
Theoretical Computer Science 280 (2002) 137–162
www.elsevier.com/locate/tcs

Combining a monad and a comonad

John Powera ; ∗; 1, Hiroshi Watanabeb ;2

aLaboratory for the Foundations of Computer Science, Division of Informatics, University of Edinburgh,
King’s Buildings, Edinburgh EH9 3JZ, UK

bSemantics Group, Osaka LERC, Electrotechnical Laboratory, Amagasaki 661-0974, Japan

Abstract

We give a systematic treatment of distributivity for a monad and a comonad as arises in
giving category theoretic accounts of operational and denotational semantics, and in giving an
intensional denotational semantics. We do this axiomatically, in terms of a monad and a comonad
in a 2-category, giving accounts of the Eilenberg–Moore and Kleisli constructions. We analyse
the eight possible relationships, deducing that two pairs are isomorphic, but that the other pairs
are all distinct. We develop those 2-categorical de/nitions necessary to support this analysis.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: 2-Category; Monad; Comonad; Algebra; Coalgebra; Kleisli construction; Distributive
law; Bialgebra

1. Introduction

In recent years, there has been an ongoing attempt to incorporate operational
semantics into a category theoretic treatment of denotational semantics. The denotational
semantics is given by starting with a signature � for a language without variable
binding, and considering the category �-Alg of �-algebras [4]. The programs of the lan-
guage form the initial �-algebra. For operational semantics, one starts with a behaviour
functor B and considers the category B-Coalg of B-coalgebras [5, 7]. By combining
these two, one can consider the combination of denotational and operational seman-
tics [14, 16]. Under size conditions, the functor � gives rise to a free monad T on it,
the functor B gives rise to a cofree comonad D on it, and the fundamental structure
one needs to consider is a distributive law of T over D, i.e., a natural transformation

∗ Corresponding author.
E-mail addresses: ajp@dcs.ed.ac.uk (J. Power), hirowata@etl.go.jp (H. Watanabe).
1 This work is supported by EPSRC grants GR=J84205: Frameworks for programming language semantics

and logic and GR=M56333: The structure of programming languages: syntax and semantics, and British
Council grant 747 FCS R34807: Data and program re/nement using algebraic structure.

2 The author acknowledges the support of STA through COE budget for Global Information Processing
Project.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00024 -X

138 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

� :TD⇒DT subject to four axioms; and one builds the category �-Bialg from it, a
�-bialgebra being an object X of the base category together with a T -structure and
a D-structure on X , subject to one evident coherence axiom. This phenomenon was
the subject of the Turi and Plotkin’s [16], with leading example given by an idealised
parallel language, with operational semantics given by labelled transition systems. In
fact, the work of this paper sprang from discussions between one of the authors and
Plotkin, whom we acknowledge gratefully.
As a separate piece of work, Brookes and Geva [2] have also proposed the study of a

monad and a comonad in combination. For them, the Kleisli category for the comonad
gives an intensional semantics, with maps to be regarded as algorithms. They add a
monad in the spirit of Moggi to model what has been called a notion of computation
[11]. They then propose to study the category for which an arrow is a map of the
form DX →TY in the base category, where T is the monad and D is the comonad.
In order for this to form a category, one needs a distributive law of D over T , i.e., a
natural transformation � :DT ⇒TD subject to four coherence axioms. Observe that this
distributive law allowing one to make a two-sided version of a Kleisli construction is
in the opposite direction to that required to build a category of bialgebras.
Motivated by these two examples, in particular the former, we seek an account of

the various combinations of a monad and a comonad, with a treatment of Eilenberg–
Moore and Kleisli constructions. That is the topic of this paper. The answer is not
trivial. It is not just a matter of considering the situation for a distributive law between
two monads and taking a dual of one of them, as there are fundamental diIerences.
For instance, to give a pair of monads T and T ′ and a distributive law of T over T ′

is equivalent to giving a monad structure on T ′T [1] with appropriate coherence, but
nothing like that is the case for a distributive law of a monad T over a comonad D.
To give a distributive law of T over T ′ is also equivalent to giving a lifting of the
monad T to T ′-Alg, but not a lifting of T ′ to T -Alg. However, to give a distributive
law of a monad T over a comonad D is equivalent to lifting T to D-Coalg and also to
lifting D to T -Alg. Dual remarks, with the Kleisli construction replacing the Eilenberg–
Moore construction, apply to distributive laws of comonads over monads. So we need
an analysis speci/cally of distributive laws between a monad and a comonad, and that
does not amount to a mild variant of the situation for two monads.
In principle, when one includes an analysis of maps between distributive laws,

one has eight choices here: given (T; D; �) on a category C and (T ′; D′; �′) on C′

and a functor J :C→C′, one could consider natural transformations t :T ′J ⇒ JT and
d : JD⇒D′J , or the other three alternatives given by dualisation; and one could dualise
by reversing the directions of � and �′. But not all of these possibilities have equal
status. Two of them each arise in two diIerent ways, reJecting the fact that a category
�-Bialg of bialgebras for a monad T and a comonad D may be seen as both the
category of algebras for a monad on D-Coalg and as a category of coalgebras for a
comonad on T -Alg. And two of the eight possibilities do not correspond to applying an
Eilenberg–Moore or Kleisli construction to an Eilenberg–Moore or Kleisli construction
at all. We investigate the possibilities in Sections 6–8.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 139

As an application of morphisms of distributive laws, consider the Turi and Plotkin
work [16]. Suppose we have two languages, each speci/ed by a distributive law
for a syntax monad over a behaviour comonad. To give translations of both syntax
and behaviour, i.e., a monad morphism and a comonad morphism, that respect the
operational semantics, is equivalent to giving a morphism of distributive laws. So this
framework provides a consistent and comprehensive translation of languages both in
syntax and semantics. Similar remarks apply to the other combinations of monads and
comonads.
We make our investigations in terms of an arbitrary 2-category K . The reason is that

although the study of operational and denotational semantics in [16] was done in terms
of ordinary categories, i.e., modulo size, in the 2-category Cat, it was done without a
direct analysis of recursion, for which one would pass to the 2-category of O-categories,
i.e., categories for which the homsets are equipped with !-cpo structure, with maps
respecting such structure. More generally, that work should and probably soon will be
incorporated into axiomatic domain theory, requiring study of the 2-category V -Cat
for a symmetric monoidal closed V subject to some domain-theoretic conditions [3].
Moreover, our de/nitions and analysis naturally live at the level of 2-categories, so that
level of generality makes the choices clearest and the proofs simplest. Mathematically,
this puts our analysis exactly at the level of generality of the study of monads by Street
in [15], but see also Johnstone’s [6] for an analysis of adjoint lifting that extends to this
setting. The 2-categorical treatment clari/es the conditions needed for adjoint lifting.
The topic of our study, distributivity for monads and comonads, agrees with that of
MacDonald and Stone [9, 10] when restricted to Cat. Mulry [12] has also done some
investigation into liftings to Kleisli categories.
Much of the abstract work of the /rst four technical sections of this paper is already

in print, primarily in Street’s paper [15]. But that is an old paper that was directed
towards a mathematical readership; it contains no computational examples or analysis;
and the material relevant to us is interspersed with other work that is not relevant.
We happily acknowledge Street’s contribution, but thought it worthwhile to repeat the
relevant part before reaching the substantial new work of this paper, which appears in
Sections 6–8.
Formally, we recall the de/nition of 2-category in Section 2, de/ne the notion of

a monad in a 2-category, and introduce the 2-categories Mnd(K) and Mnd∗(K). We
characterise the Eilenberg–Moore construction and the liftings to those constructions in
Section 3. We also explain a dual, yielding the Kleisli construction and the liftings
to those constructions in Section 4. This is all essentially in Street’s paper [15].
In Section 5, we give another dual, yielding accounts of the Eilenberg–Moore and
Kleisli constructions for comonads, and the liftings to them. Then lies the heart of the
paper, in which we consider the eight possible combinations of monads and comonads,
characterising all of them. For a given 2-category K , we /rst consider the 2-category
CmdMnd(K) in Section 6. We characterise the category of bialgebras using this
2-category. It also yields a characterisation of functors between categories of bial-
gebras. In Section 7, we consider Mnd∗Cmd∗(K), characterising the Kleisli category

140 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

of a monad and a comonad and functors between them. We consider the other pos-
sibilities in Section 8, which consists of four cases, i.e., four 2-categories of distribu-
tive laws. We give explanations of the constructions of 0-, 1- and 2-cells from the
2-categories of distributive laws. We also give some examples of categories constructed
in this way when K =Cat.

