1T be the universal cover of ½ and
M(p)"S1X

p
e2 be the 2-skeleton of BZ/p. Consider the pullback diagram

Since ½S1T is 2-connected, obstruction theory tells us that the fibration qJ is trivial, hence
qJ induces an injection in K-theory. As well known, the map Bi induces a surjection in
K-theory; an easy computation shows that the same is true for the map j. All these facts
imply that there exists a class mO0 in the image of q* :K*(Bn;Z

pL
)PK*(½;Z

pL
). A Chern

character argument shows that m is a non-trivial torsion class in K*(½;Z
pL
) and this implies

that K*(X;Z
pL
) has non-trivial torsion. h

PROPOSITION 5.2. ¸et X be a connected p-compact group such that n
1
(X) is torsion free

and let i :¹PX be a maximal torus. ¹he ring homomorphism Bi* :K*(BX;R)PK*(B¹;R) is
injective and makes K*(B¹; R) into a free and finitely generated K*(BX;R)-module.

Proof. The arguments of the proof of Theorem 2.7 in [12] are valid in this more general
situation. The injectivity is due to the equality of the Krull dimensions. h

Everything is now in place for the main result of this section.

THEOREM 5.3. ¸et X be a connected p-compact group such that n
1
(X) is torsion free. ¸et

i :¹PX be a maximal torus and X/¹ the associated homogeneous space; that is, X/¹ is the
homotopy fibre of Bi : B¹PBX. ¹hen the inclusion X/¹)B¹ induces an isomorphism

K*(X/¹;R)+K* (B¹;R)?
K*(BX;R)

K*(pt;R) ,

where the K*(BX;R)-module structure on K*(B¹; R) (respectively K* (pt;R)) is given by the
induced map Bi* (respectively the augmentation map).

Proof. Let us first deal with the case R"F
p
. We may and we will assume that the map

Bi :B¹PBX is a fibration. Owing to Theorem 5.1, we can apply our main theorem to the
pullback diagram

Consequently, there is a strongly convergent Eilenberg—Moore spectral sequence

Ei,*
2

"¹ori
K*(BX;F

p)
(K*(B¹;F

p
); K*(pt;F

p
))NK*(X/¹;F

p
) .

Proposition 5.2 above implies that the spectral sequence is trivial, i.e. E*,*
2

"E0,*
2

"E*,*
=

and the claim follows.
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The case R"Z
pL

is a consequence of the preceding one, the universal coefficients
theorem and Nakayama’s lemma. h

For a general p-compact group and even if the Eilenberg—Moore spectral sequence does
not behave as expected, we still have the following qualitative result.

COROLLARY 5.4. ¸et X be a connected p-compact group, i :¹PX a maximal torus and
¼ the corresponding¼eyl group. ¹hen K1(X/¹;R)"0 and K0(X/¹;R) is a free R-module of
rank D¼D.

Proof. Let XS1T be the universal cover of X. As we have seen above, XS1T is a p-
compact group. In the proof of Corollary 5.6 of [15], it is shown that X/¹ is homotopy
equivalent to XS1T/S, where SPXS1T is maximal torus for XS1T. Since the latter is
1-connected, Theorem 5.3 applies. We invoke Proposition 9.5 of [7] to obtain the assertion
about the rank. h

One of the main conjectures in the theory of p-compact groups states that H*(X/¹;Z
pˆ
)

is torsion free and concentrated in even degrees. The interested reader is referred to [16] for
some partial results about this conjecture. The corollary above can be viewed as a positive
solution of its K-theoretical version.

As a second application, we will now give a slightly different proof of the main result in
[12]. With this new method, we obtain an analoguous result for mod p K-theory. The case
of Lie groups might be known to experts, but we are not aware of this mod p K-theory
statement in the literature.

COROLLARY 5.5. ¸et X be a connected p-compact group, i :¹PX a maximal torus and
¼ the corresponding ¼eyl group. ¹he map Bi induces a ring isomorphism

K*(BX;R)+K* (B¹; R)W.

Proof. By proceeding as in Section 3 of [12], we may and we will assume that X is 1-
connected. Theorem 5.1 and a Rothenberg—Steenrod spectral sequence argument imply
that K* (BX;R)+R[[o

1
,2, o

n
]] with o

i
3K0 (BX;R) and n equal to the rank of X.

Similarly, K* (B¹;R)+R[[q
1
,2, q

n
]] with q

i
3K0(B¹; R). For simplicity we set

S
X
"R[[o

1
,2,o

n
]], S

T
"R[[q

1
,2, q

n
]]

and we will identify S
X

with its image in S
T

(this is justified because Bi* is injective by
Proposition 5.2).

