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The aim of this paper is to demonstrate that stochastic analyses can be performed on large and complex

models within affordable costs. Stochastic analyses offer a much more realistic approach for analysis

and design of components and systems although generally computationally demanding. Hence,

resorting to efficient approaches and high performance computing is required in order to reduce the

execution time.

A general purpose software that provides an integration between deterministic solvers (i.e. finite

element solvers), efficient algorithms for uncertainty management and high performance computing is

presented. The software is intended for a wide range of applications, which includes optimization

analysis, life-cycle management, reliability and risk analysis, fatigue and fractures simulation, robust

design.

The applicability of the proposed tools for practical applications is demonstrated by means of a

number of case studies of industrial interest involving detailed models.

& 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

In many engineering fields, computational approaches are used
to characterize, predict, and simulate complex systems. The pro-
blems addressed by numerical analysis face continuously increasing
demands, both in terms of efficiency and accuracy.

Within the community of computational mechanics, currently
mostly deterministic analyses are performed [40]; nonetheless,
such deterministic analyses provide insufficient information to
capture the variability of the e.g. structural response due to the
inevitable uncertainties in loading, materials and manufacturing
quality. The software to perform deterministic analyses are generally
quite sophisticated in terms of geometrical and mechanical modeling
capabilities, continuously improved and updated to account for new
trends and developments in computational mechanics.

Although stochastic methods offer a much more realistic approach
for analysis and design of systems, the utilization of such tools in
practical applications remains quite limited. One of the reasons to
explain this fact is that the developments of general purpose software
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for stochastic analysis have received considerable less attention than
their deterministic counterparts. Another common limitation of
stochastic procedures is that the computational cost is often by
orders of magnitude higher than the deterministic analysis. This
is because in general, instead of running the analysis code only
once, the stochastic analysis involves many repeated executions.
Therefore, performing uncertainty analysis might lead to imprac-
tical computational costs especially for detailed models.

Within this context, the aim of this contribution is presenting
and discussing efficient approaches for stochastic analysis and their
applications to large FE models for the solution of realistic engineer-
ing problems. This aim is achieved by resorting to a general purpose
software developed at the Institute of Engineering Mechanics,
University of Innsbruck, Austria. Originally developed for performing
only stochastic structural analysis, the current version of the software
is intended for a wide range of applications, which includes optimi-
zation analysis, life-cycle management, reliability and risk analysis,
fatigue and fractures simulation, robust design.

The outline of the present paper is as follows: Section 1.1 reports
a brief overview of the computationally challenging stochastic
problems of interest in engineering practice. In Section 2, a general
purpose software intended for solving efficiently a large range of
stochastic problems is described. In Section 3, a number of case
studies are presented to demonstrate the applicability of the soft-
ware for solving problems of practical interest. Finally, some final
remarks are listed in Section 4.
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1.1. Importance of stochastic analysis

Knowledge about the future behavior of structures, systems
and components is the basis for far reaching economical and
safety relevant decisions in our society and appears on different
engineering fields (e.g. automotive industry, aerospace, mechan-
ical and civil engineering, etc.). Together with observed responses,
it provides the basis to broaden the mechanical and physical
understanding between action and reaction. In order to predict
accurately the behavior of systems and structures, mathematical
models must be constructed and then evaluated. The FE methods
and the exponential growth of the computational power allow to
solve partial differential equations, i.e. mathematical models, for
realistic boundary conditions with high accuracy.

Comparing response predictions with measured data, how-
ever, could not show that the fidelity has improved as much as
the abilities of detailed modeling and of accurate analysis. The
reasons for this discrepancy are twofold: parameter and model
uncertainty. Parameter uncertainties denote input data in the
computational model which are not precisely known and must be
expected to deviate from the assumed deterministic values.
Model uncertainties denote the fidelity of the mathematical
model, which involves usually some abstraction and simplifying
assumptions, to represent with sufficient accuracy the actual
mechanical/physical response. It is nowadays widely recognized
that essential progress in virtual response prediction can only be
accomplished in case uncertainties are included in the analysis,
see e.g. [22].

The most widely accepted method to deal rationally with
uncertainties is the stochastic approach including Bayes and
Laplace’s subjective interpretation of probability as a state of
information. Alternative approaches are valid options, e.g. fuzzy
logic [25] and possibility theory, which are not so far developed as
the theory of probability. In the stochastic approaches, uncertain-
ties are represented mathematically by random quantities and by
suitable probability distributions. The stochastic analysis allows
for Uncertainty Quantification (UQ) and its propagation to the
responses, which are mathematically seen as random quantities
completely specified by their probability distribution.