2. Monads in 2-categories

In this section, we de/ne the notion of 2-category and supplementary notions.
We then de/ne the notion of a monad in a 2-category K and we de/ne two 2-categories,
Mnd(K) and Mnd∗(K), of monads in K .

De�nition 2.1. A 2-category K consists of
• a set of 0-cells or objects,
• for each pair of 0-cells X and Y , a category K(X; Y) called the homcategory from

X to Y,
• for each triple of 0-cells, X; Y and Z , a composition functor

◦ :K(Y; Z)× K(X; Y) → K(X; Z);

• for each 0-cell X , an object idX of K(X; X), or equivalently, a functor idX : 1→
K(X; X), called the identity on X,

such that the following diagrams of functors commute:

In the de/nition of a 2-category, the objects of each K(X; Y) are often called 1-cells
and the arrows of each K(X; Y) are often called 2-cells. We typically abbreviate the
composition functors by juxtaposition and use · to represent composition within a hom-
category.
Obviously, the de/nition of 2-category is reminiscent of the de/nition of category:

if one takes the de/nition of category and replaces homsets by homcategories,
composition functions by composition functors, and the axioms by essentially the same
axioms but asserting that pairs of functors rather than functions are equal, then one
has exactly the de/nition of a 2-category.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 141

Example 2.2. The leading example of a 2-category is Cat, in which the 0-cells are
small categories and Cat(C;D) is de/ned to be the functor category [C;D]. In this
paper, we sometimes treat Cat as though Set is a 0-cell of Cat. Technically, the
existence of two strongly inaccessible cardinals together with a careful variation in the
use of the term small allows that.

Example 2.3. For any symmetric monoidal closed category V , one has a 2-category
V -Cat, whose objects are small V -categories, and with homcategories given by
V -functors and V -natural transformations. Two speci/c examples of this are
• the 2-category LocOrd of small locally ordered categories, locally ordered
functors, and natural transformations, where V is the category Poset of posets and
order-preserving functions.

• the 2-category of small O-categories, O-functors, and natural transformations, where
O is the cartesian closed category of !-cpo’s.

Each 2-category K has an underlying ordinary category K0 given by the 0- and
1-cells of K . A 2-functor between 2-categories K and L is a functor from K0 to L0
that respects the 2-cell structure. A 2-natural transformation between 2-functors is
an ordinary natural transformation that respects the 2-cell structure. Given a 2-functor
U :K→L, these de/nitions give rise to the notion of a left 2-adjoint, which is a left
adjoint that respects the 2-cells. More details and equivalent versions of these de/nitions
appear and are analysed in [8].
Now, we have the de/nition of 2-category, we can de/ne the notion of a monad

in any 2-category K , generalising the de/nition of monad on a small category, which
amounts to the case of K =Cat.

De�nition 2.4. A monad in a 2-category K consists of a 0-cell C, a 1-cell T :C→C,
and 2-cells � :T 2 ⇒T and � : Id⇒T subject to commutativity of the following diagrams
in the homcategory K(C; C):

For example, if one lets K =Cat, then a monad in K as we have just de/ned it
amounts exactly to a small category with a monad on it. More generally, if K =V -Cat,
then a monad in K amounts exactly to a small V -category together with a V -monad
on it. So, for instance, a monad in O-Cat amounts to a small O-category together with
a monad on it, such that the monad respects the !-cpo structure of the homs.
For any 2-category K , one can construct a 2-category of monads in K .

142 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

De�nition 2.5. For any 2-category K , the following data forms a 2-category Mnd(K):
• 0-cells are monads in K .
• A 1-cell in Mnd(K) from (C; T; �; �) to (C′; T ′; �′; �′) is a 1-cell J :C→C′ in K ,
together with a 2-cell j :T ′J ⇒ JT in K , subject to commutativity in K(C; C′) of

• A 2-cell in Mnd(K) from (J; j) to (H; h) is a 2-cell � : J ⇒H in K subject to
the evident axiom expressing coherence with respect to j and h, i.e., the following
diagram commutes:

Example 2.6 (Turi and Plotkin [16]). Suppose we are given a language (without vari-
able binding) generated by a signature. The denotational models of this language are
given by �-algebras on Set, where � is functor de/ned by �X =

∐
X arity() where

varies over signature. A �-algebra is a set X together with a map h :�X →X , equiv-
alently an interpretation of each on the set X . In general, each polynomial functor
on Set freely generates a monad on Set, so there exists a monad (T; �; �) on Set such
that �-alg is isomorphic to T -Alg, the category of Eilenberg–Moore algebras for the
monad (T; �; �). In this case, the set TX for a set X is the set of terms freely generated
by the signature applied to X .

Next, suppose we are given � and �′. The endofunctors freely generate monads
(T; �; �) and (T ′; �′; �′), respectively. Every natural transformation �⇒T ′ lifts uniquely
to a natural transformation t :T ⇒T ′ such that (Id; t) is a morphism from (Set; T ′; �′; �′)
to (Set; T; �; �) in Mnd(Cat). The X component of t is a map from TX to T ′X , i.e.,
a map which sends each term generated by � to a term generated by �′ respecting the
term structure. So translation of languages can sometimes be captured as a morphism
of monads.

Example 2.7 (Turi and Plotkin [16]). Consider

�1X = 1 + A× X:

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 143

A �1-algebra consists of a set X together with a constant nil : 1→X and for each
element a∈A an atomic action a: : X →X .
Now, consider a second language �2 by adding parallel operator ‖ to the signature

of �1. The corresponding polynomial functor is given by

�2X = 1 + A× X + X × X:

For these two languages �1 and �2, we can give an example of a natural transfor-
mation �1 →�2 by de/ning the X component to be the inclusion of �1X into the /rst
and second components of �2X .
Both endofunctors �1; �2 freely generate monads (T1; �1; �1); (T2; �2; �2), respec-

tively. The natural transformation T1 ⇒T2 induced by the above natural transformation
from �1 to �2 is the inclusion of T1X in T2X .

Finally in this section, we mention a dual construction. For any 2-category K ,
one may consider the opposite 2-category Kop, which has the same 0-cells as K but
Kop(X; Y)=K(Y; X), with composition induced by that of K . This allows us to make
a diIerent construction of a 2-category of monads in K , as we could say

De�nition 2.8. For a 2-category K , de/ne Mnd∗(K)=Mnd(Kop)op.

Analysing the de/nition, a 0-cell of Mnd∗(K) is a monad in K ; a 1-cell from
(C; T; �; �) to (C′; T ′; �′; �′) is a 1-cell J :C→C′ in K , together with a 2-cell j : JT ⇒
T ′J in K , subject to two coherence axioms, expressing coherence between � and �′

and between � and �′; and a 2-cell from (J; j) to (H; h) is a 2-cell in K from J
to H subject to one axiom expressing coherence with respect to j and h. The central
diIerence between Mnd(K) and Mnd∗(K) is in the 1-cells, because j is in the opposite
direction.

3. Eilenberg–Moore constructions

In this section, we develop our de/nitions of the previous section, in particular that
of Mnd(K), by characterising the Eilenberg–Moore constructions in terms of the exis-
tence of an adjoint to a inclusion 2-functor [15].
For each 2-category K , there is a forgetful 2-functor U :Mnd(K)→K sending

a monad (C; T; �; �) in K to its underlying object C. This 2-functor has a right 2-adjoint
given by the 2-functor Inc :K→Mnd(K) sending an object X of K to (X; id; id; id),
i.e., to X together with the identity monad on it. The de/nition of Mnd(K) and analysis
of it are the central topics of study of [15], a summary of which appears in [8].