By construction S
X

is contained in the ring of invariants SW
T
. To show equality, we

consider the following diagram

where Frac(!) stands for the fractions field. By Proposition 5.2 and Corollary 5.4, S
T

is
a free S

X
-module of rank D¼D; it follows that Frac(S

X
))Frac(S

T
) is a field extension of
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degree D¼D. By Galois theory, Frac(SW
T
)"Frac(S

T
)W)Frac(S

T
) is a field extension of

degree D¼D. As consequence, the fields Frac(S
X
) and Frac(SW

T
) coincide. Since S

T
is integrally

closed (it is a power series ring over R) and the ring extension S
X
) S

T
is integral, we obtain

that S
X
"SW

T
. h

Let us close this section by describing how our results extend to Morava K-theories. For
n*1, K(n)*(!) denotes the nth Morava K-theory, its coefficient ring is the graded field
F
p
[v

n
, v~1

n
] with Dv

n
D"2(pn!1).

Let X be a connected p-compact group, i :¹PX a maximal torus and ¼ the corres-
ponding Weyl group. If K(n)* (X) is an exterior algebra on odd degrees generators, then the
preceding arguments apply and we have

1. K (n)*(X/¹)+K(n)*(B¹)?
K(n)*(BX)

K (n)* (pt).
2. K (n)* (BX)+K(n)*(B¹)W.

These statements naturally give rise to the following question:

For each integer n*1, find all the p-compact groups X such that
K(n)*(X) is an exterior algebra.

As well-known, K (n)* (X) is an exterior algebra when H*(X;Z
pL
) is torsion free. Hence we

recover Theorem 3.1 of [21]. In contrast to the paper just quoted, we can treat many spaces
with torsion. For instance, our Theorem 5.1 provides a complete answer to the question
when n"1. More interestingly, Marta Santos [18] has observed that K(2)*(DI(4)) is an
exterior algebra; here DI(4) is the exotic 2-compact group constructed by Dwyer and
Wilkerson [6]. Are there any other examples of this type?

Acknowledgements—We would like to thank U. Suter and U. Würgler for helpful discussions. We also thank
J. M. Boardman for sending us a copy of [2] and P. Bousfield for pointing out a mistake in an ealier proof of
Proposition 2.2.
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APPENDIX

Let R be a graded ring with 1 and denote by Mod(R) the category of graded R-modules,
where the morphisms are R-modules homomorphisms of degree 0. This category is abelian
and possesses arbitrary direct and inverse limits (perform all the relevant constructions
degreewise). If R is also commutative, then the graded tensor product yields a biadditive
functor which is associative, commutative and has R as a unit (up to coherence). Moreover,
for any N3Mod(R), the functor

!?
R
N : Mod(R)PMod (R), MÂ M?

R
N

is right exact. In our applications, we will be dealing with particular graded rings and special
subcategories of their modules categories. In the sequel, all inverse systems and limits are
taken over directed sets.

A profinite graded ring is an inverse limit of graded rings of finite length (i.e nœtheriean
and artinian). We emphasize that, according to this definition, every graded field is profinite;
recall that a graded field is a graded ring whose non-zero homogeneous elements are all
invertible. If R" lim

$&
Ra is a profinite ring and na :RPRa are the canonical projections, the

family of graded ideals MKer(na)N equip R with a topology which is complete, Hausdorff and
compatible with the graded ring structure.
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Example A.1. Let E*(!) be a multiplicative (unreduced) cohomology theory such that
E*(pt) is a graded field. Consequently, all graded E*(pt)-modules are free. Given a CW-
complex X, let MXaN be the direct system of all finite CW-subcomplexes of X. Then we have
[3, Theorem 4.14]

E*(X)+ lim
$&

E*(Xa)

the corresponding topology will be called the profinite topology of E*(X). Since the E*(Xa)
are finitely generated free E*(pt)-modules, they are rings of finite length; hence E*(X) is
a profinite graded ring.

Let R be a profinite graded ring. We consider the full subcategory F(R) of Mod (R)
consisting of the objects M which are discrete topological R-modules and have finite length.
Since the discrete topology is the only linear topology that an R-module of finite length can
carry, the morphisms of F(R) are automatically continuous.

A profinite R-module is an inverse limit of objects in F(R). Thus it carries a natural
topology which makes it into a complete Hausdorff topological R-modules. Let Mod130& (R)
be the subcategory of Mod (R) whose objects are profinite R-modules and whose morphisms
are continuous R-module homomorphisms of degree 0.

Example A.2. E*(!) is as in Example A.1 above. Let f : XPB be a map of CW-
complexes. By the CW-approximation theorem, the induced map E*( f ) :E*(B)PE*(X) is
a continuous ring homomorphism (with respect to the profinite topologies). It follows that
E*( f ) induces a profinite E*(B)-module structure on E*(X).