De�nition 3.1. A 2-category K admits Eilenberg–Moore constructions for monads
if the 2-functor Inc :K→Mnd(K) has a right 2-adjoint.

144 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

Remark 3.2. Note in general what the above 2-adjunction means. There is an isomor-
phism between two categories for each monad T=(C; T; �; �) and 0-cell X in K :

Mnd(K)(Inc(X);T) ∼= K(X;T-Alg):

We denote the T-component 'T : Inc(T-Alg)→T of the counit by a pair (UT; uT).

Then the universality for 1-cells means that for each 1-cell (J; j) : Inc(X)→ (C; T; �; �)
in Mnd(K), i.e., for each 1-cell J :X →C and each 2-cell j :TJ ⇒ J satisfying coher-
ence conditions, there exists a unique 1-cell J ′ :X →T-Alg in K such that UTJ ′ = J
and uTJ ′ = j.

Next, the universality for 2-cells means that for each 2-cell � : (J; j)⇒ (H; h) : Inc(X)
→ (C; T; �; �), i.e., for each 2-cell � : J ⇒H subject to a coherence condition, there
exists a unique 2-cell �′ : J ′ ⇒H ′ :X →T-Alg in K such that UT�′ = �, where both
1-cells J ′; H ′ are implied by the universality for 1-cells.

Proposition 3.3. If K =Cat; then Inc :Cat→Mnd(Cat) has a right 2-adjoint given by
the Eilenberg–Moore construction for a monad on a small category.

Proof. Let T=(C; T; �; �) be a monad in Cat. We have a forgetful functor UT :T-Alg
→C as usual. Let uT :TUT⇒UT be a natural transformation given by uTk = k :TX →
X for each T-algebra k :TX →X . Then we have a 1-cell (UT; uT) : Inc(T-Alg)→T in
Mnd(Cat). We show that this 1-cell satis/es the universal property.
Given a category X and given a map (J; j) : Inc(X)→ (C; T; �; �), de/ne a functor
[(J; j) :X →T-Alg on objects by putting [(J; j)a= ja :TJa→ Ja, and arrows by sending
f : a→ b to Jf : Ja→ Jb. Then we have (UT; uT) ◦ Inc([(J; j))= (J; j) in Mnd(Cat). The
unicity of [(J; j) is obvious.

For two-dimensional property, let � : (J; j)⇒ (H; h) be a 2-cell in Mnd(Cat),
de/ne �̂a= �a : Ja→Ha for each object a in X , then �̂ : [(J; j)⇒ [(H; h) turns out to be
a natural transformation by coherence condition of �. It is easy to show that this �̂ is
the unique natural transformation which satis/es (UT; uT)�̂= �.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 145

Remark 3.4. Note here what the universal property says: it says that for any small
category X and any small category C with a monad T on it, there is a natural
isomorphism of categories between [X; T -Alg] and the category for which an object
is a functor J :X →C together with a natural transformation TJ ⇒ J subject to two
coherence conditions generalising those in the de/nition of T -algebra. This is a stronger
condition than the assertion that every adjunction gives rise to a unique functor into
the category of algebras of the induced monad.

Example 3.5. If V has equalisers, then V -Cat admits Eilenberg–Moore constructions
for monads, and again, the construction is exactly as one expects. This is a fundamental
observation underlying [15].

Proposition 3.6. Suppose K admits Eilenberg–Moore constructions; i.e.; the 2-functor
Inc has a right 2-adjoint (−)-Alg :Mnd(K)→K . Then for any 0-cell T=(C; T; �; �)
of Mnd(K); there exists an adjunction 〈FT; UT; �T; 'T〉 :C→T-Alg in the 2-category
K that generates the monad T.

Proof. The proof is written in [15].

Consider the 1-cell (T; �) :T→T in Mnd(K). By using the universality for 1-cells,
we have a unique 1-cell FT :C→T-Alg such that uTFT= � and UTFT=T . Next,
let �T be the unit � : Id⇒T =UTFT of the monad T=(C; T; �; �). Since the 2-cell
uT :TUT⇒UT in K is a 2-cell from (UTFTUT; �UT) to (UT; uT) in Mnd(K), by us-
ing the universality for 2-cells, there exists a unique 2-cell 'T :FTUT⇒ Id
such that

UT'T = uT: (1)

Again by the universal property, UT('TFT ·FT�T)=UT'TFT ·UTFT�T= � ·T�= Id
implies that 'TFT ·FT�T= Id. By using Eq. (1) and the coherence condition, UT'T ·
�TUT= uT · �UT= Id follows. Hence we can show the existence of an adjunction in
the 2-category K .

3.1. Liftings to Eilenberg–Moore constructions

Now assume K admits Eilenberg–Moore constructions for monads. For each monad
T=(C; T; �; �) in K , we call the 0-cell T-Alg in K an Eilenberg–Moore construc-
tion for the monad T. Here, we investigate the existence and nature of liftings of
1-cells to Eilenberg–Moore constructions at the level of generality we have been
developing.

De�nition 3.7. Let T=(C; T; �; �) and T′ =(C′; T ′; �′; �′) be 0-cells in Mnd(K).
A 1-cell J :C→C′ in K lifts to a 1-cell PJ on Eilenberg–Moore constructions

146 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

if the following diagram commutes in K :

De�nition 3.8. Suppose both 1-cells J; H :C→C′ lift to PJ ; PH , respectively on
Eilenberg–Moore constructions. A 2-cell � : J⇒H :C→C′ lifts to a 2-cell P� : PJ ⇒ PH
on Eilenberg–Moore constructions if the equation UT′

P�= �UT holds.

Lemma 3.9. The right adjoint 2-functor (−)-Alg :Mnd(K)→K sends each 1-cell
(J; j) : (C; T; �; �)→ (C′; T ′; �′; �′) in Mnd(K) to a lifting of J; and each 2-cell � : (J; j)
⇒ (H; h) to a lifting of � : J ⇒H .

Proof. By using the 2-naturality of the counit, the following diagram commutes for
1-cells (J; j) :T→T′ in Mnd(K):

Hence we have UT′
(J; j)-Alg= JUT.

Similarly, naturality for a 2-cell � : (J; j)⇒ (H; h) implies the equation UT′
�-Alg=

�UT.

Conversely, every lifting arises uniquely from Mnd(K).

Theorem 3.10. Suppose a 1-cell J :C→C′ lifts to PJ :T-Alg→T′-Alg on Eilenberg–
Moore constructions for monads T=(C; T; �; �) and T′ =(C′; T ′; �′; �′). Then there
exists a unique 1-cell (J; j) :T→T′ in Mnd(K) such that (J; j)-Alg= PJ .

Suppose both 1-cells J; H :C→C′ lift to PJ ; PH :T-Alg→T′-Alg; respectively; arising
from 1-cells (J; j); (H; h) :T→T′; respectively; i.e.; (J; j)-Alg= PJ and (H; h)-Alg= PH .
If a 2-cell � : J ⇒H lifts to P� : PJ ⇒ PH on Eilenberg–Moore constructions; then � is a
2-cell in Mnd(K) from (J; j) to (H; h) such that �-Alg= P�.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 147

Proof. Given PJ :T-Alg→T′-Alg, de/ne the 2-cell j :T ′J ⇒ JT as follows:

UT′
FT

′
J

‖
UT′

FT
′
J id

UT
′
FT

′
J�T

=⇒ UT′
FT

′
JUTFT

‖
UT′

FT
′
UT′ PJFT UT

′
”T

′
PJFT=⇒ UT′

id PJFT

‖
JUTFT

For this 2-cell j, note that j · �′J = J� and J� · jT ·T ′j= j · �′J . So (J; j) is a 1-cell
from the T to T′. Since (J; j)-Alg :T-Alg→T′-Alg is the unique 1-cell such that
uT

′
(J; j)-Alg= JuT · jUT, we need only show that JuT · jUT= uT

′ PJ . But equation (1)
implies JuT · jUT= JUT'T · jUT=UT′

'T
′ PJ = uT

′ PJ . So by universality, we have
(J; j)-Alg= PJ .
By de/nition of (−)-Alg, the 2-cell �-Alg : (J; j)-Alg⇒ (H; h)-Alg is the unique one

such that UT′
�-Alg= �UT. So universality for 2-cells implies �-Alg= P�.

Corollary 3.11. Liftings of 1-cells to Eilenberg–Moore constructions are equivalent to
1-cells in Mnd(K). Liftings of 2-cells to Eilenberg–Moore constructions are equivalent
to 2-cells in Mnd(K).

Given an arbitrary 2-category K , we have constructed the 2-category Mnd(K) of
monads in K . Modulo size, this construction can itself be made 2-functorial, yield-
ing a 2-functor Mnd : 2-Cat→ 2-Cat, taking a small 2-category K to Mnd(K), with
a 2-functor G :K→L sent to a 2-functor Mnd(G) :Mnd(K)→Mnd(L), and similarly
for a 2-natural transformation. In fact, the 2-category 2-Cat forms a 3-category, and
the 2-functor Mnd extends to a 3-functor, but we do not use those facts further in
this paper, so we do not give the de/nitions here. It follows that, given a 2-adjunction
F
U :K→L, one obtains another 2-adjunction Mnd(F)
Mnd(U) :Mnd(K)→
Mnd(L). We shall use this fact later.

4. Kleisli construction

In this section, we consider a dual to the work of the previous section. This is not
just a matter of reversing the direction of every arrow in sight. But by putting L=Kop,
we can deduce results about Mnd∗(K) from results about Mnd(L). In particular, we
have

Proposition 4.1. (1) The construction Mnd∗(K) yields a 2-functor Mnd∗ : 2-Cat→
2-Cat.
(2) The forgetful 2-functor U :Mnd∗(K)→K has a left 2-adjoint given by Inc :K→

Mnd∗(K); sending an object X of K to the identity monad on X .

148 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

We can characterise Kleisli constructions by using the 2-category Mnd∗(K). We can
show the following by the dual argument to Proposition 3.3.

Proposition 4.2. If K =Cat; then Inc :Cat→Mnd∗(Cat) has a left 2-adjoint given by
the Kleisli construction for a monad on a small category.

Spelling out the action of the 2-functor (−)-Kl :Mnd∗(Cat)→Cat on 1-cells and
2-cells, a 1-cell (J; j) : (C; T; �; �)→ (C′; T ′; �′; �′) is sent to the functor (J; j)-Kl :T-Kl
→T′-Kl, which sends an object a of T-Kl to the object Ja of T′-Kl, and an ar-
row f : a→ b of T-Kl, i.e., an arrow f̂ : a→Tb of C, to the arrow of T′-Kl given
by jb ◦ J f̂ : Ja→T ′Jb. A 2-cell � : (J; j)⇒ (H; h) is sent to the natural transformation
�-Kl : (J; j)-Kl⇒ (H; h)-Kl whose a component is given by �′Ha ◦ �a : Ja→T ′Ha.
The above construction and proof extend readily to the case of K =V -Cat.
In light of this result, we say

De�nition 4.3. A 2-category K admits Kleisli constructions for monads if the
2-functor Inc :K→Mnd∗(K) has a left 2-adjoint.

Proposition 4.4. Suppose a 2-category K admits Kleisli constructions for monads with
the left 2-adjoint to Inc given by (−)-Kl :Mnd∗(K)→K . For any 0-cell T=(C; T;
�; �) of Mnd∗(K); there is an adjunction 〈FT; GT; �T; 'T〉 :C→T-Kl in K that gener-
ates the monad T.

Proof. Dual to the proof of Proposition 3.6.

4.1. Liftings to Kleisli constructions

Now, we assume a 2-category K admits Kleisli constructions for monads. For each
monad T=(C; T; �; �) in K we call T-Kl a Kleisli construction for the monad T.
We can de/ne the liftings to Kleisli constructions as follows:

De�nition 4.5. Let T=(C; T; �; �) and T′ =(C′; T ′; �′; �′) be 0-cells in Mnd∗(K).
A 1-cell J :C→C′ in K lifts to a 1-cell PJ :T-Kl→T′-Kl on Kleisli constructions
if the following diagram commutes in K :

We can also de/ne the notion of a lifting of a 2-cell.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 149

De�nition 4.6. Suppose 1-cells J; H :C→C′ lift to PJ ; PH :T-Kl→T′-Kl on Kleisli
constructions. A 2-cell � : J ⇒H lifts to a 2-cell P� : PJ ⇒ PH on Kleisli constructions
if the equation P�FT=FT′� holds.

Since Mnd∗(K)=Mnd(Kop)op, we remark that

Lemma 4.7. The following two conditions are equivalent:
1: K admits Kleisli constructions for monads.
2: Kop admits Eilenberg–Moore constructions for monads.

So, dualising Theorem 3.10, we have

Theorem 4.8. Suppose a 1-cell J :C→C′ lifts to PJ :T-Kl→T′-Kl on Kleisli construc-
tions for monads T=(C; T; �; �) and T′ =(C′; T ′; �′; �′). Then there exists a unique
1-cell (J; j) :T→T′ in Mnd∗(K) such that (J; j)-Kl= PJ .

Suppose both 1-cells J; H :C→C′ lift to PJ ; PH :T-Kl→T′-Kl; respectively; arising
from 1-cells (J; j); (H; h) :T→T′; respectively; i.e.; (J; j)-Kl= PJ and (H; h)-Kl= PH .
If a 2-cell � : J ⇒H lifts to P� : PJ ⇒ PH on Kleisli constructions; then � is a 2-cell in
Mnd∗(K) from (J; j) to (H; h) such that �-Kl= P�.

Corollary 4.9. Liftings of 1-cells to Kleisli constructions are equivalent to 1-cells
in Mnd∗(K). Liftings of 2-cells to Kleisli constructions are equivalent to 2-cells in
Mnd∗(K).

5. Comonads in 2-categories

We now turn from monads to comonads. The results we seek about comonads follow
from those about monads by consideration of another duality applied to an arbitrary
2-category. Given a 2-category K , one may consider two distinct duals: Kop as in the
previous section and Kco. The 2-category Kco is de/ned to have the same 0-cells as
K but with Kco(X; Y) de/ned to be K(X; Y)op.
In Kop, the 1-cells are reversed, but the 2-cells are not, whereas in Kco, the 2-cells

are reversed but the 1-cells are not. One can of course reverse both 1-cells and 2-cells,
yielding Kcoop, or isomorphically, Kopco.

De�nition 5.1. A comonad in K is de/ned to be a monad in Kco, i.e., a 0-cell C,
a 1-cell D :C→C; and 2-cells / :D⇒D2 and ' :D⇒ Id, subject to the duals of the
three coherence conditions in the de/nition of monad.

Taking K =Cat, a comonad in K as we have just de/ned it is exactly a small
category together with a comonad on it.
One requires a little care in de/ning Cmd(K), the 2-category of comonads in K . If

one tries to de/ne Cmd(K) to be Mnd(Kco), then there is no forgetful 2-functor from
Cmd(K) to K .

150 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

De�nition 5.2. For a 2-category K , de/ne Cmd(K) to be Mnd(Kco)co.

Explicitly, a 0-cell in Cmd(K) is a comonad in K . A 1-cell in Cmd(K) from
(C;D; /; ') to (C′; D′; /′; '′) is a 1-cell J :C→C′ in K together with a 2-cell j : JD⇒
D′J subject to two coherence conditions, one relating / and /′, the other relating ' and
'′. A 2-cell from (J; j) to (H; h) is a 2-cell in K from J to H subject to one coherence
condition relating j and h.
Note carefully the de/nition of a 1-cell in Cmd(K). It consists of a 1-cell and a

2-cell in K ; of those, the 1-cell goes in the same direction as that in the de/nition of
Mnd(K), but the 2-cell goes in the opposite direction.