Example A.3. E*(!) is as above and BPs XPp B is a sectioned space over B. Fix a finite
subcomplex Xa of X, set Ba"s~1(s (B)WXa) and denote the image of Xa in X/s(B) by
(X/s(B))a . In the commutative diagram

the rows are cofibrations. Since p ° s"id, the long exact sequences in E*-cohomology of
these cofibrations reduce to the following commutative diagrams with exact rows:

It follows that E*(X)+EI *(X/s (B))=E*(B) as profinite E*(B)-modules, showing that
EI *
B
(X) :"EI *(X/s (B)) is a profinite E*(B)-module with respect to the topology induced by

E*(X). Using diagram (A1), one checks that this topology is the same as the profinite
topology. Hence, we have shown that EI *

B
(X) is always a profinite E*(B)-module with respect

to the profinite topology.
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THEOREM 6.1. ¸et R be a profinite graded ring.

(i) ¹he category Mod130&(R) of profinite R-modules is abelian. It has enough projective
objects and exact inverse limits.

(ii) Every inverse limit of projective objects of Mod130&(R) is projective. ¹he profinite
R-module R is projective.

Proof. As easily checked F(R) is abelian, artinian (i.e. every descending chain of
subobjects of any object of F(R) stabilizes) and equivalent to a small category. Let
Pro(F(R)) be the category of inverse systems in F(R) (see [19, p. 21] for the definition). By
[17, 9, p. 356], Pro (F(R)) is an abelian category with enough projective objects and exact
inverse limits. Moreover every inverse system is isomorphic to a strict one (i.e, whose
transition morphisms are epimorphisms). Let us now consider the functor

" :Pro (F (R))Mod130&(R), (Ma)a|IÂ lim
Q

Ma .

The argument of Section 2.6 in [19] is easily adapted to our situation to show that " is an
equivalence of categories. Consequently Mod130& (R) enjoys all the properties of Pro(F(R))
mentionned above, and we are done with the first point of the theorem.

For the second part, we note that both Pro(F(R)) and Mod130&(R) are proartinian in the
sense of [4, p. 563]. The first assertion follows from Corollaire 3.4 (p. 567) in [4]. Finally,
R is projective because every morphism from R into a profinite R-module M is of the form
rÂ r )m for some m3M. h

For the rest of this section, R denotes a profinite graded ring which is commutative. Our
next aim is to study the topological tensor product in Mod130&(R). We start with

LEMMA 6.2. If M and M@ are in F(R), so is M?
R
M@.

Proof. Since M is finitely generated, its annihilator Ann (M)"Mr3R; r )m"0, ∀m3MN
is an open ideal in R (it is the intersection of the annihilators of the members of a finite
generating set of M). Similarly Ann(M@) is an open ideal of R. We write R"lim

Q

Ra, with
each projection na : RPRa surjective (this is always possible). Then there exists a such that
Ker(na)LAnn(M)WAnn(M@). Consequently M, M@ and M ?

R
M@ can be regarded as Ra-

modules. These new structures are strongly related to the former since any subset of M
(respectively M@, M ?

R
M@ ) is a R-submodule if and only if it is a Ra-submodule. We

observe now that Ra is a ring of finite length and M ?
R

M@ is a finitely generated
Ra-module; this implies that M ?

R
M@ is a R-module of finite length, that is, an object of

F(R). h

Let M" lim
$&

Ma and N" lim
$&

Nb be two modules in Mod130& (R). Their completed

tensor product is defined as

M ?K
R

N" lim
$&

(Ma ?
R

Nb).

The preceding lemma ensures that M ?ª
R

N lies in Mod130& (R). It can be shown that
M ?ª

R
N is the completion of the ordinary tensor product M?N with respect to a certain

filtration (see [3, p. 603]). This last assertion is very useful in proving that M ?ª
R

N"

M ?
R

N when N is a finitely generated R-module.
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THEOREM 6.3. ¸et N be a profinite R-module.

(i) ¹he functor !?ª
R
N:Mod130&(R)PMod130& (R) is right exact and commutes with

inverse limits.
(ii) ¸et Torj

R
(!N) ( j"0, 1, 2,

2
) denote the jth left derived functor of !?ª

R
N (their

existence follows from the preceding point). ¹hen Torj
R
(!N) commutes with inverse

limits. Moreover it coincides with the usual ¹orj
R
(!,N) when N is a finitely generated

R-module.

Proof. (i) This point is true because of the right exactness of !?
R
N and because

inverse limits are exact and commute with each other in Mod130&(R).
(ii) The first assertion is standard homological algebra (see for example Corollaire

3.8 (p. 568) in [4]). The last assertion is a consequence of the fact stated before the
theorem. h
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