Example 5.3. In [16], categories of coalgebras for behaviour endofunctors on Set are
used. Examples are B1X =1 + A×X and B2X =P!(A×X), where P! is the /nite
powerset functor. A B1-coalgebra is a set X together with a map X →B1X , i.e.,
a deterministic A-labelled transition system. A B2-coalgebra is a /nitely branching
A-labelled transition system. B1-coalgebras are used for deterministic processes and
B2-coalgebras are used for non-deterministic processes.
Similar to the algebras for endofunctors, endofunctors like B1; B2 on Set cofreely

generate comonads, i.e., there exist comonads (D1; /1; '1); (D2; /2; '2), respectively, on
Set such that B1-coalg∼=D1-Coalg and B2-coalg∼=D2-Coalg.
Suppose endofunctors B and B′ cofreely generate comonads D and D′, respectively.

Then every natural transformation B⇒B′ between two behaviour functors generates
a natural transformation d :D⇒D′ such that (Id; d) is a morphism from D to D′

in Cmd(Cat). This analysis can be extended to consider natural transformations from
D to B′, but we do not have examples at that full level of generality.
For the above endofunctors B1 and B2, we can consider the natural transformation

B1 ⇒B2 whose X component sends ∗ to ∅ and (a; x) to {(a; x)}. It generates a comonad
morphism from D1 to D2.

Also, one may de/ne Cmd∗(K)=Cmd(Kop)op. Since the operations (−)op and (−)co

commute, we have

Proposition 5.4. For any 2-category K; Cmd∗(K)=Mnd∗(Kco)co.

5.1. Eilenberg–Moore constructions for comonads

Just as in the situation for monads, there is an underlying 2-functor U :Cmd(K)→K ,
which has a right 2-adjoint given by Inc :K→Cmd(K), sending an object X to the
identity comonad on X ; and again, one may say

De�nition 5.5. A 2-category K admits Eilenberg–Moore constructions for comonads
if Inc :K→Cmd(K) has a right 2-adjoint.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 151

Although not stated explicitly in [15], it follows routinely that the 2-category Cat
admits Eilenberg–Moore constructions for comonads, and they are given by the usual
Eilenberg–Moore construction. Again here, the construction Cmd(K) yields a 2-functor
Cmd : 2-Cat→ 2-Cat.

Proposition 5.6. Suppose a 2-category K admits Eilenberg–Moore constructions for
comonads. We denote the right 2-adjoint by (−)-Coalg :Cmd(K)→K . For any 0-cell
D=(C;D; /; ') of Cmd(K); there is an adjunction 〈UD; GD; �D; 'D〉 :D-Coalg→C in
K that generates the comonad D.

Proof. Dual to the proof of Proposition 3.6.

5.1.1. Liftings to Eilenberg–Moore constructions
Now, dually to the case for monads, assume K admits Eilenberg–Moore construc-

tions for comonads. For each comonad D=(C;D; /; ') in K , we call D-Coalg an
Eilenberg–Moore construction for D.

De�nition 5.7. Let D=(C;D; /; ') and D′ =(C′; D′; /′; '′) be 0-cells in Cmd(K).
A 1-cell J :C→C′ in K lifts to a 1-cell PJ :D-Coalg→D′-Coalg on Eilenberg–Moore
constructions if the following diagram commutes in K :

De�nition 5.8. Suppose 1-cells J; H :C→C′ lift to PJ ; PH :D-Coalg→D′-Coalg on
Eilenberg–Moore constructions. A 2-cell � : J ⇒H lifts to a 2-cell P� : PJ ⇒ PH on
Eilenberg–Moore constructions if UD′

P�= �UD.

Since Cmd(K)=Mnd(Kco)co, we remark that

Lemma 5.9. The following two conditions are equivalent:
1. K admits Eilenberg–Moore constructions for comonads.
2. Kco admits Eilenberg–Moore constructions for monads.

So, dualising Theorem 3.10, we have

Theorem 5.10. If PJ :D-Coalg→D′-Coalg is a lifting of a 1-cell J :C→C′ to
Eilenberg–Moore constructions; then there is a unique 1-cell (J; j) : (C;D; /; ')→
(C′; D′; /′; '′) in Cmd(K) such that (J; j)-Coalg= PJ .

152 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

Suppose 1-cells J; H :C→C′ lift to (J; j)-Coalg; (H; h)-Coalg :D-Coalg→D′-Coalg
for 1-cells (J; j); (H; h) :D→D′ in Cmd(K); respectively. If a 2-cell P� : (J; j)-Coalg⇒
(H; h)-Coalg in K is a lifting of a 2-cell � : J ⇒H; then � is a 2-cell in Cmd(K) from
(J; j) to (H; h) such that �-Coalg= P�.

Corollary 5.11. Liftings of 1-cells to Eilenberg–Moore constructions are equivalent to
1-cells in Cmd(K). Liftings of 2-cells to Eilenberg–Moore constructions are equivalent
to 2-cells in Cmd(K).

5.1.2. Liftings to Kleisli constructions
Now assume K admits Kleisli constructions for comonads. For each comonad

D=(C;D; /; ') in K , we call D-CoKl a Kleisli construction for the comonad D.

De�nition 5.12. Let D=(C;D; /; ') and D′ =(C′; D′; /′; '′) be 0-cells in Cmd∗(K).
A 1-cell J :C→C′ in K lifts to a 1-cell PJ :D-CoKl→D′-CoKl on Kleisli construc-
tions if the following diagram commutes in K :

De�nition 5.13. Suppose 1-cells, J; H :C→C′ lift to PJ ; PH :D-CoKl→D′-CoKl, re-
spectively, on Kleisli constructions. A 2-cell � : J ⇒H lifts to a 2-cell P� : PJ ⇒ PH on
Kleisli constructions if P�FD=FD′�.

Similarly to Lemma 4.7,

Lemma 5.14. The following two conditions are equivalent:
1. K admits Kleisli constructions for comonads.
2. Kop admits Eilenberg–Moore constructions for comonads.

Once again by dualising Theorem 3.10, we have

Theorem 5.15. If PJ :D-CoKl→D′-CoKl is a lifting of a 1-cell J :C→C′ to Kleisli
constructions for comonads; then there is a unique 1-cell (J; j) : (C;D; /; ')→ (C′; D′;
/′; '′) in Cmd∗(K) such that (J; j)-CoKl= PJ .

Suppose 1-cells J; H :C→C′ lift to (J; j)-CoKl; (H; h)-CoKl :D-CoKl→D′-CoKl
for 1-cells (J; j); (H; h) :D→D′; respectively. If a 2-cell P� : (J; j)-CoKl⇒ (H; h)-CoKl
in K is a lifting of a 2-cell � : J ⇒H; then � is a 2-cell in Cmd∗(K) from (J; j) to
(H; h) such that �-CoKl= P�.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 153

Corollary 5.16. Liftings of 1-cells to Kleisli constructions for comonads are equiva-
lent to 1-cells in Cmd∗(K). Similarly; liftings of 2-cells to Kleisli constructions for
comonads are equivalent to 2-cells in Cmd∗(K).

6. CmdMnd(K)

In previous sections, we have de/ned 2-functors Mnd; Mnd∗; Cmd and Cmd∗.
So in principle, one might guess that there are eight possible ways of combining a
monad and a comonad as there are three dualities: start with the monad or start with
the comonad; taking ()∗ on the monad or not; and likewise for the comonad. In fact, as
we shall see, there are precisely six. First, we analyse the 2-functor CmdMnd. In order
to do that, we give the de/nition of a distributive law of a monad over a comonad in
a 2-category.

De�nition 6.1. Given a monad (T; �; �) and a comonad (D; /; ') on an object C of a
2-category K , a distributive law of T over D is a 2-cell � :TD⇒DT which satis/es
laws involving each of �; �; / and ':

� · �D = D� · �T · T�; � · �D = D�;

D� · �D · T/ = /T · �; T' = 'T · �:

De�nition 6.2. For any 2-category K , the following data forms a 2-category Dist(K)
of distributive laws:
• A 0-cell consists of a 0-cell C of K , a monad T on it, a comonad D on it, and a

distributive law � :TD⇒DT .
• A 1-cell (J; jt ; jd) : (C; T; D; �)→ (C′; T ′; D′; �′) consists of a 1-cell J :C→C′ in K
together with a 2-cell jt :T ′J ⇒ JT subject to the monad laws, together with a 2-cell
in K of the form jd : JD⇒D′J subject to the comonad laws, all subject to one
coherence condition given by a hexagon

• A 2-cell from (J; jt ; jd) to (H; ht ; hd) consists of a 2-cell from J to H in K subject
to two conditions expressing coherence with respect to jt and ht and coherence with
respect to jd and hd.

154 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

Proposition 6.3. For any 2-category K; the 2-category CmdMnd(K) is isomorphic to
Dist(K).

Thus Dist(Cat) gives as 0-cells exactly the data considered by Turi and Plotkin [16].
Turi and Plotkin did not, in that paper, address the 1-cells of Dist(Cat), but they
propose to do so in future. The 0-cells provide them with a combined operational
and denotational semantics for a language; the 1-cells allow them to account for the
interpretation of one language presented in such a way into another language thus
presented. In fact, it was in response to Plotkin’s speci/c proposal about how to do
that much of the work of this paper was done. For a simple example, one might have
a monad and comonad on the category Set, and embed it into the category of !-cpo’s
in order to add an account of recursion.

Example 6.4. We give an example of a distributive law for a monad over a comonad.
Let (T; �; �) be the monad on Set sending a set X to the set X ∗ of /nite lists, and let
(D; /; ') be the comonad that sends a set X to the set of streams X!.
Consider the natural transformation � :TD⇒DT whose X component sends a /nite
list of streams Pa1 Pa2 · · · Pan with Pai = ai1ai2ai3 · · · ; (16i6n) to the stream of /nite lists
(a11a21 · · · an1)(a12a22 · · · an2)(a13a23 · · · an3) · · · : This natural transformation satis/es
the axioms for a distributive law of a monad over a comonad. Hence these data give an
example of a 0-cell of CmdMnd(Cat). It also becomes a 0-cell of both Cmd∗Mnd(Cat)
and Mnd∗Cmd(Cat) later.

Example 6.5. The distributive laws in [16] are given in the following manner. For
a given language � and a suitable behaviour B, Turi and Plotkin model a GSOS rule by
a natural transformation �(Id×B)⇒BT , where (T; �; �) is the monad freely generated
by the endofunctor �. They then show that the monad (T; �; �) lifts to B-Coalg the
category of B-coalgebras for the endofunctor B, which means T; � and � lift.

Since B-coalg∼=D-Coalg for the comonad (D; /; ') cofreely generated by B, this
diagram is equivalent to the lifting diagram for the monad (T; �; �) to the category
of Eilenberg–Moore coalgebras for the comonad D. By Theorem 3.10, this is equiva-
lent to one datum and two conditions:
• A natural transformation � :TD⇒DT such that (T; �) : (Set; D; /; ')→ (Set; D; /; ') is

a 1-cell of Cmd(Cat).

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 155

• The natural transformation � :T 2 ⇒T becomes a 2-cell from (T; �)2 to (T; �) in
Cmd(Cat).

• The natural transformation � : Id⇒T gives a 2-cell from Id to (T; �) in Cmd(Cat).

Hence it is equivalent to give a distributive law � :TD⇒DT .

A corollary of Proposition 6.3, which although easily proved, is conceptually funda-
mental, is

Corollary 6.6. CmdMnd(K) is isomorphic to MndCmd(K).

Proof. It is easily to check that Dist(K) is isomorphic to Dist(Kco)co. Since Cmd(K)=
Mnd(Kco)co and Mnd(K)=Cmd(Kco)co, we have

CmdMnd(K) =Dist(K)

=Dist(Kco)co

= Cmd(Mnd(Kco)co

= Cmd(Mnd(Kco)coco)co

= Cmd(Cmd(K)co)co

=MndCmd(K):

Theorem 6.7. Suppose K admits Eilenberg–Moore constructions for monads and
comonads. Then; Inc :K→CmdMnd(K) has a right 2-adjoint.

Proof. Since K admits Eilenberg–Moore constructions for monads, Inc :K→Mnd(K)
has a right 2-adjoint. Since Cmd : 2-Cat→ 2-Cat is a 2-functor, it sends adjunctions
to adjunctions, so Cmd(Inc) :Cmd(K)→CmdMnd(K) has a right 2-adjoint. Since K
admits Eilenberg–Moore constructions for comonads, Inc :K→Cmd(K) has a right
adjoint. Composing the right adjoints gives the result.

This result gives us a universal property for the construction of the category of
�-Bialgebras, given a monad T, a comonad D, and a distributive law of T over D.
In this precise sense, one may see the construction of a category of bialgebras as a
generalised Eilenberg–Moore construction.
Using Proposition 6.3 and Corollary 6.6, we may characterise the right 2-adjoint in

three ways, giving

Corollary 6.8. If K admits Eilenberg–Moore constructions for monads and comonads;
then given a distributive law of a monad (T; �; �) over a comonad (D; /; '); the fol-
lowing are equivalent:
• �-Bialg determined directly by the universal property of a right 2-adjoint to the

inclusion Inc :K→Dist(K) sending X to the identity distributive law on X;
• the Eilenberg–Moore object for the lifting of T to D-Coalg;
• the Eilenberg–Moore object for the lifting of D to T-Alg.

156 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

By the universal property, the right 2-adjoint ()-Bialg inherits an action on 1- and
2-cells. The behaviour of the right 2-adjoint on 0-cells gives exactly the construction
()-Bialg studied by Turi and Plotkin [16]. Its behaviour on 1-cells will be fundamental
to their later development as outlined above.
More concretely, the right 2-adjoint sends each 1-cell (J; jt ; jd) : (C;T;D; �)→

(C′;T;D; �) to a 1-cell J -Bialg : �-Bialg→ �′-Bialg such that the following diagram
commutes, where U� : �-Bialg→C is the canonical 1-cell:

It also sends each 2-cell � : (J; jt ; jd)⇒ (H; ht ; hd) to a 2-cell �-Bialg : J -Bialg⇒
H -Bialg satisfying the equation U�′�-Bialg= �U�.

Remark 6.9. Although all 1- and 2-cells in MndCmd(K) give liftings to bialgebras,
we do not have a converse as we cannot construct the data for a 1-cell in MndCmd(K)
from a given lifting.

Example 6.10. Consider the Eilenberg–Moore construction, i.e., the category of
�-bialgebras, for the monad, comonad, and distributive law � of Example 6.4. Since
the comonad (D; /; ') is cofreely generated by the endofunctor Id on Set, D-Coalg
is isomorphic to Id-coalg, the category of coalgebras for the endofunctor Id; this is
the category of deterministic dynamical systems. Hence, every object k :X →DX of
D-Coalg can be seen as a dynamical system (X; �) with state space X and transition
function � :X →X . Here, k(x)= x�(x)�2(x) · · · .
The Eilenberg–Moore construction T-Alg for the monad T is as follows: each object

h :TX →X is a semigroup X with a structure map h which sends a list of elements
x1x2 · · · xn to their composite.
So the category �-Bialg for the distributive law � :TD⇒DT is as follows. An object

(h :TX →X; k :X →DX) of �-Bialg is a dynamical system (X; �) where the state space
X is given by a semigroup such that �h(x1x2 · · · xn)= h(�(x1)�(x2) · · · �(xn)) for every
/nite sequence x1x2 · · · xn of X elements.
An arrow f : (h :TX →X; k :X →DX)→ (h′ :TX →X; k ′ :X →DX) is a map f :X

→Y that is a morphism of both semigroups and dynamical systems.

7. Mnd∗Cmd∗(K)

This section is essentially about Kleisli constructions, considering the complete dual
to the previous section. One can deduce the following from Corollary 6.6.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 157

Corollary 7.1. Mnd∗Cmd∗(K) is isomorphic to Cmd∗Mnd∗(K).

Moreover, one can deduce an equivalent result to Proposition 6.3: this yields that
the isomorphic 2-categories of Corollary 7.1 amount to giving the opposite distributive
law to that given by Cmd and Mnd, and hence give an account of Kleisli constructions
lifting along Kleisli constructions. The left 2-adjoint to Inc :K→Mnd∗Cmd∗(K) can
again be characterised in three ways:

Corollary 7.2. If K admits Kleisli constructions for monads and comonads; then given
a distributive law of a comonad (D; /; ') over a monad (T; �; �); the following are
equivalent:
• �-Kl determined directly by the universal property of the inclusion Inc :K→Dist∗

(K) sending X to the identity distributive law on X;
• the Kleisli object for the lifting of T to D-Kl;
• the Kleisli object for the lifting of D to T-Kl.

This is the construction proposed by Brookes and Geva [2] for giving intensional
denotational semantics.
The fundamental step in the proof here lies in the use of the proof of

Theorem 6.7, and that proof relies upon the following: some mild conditions on K
hold of all our leading examples, allowing us to deduce that K admits Eilenberg–
Moore and Kleisli constructions for monads and comonads; and each of the construc-
tions Mnd; Mnd∗; Cmd and Cmd∗ is 2-functorial on 2-Cat, so preserves adjunctions.

Spelling out the action of the 2-functor on 1- and 2-cells, a 1-cell (J; jt ; jd) : (C;T;D;
�)→ (C′;T′;D′; �′) is sent to the 1-cell J -Kl : �-Kl→ �′-Kl such that the following
diagram commutes:

Here F� and F�′ are canonical 1-cells.
A 2-cell � : (J; jt ; jd)⇒ (H; ht ; hd) is sent to the 2-cell �-Kl : J -Kl⇒H -Kl such that

�-KlF� = F�′�.

Remark 7.3. Although all 1- and 2-cells in Mnd∗Cmd∗(K) give liftings to Kleisli
constructions for monads and comonads, we cannot have a converse as we cannot
construct the data for a 1-cell in Mnd∗Cmd∗(K) from a lifting.

Proposition 7.4. When K = Cat; the Kleisli construction for monads and comonads
exists and is given as follows. Let (D; /; ') be a comonad and (T; �; �) be a monad

158 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

on C and � :DT →TD be a distributive law on D and T. Then the objects of �-Kl
are the those of C. An arrow from x to y in �-Kl is given by an arrow f :Dx→Ty
in C. For each object x; the identity is given by �x ◦ 'x. The composition of arrows
f : x→y and g :y→ z in �-Kl seen as arrows f̂ :Dx→Ty and ĝ :Dy→Tz in C is
given by the composite �z(T ĝ)�y(Df̂)/x in C.

Proof. We need only write the image under the left 2-adjoint Inc :Cat→Cmd∗Mnd∗

(Cat). This left adjoint is given by composing the two left 2-adjoints as in Theorem 6.7:
the 2-functor Cmd∗ applied to the Kleisli construction of T , and the Kleisli construction
of D.

Now, we give an example of a distributive law of a comonad over a monad, hence
a 0-cell of Cmd∗Mnd∗(K), and the Kleisli construction for a monad and comonad.

Example 7.5. Let (P;
⋃
; {−}) be the powerset monad on Set, i.e., the powerset functor

P and union operation
⋃

:P2 ⇒P and singleton mapping {−} : Id⇒P. Let (D; /; ')
be a comonad on Set where the endofunctor D sends a set X to the product set A×X
for some set A. Consider the natural transformation � :DT ⇒TD whose X component
sends a pair (a; �) of an element a of A with �∈P(X) to the set {(a; x) | x∈ �}. This
satis/es the axioms for a distributive law of a comonad over a monad. Hence this
gives an example of a 0-cell in Cmd∗Mnd∗(Cat). It also turns out to be a 0-cell in
both CmdMnd∗(Cat) and MndCmd∗(Cat).

This distributive law is essentially the same as the one in the Power and Turi
paper [13]. Their monad is the non-empty powerset monad on Set.

Example 7.6. Applying Proposition 7.4, we spell out the Kleisli construction �-Kl
for the monad and comonad given in the above example. The objects of the cate-
gory �-Kl are the those of Set. An arrow from X to Y in �-Kl is given by a map
f :A×X →P(Y). The identity arrow for each object X is given by the map �X ◦ 'X :A
×X →P(X) which sends a pair (a; x) to the singleton {x}. The composition of arrows
f :X →Y and g :Y→Z in �-Kl seen as maps f̂ :A×X →P(Y) and ĝ :A×Y→P(Z)
is given by composite

⋃
Z(Pĝ)�Y (A× f̂)/X :A×X →P(Z) which sends (a; x) to the

subset
⋃{ĝ(a; y) |y∈ f̂(a; x)} of Z .

8. The other four possibilities

Applying the work of previous sections to the remaining four possible combinations
of a monad with a comonad, we can summarise the various 2-categories by Table 1,
including the previous 2-categories.
Each 2-category is de/ned as follows:

• A 0-cell consists of a 0-cell C of K , a monad T on it, a comonad D on it, and a
distributive law � whose direction is listed in the second column of Table 1.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 159

Table 1
Distributive laws

� jt jd

Cmd Mnd=Mnd Cmd TD⇒DT T ′J ⇒ JT JD⇒D′J
Cmd∗Mnd TD⇒DT T ′J ⇒ JT D′J ⇒ JD
Mnd∗Cmd TD⇒DT JT ⇒ T ′J JD⇒D′J
Cmd Mnd∗ DT ⇒ TD JT ⇒ T ′J JD⇒D′J
Mnd Cmd∗ DT ⇒ TD T ′J ⇒ JT D′J ⇒ JD
Cmd∗Mnd∗ =Mnd∗Cmd∗ DT ⇒ TD JT ⇒ T ′J D′J ⇒ JD

• A 1-cell (J; jt ; jd) : (C;T;D; �)→ (C′;T′;D′; �′) consists of a 1-cell J :C→C′ in K
together with a 2-cell jt with direction in the third column, subject to monad laws,
and a 2-cell jd in the fourth column, subject to comonad laws, all subject to one
coherence hexagon.

• A 2-cell from (J; jt ; jd) to (H; ht ; hd) consists of a 2-cell from J to H in K subject
to two conditions expressing coherence with respect to jt and ht and coherence with
respect to jd and hd.

Remark 8.1. As described in Table 1, the 2-categories CmdMnd(K); Cmd∗Mnd(K)
and Mnd∗Cmd(K) have the same 0-cells, and CmdMnd∗(K); MndCmd∗(K) and Cmd∗

Mnd∗(K) have the same 0-cells.

In considering the possible ways of combining a pair of categories each with a
monad and a comonad, there appear three possible independent dualities:
• TD⇒DT or the dual,
• JT ⇒T ′J or the dual,
• D′J ⇒ JD or the dual.
This gives eight possibilities, but we can see from above list that two of them do not

arise. The two that do not arise are

TD ⇒ DT JT ⇒ T ′J D′J ⇒ JD

and the complete dual, dualising all three items,

DT ⇒ TD T ′J ⇒ JT JD ⇒ D′J:

8.1. Cmd∗Mnd(K)

Consider Cmd∗Mnd(K). When K admits Kleisli constructions for comonads and
Eilenberg–Moore constructions for monads, we can consider the Kleisli construction
for a comonad lifting to the Eilenberg–Moore object for the monad. In detail, for
a 0-cell (C;T;D; �) in Cmd∗Mnd(K), i.e., a monad T=(C; T; �; �) and a comonad
D=(C;D; /; ') with a distributive law � :TD⇒DT , we /rst lift the comonad D on to
the Eilenberg–Moore construction for the monad T by applying the 2-functor Cmd∗

((−)-Alg) :Cmd∗Mnd(K)→Cmd∗(K) to obtain the comonad (T-Alg; (D; �)-Alg;

160 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

/-Alg; '-Alg) in Cmd∗(K). Then we apply the 2-functor (−)-CoKl to obtain the Kleisli
construction for the comonad. Observe that the composition 2-functor (−)-CoKlCmd∗

((−)-Alg) cannot be characterised as a left or right 2-adjoint functor to Inc.
When K =Cat, this construction gives the following category for a given 0-cell

(C;T;D; �) in Cmd∗Mnd(Cat). Objects are the Eilenberg–Moore algebras for the
monad T. An arrow f from h :Tx→ x to k :Ty→y is an arrow f̂ :Dx→y in C such
that k ◦Tf=f ◦Dh ◦ �x. For each T-algebra h :Tx→ x, the identity arrow is given by
the arrow 'x : x→Dx in C.

Example 8.2. Applying the above construction to the 0-cell given in Example 6.4,
we have the following category. An object is a T-algebra for the monad T, hence it
is a semigroup h :X ∗ →X . An arrow f from a semigroup h :X ∗ →X to k :Y ∗ →Y
is a morphism of semigroups from the semigroup h! : (X!)∗ →X! to k, where the
multiplication of h! is de/ned by (x1x2 · · ·)(y1y2 · · ·)= (x1y1)(x2y2) · · · for two streams
x1x2 · · · ; y1y2 · · · ∈X!.

8.2. Mnd∗Cmd(K)

When K admits Eilenberg–Moore constructions for comonads and Kleisli construc-
tion for monads, we have a composite 2-functor (−)-KlMnd∗((−)-Coalg) :Mnd∗Cmd
(K)→K . This functor sends each 0-cell of Mnd∗Cmd(K) to the Kleisli construction
for the monad lifted to the Eilenberg–Moore construction for the comonad.
Spelling out the above construction when K =Cat, the construction sends each

0-cell (C;T;D; �) to the following category. Objects are D-coalgebras. An arrow from
h :X →DX to k :Y →DY is an arrow f :X →TY in C such that Df ◦ h= �Y ◦Tk ◦f.

Example 8.3. Recall Example 6.4, the example of a distributive law of a monad
over a comonad and consider the above construction. It yields the following cate-
gory. Objects are D-coalgebras, hence deterministic dynamical systems. An arrow f
from a dynamical system (X; �) to (Y; 7) is a morphism of dynamical systems from
(X; �) to (Y ∗; 7∗) where (Y ∗; 7∗) is the dynamical system whose state space is given
by the set of /nite lists Y ∗ of the set Y and with transition function 7∗ given by
7∗(y1y2 · · ·yn)= 7(y1)7(y2) · · · 7(yn) for y1y2 · · ·yn ∈Y ∗.

8.3. CmdMnd∗(K)

When K admits Eilenberg–Moore constructions for comonads and Kleisli construc-
tions for monads, we have a 2-functor (−)-CoalgCmd((−)-Kl) :CmdMnd∗(K)→K ,
which sends each 0-cell to an Eilenberg–Moore construction for the comonad lifted to
the Kleisli construction for the monad.
Spelling out the construction when K =Cat, it sends each 0-cell (C;T;D; �) to the

following category. An object is an arrow h : x→TDx in C such that T'x ◦ h= �x and
T/x ◦ h= �D2x ◦T�Dx ◦TDh ◦ h. An arrow from h : x→TDx to k :y→TDy is an arrow
f : x→Ty in C such that �Dy ◦Tk ◦f= �Dy ◦T�y ◦TDf ◦ h.

J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162 161

These conditions on both objects and arrows are strict. One can consider application
of this construction to the distributive law given in Example 7.5. Each object is a map
h :X →P(A×X), hence a labelled transition system, but the /rst equation on objects
says that every state x∈X can only have transitions to itself with labels in A.

Remark 8.4. In the above example, the 0-cell constructed by the Eilenberg–Moore
construction for a comonad lifted to the Kleisli construction for a monad is restrictive.
In [13], by forgetting the counit and comultiplication of a given comonad, Power and
Turi considered the category of coalgebras for an endofunctor rather than a comonad
on the Kleisli category for the monad, where they used only distributivity for the
non-empty powerset monad and the A-copower endofunctor. In order to provide a
framework for their example, we need to investigate the 2-category of endo-1-cells
in K .

8.4. MndCmd∗(K)

When K admits Kleisli constructions for comonads and Eilenberg–Moore construc-
tions for monads, we have a 2-functor (−)-AlgMnd((−)-CoKl) :MndCmd∗(K)→K
sending each 0-cell to the Eilenberg–Moore construction for the monad lifted to the
Kleisli construction for the comonad.
Spelling out the construction when K =Cat, it sends each 0-cell (C;T;D; �) to the

following category. An object is an arrow h :DTx→ x in C such that h ◦D�x = 'x and
h ◦D�x = h ◦DTh ◦D�Tx ◦ /T 2x. An arrow from h :DTx→ x to k :DTy→y is an arrow
f :Dx→y in C such that f ◦Dh ◦ /Tx = k ◦DTf ◦D�x ◦ /Tx.
We can also apply this construction to the distributive law in Example 7.5, but we

cannot see any concrete meaning to the objects and arrows in that category.

References

[1] M. Barr, C. Wells, in: Toposes, Triples and Theories, Grundlagen der Mathematischen Wissenschaften,
Vol. 278, Springer, Berlin, 1985.

[2] S. Brookes, S. Geva, Computational comonads and intensional semantics, Proc. Durham Conf. Categories
in Computer Science 1991, 1993.

[3] M.P. Fiore, Axiomatic domain theory in categories of partial maps, Cambridge University Press
Distinguished Dissertations in Computer Science, 1996.

[4] J.A. Goguen, J.W. Thatcher, E.G. Wagner, An initial algebra approach to the speci/cation, correctness
and implementation of abstract data types, in: R.T. Yet (Ed.), Current Trends in Programming
Methodology, Vol. 4, Prentice-Hall, Englewood CliIs, NJ, 1978, pp. 80–149.

[5] B. Jacobs, J. Rutten, A tutorial on (Co)algebras and (Co)induction, EATCS Bull. 62 (1997) 222–259.
[6] P.T. Johnstone, Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc. 7 (1975)

294–297.
[7] P.T. Johnstone, A.J. Power, T. Tsujishita, H. Watanabe, J. Worrell, Proceedings, Lecture Notes in

Computer Science, Vol. 98, IEEE Press, 1998, pp. 207–213.
[8] G.M. Kelly, R. Street, Review of the elements of 2-categories, Sydney Category Seminar, Lecture Notes

in Mathematics, Vol. 420, Springer, Berlin, 1974, pp. 75–103.
[9] J. MacDonald, Liftings and Kleisli extensions, Foundational Methods in Computer Science ’98 Lecture,

1998.

162 J. Power, H. Watanabe / Theoretical Computer Science 280 (2002) 137–162

[10] J. MacDonald, A. Stone, Foundational Methods in Computer Science ’95 Lecture, 1995.
[11] E. Moggi, Notions of computation and monads, Inform. and Comput. 93 (1991) 55–92.
[12] P.S. Mulry, Lifting theorems for Kleisli categories, Proc. 9th Mathematical Foundations of Programming

Semantics, Lecture Notes in Computer Science, Vol. 802, Springer, Berlin, 1994, pp. 304–319.
[13] J. Power, D. Turi, in: A coalgebraic foundation for linear time semantics, Proc. CTCS’99, Electric

Notes in Theoretical Computer Science, Vol. 24, Springer, Berlin, 1999.
[14] J. Rutten, D. Turi, Initial algebra and /nal coalgebra semantics for concurrency, in: J. de Bakker, et al.

(Eds.), Proc. REX Workshop A Decade of Concurrency – ReJections and Perspectives, Lecture Notes
in Computer Science, Vol. 803, Springer, Berlin, 1994, pp. 530–582.

[15] R. Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972) 149–168.
[16] D. Turi, G. Plotkin, Towards a mathematical operational semantics, Proceedings, Lecture Notes in

Computer Science, Vol. 97, IEEE Press, 1997, pp. 280–291.