The merits of considering uncertainties are manifold: it allows
for assessing the reliability and variability of the response(s) and,
most importantly, it provides information to increase the relia-
bility and to improve the design as well as the fidelity of the
prediction. Sensitivity analyses reveal the quantities which are
mainly responsible for the variability of the response(s). In case
the uncertainty is due to the lack of knowledge (epistemic type)
and therefore reducible, the fidelity of the prediction can be
improved by gathering additional data for those quantities which
cause most uncertainty in the response(s). Irreducible (aleatory)
uncertainties lead to irreducible uncertainties in the response.
In this case the design must be such that adverse events do
not jeopardize safe operation. The quantification of the tolerable
failure probability allows for an economic investment against
failure.

Similarly, uncertainty quantification and propagation are impor-
tant aspects when trying to optimize a system or a component.
Optimal solutions in a deterministic setting might not perform as
expected and can be even dangerous in case ignored uncertainties
influence the performance considerably. On the other hand, robust
design procedures take into account all relevant uncertainties and
provides robust and sound solutions, e.g. the failure probability is
constrained to be less than an acceptable value. Furthermore,
decision within life cycle management for important infrastructures
and investments must be done based on incomplete and generally
insufficient data, where a probabilistic Bayesian approach could
provide valuable information.
2. Efficient implementations and strategies for stochastic
analysis

2.1. General remarks

The term general purpose software means that a reasonably
wide range of engineering and scientific problems can be treated
by a single software. This is in contrast with specialized software,
which are developed for solving only a specific type of problem
within a particular discipline. In general, the capabilities of the
specialized software, optimized for solving problems for which
they are designed for, are not completely covered by general
purpose software. However, general purpose software are much
more flexible and their advantages for the user are manifold,
mainly the possibility to solve different types of problems adopt-
ing a single software. This results in a drastic reduction in the
efforts that an analyst needs to invest to familiarize with the
software. Furthermore, general purpose software offer the possi-
bility to customize the solution sequences becoming able to solve
problems that were not even prefigured during the design of the
software.

The downside of general purpose software packages is that,
usually, they are much more complex than dedicated software in
terms of number of lines of code required, structure and time
required for developing and testing. However, since general purpose
software are designed to solve a broad variety of problems, they are
usually also much simpler to use and they are not only to be
adopted by skilled users.

An overview of software to model uncertainties in loads,
material properties and geometries for design and decision-
making purposes is available e.g. in [39].

2.2. Structure of the software

The structure of general purpose software is generally com-
posed of three main blocks: user interfaces, core components and
a set of tools for the interaction with external codes (i.e. 3rd party
software). Each of these main blocks can be composed of a number
of additional sub-components. The scheme of the general purpose
software as considered in this paper is shown in Fig. 1.

The general purpose software provides a large set of different
tools and methods that can be combined to solve a specific
problem.

The software core components are coded in a object oriented
fashion in MATLABs environment, which provides an expandable
modular framework.

2.3. User interfaces

General purpose software offers in general different ways to
interact with it. The most common way is by means of user friendly
Graphical User Interfaces (GUI). These interfaces are intended to be
used to solve all kind of problems supported by the software. The GUI
of the software considered in this work, shown in Fig. 2, is coded in
Eclipse RCP, a framework that allows to deploy native GUI applica-
tions to a variety of desktop operating systems, such as Windows,
Linux and Mac OS X. The general purpose GUI provides wizards and
guides to assist inexperienced users to set up the problem and to
select the most appropriate tools required by the analysis. Further-
more, it includes a very powerful input/output editor regarding the
interaction with 3rd-party software as shown in Section 2.4.

Also, a command line interface based on Matlab scripting, shown
in Fig. 3, provides a high-level powerful and flexible programming
environment, which allows advanced users and researchers to modify
pre-written solution sequences, explore data, define algorithms, and
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Fig. 1. Schematic representation of general purpose software for computational

stochastic analysis.
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create custom tools that provide early insights and competitive
advantages to solve specialized problems.

Finally, user interfaces provided as plug-ins (i.e. extensions) for
commercial pre- and post-processor software, e.g. Patrans, are also
available, as shown in Fig. 4. Thanks to these plug-ins, the user can
define stochastic analyses directly on the GUI of the pre- and post-
processor software, which the user is already familiar with.

2.4. Interaction with 3rd party software

In general, an analyst is able to solve a deterministic problem
using a specific solver, for instance a commercial FE-solver or an
in-house solver. Consequently it would be advantageous to offer
the possibility to perform stochastic analysis adopting the same
solver. In order to achieve this, it is necessary to resort to a series
of different communication tools to interact with standard solvers
used in industry, i.e. FE packages such as Nastran, Ansys, Abaqus,
FEAP, code_Aster, etc.

From the point of interaction with 3rd party software, the
methods can be classified into two groups, namely intrusive and
non-intrusive methods, respectively. On one hand, non-intrusive
methods refer to those, where 3rd party programs can be used in
a black-box fashion, i.e. no modification is required on the 3rd
party program, see e.g. [8]. The intrusive methods, on the other
hand, require calculations with system matrices, see e.g. [6].
Therefore, these matrices have to be accessed in the deterministic
solver. This may require advanced knowledge or even modifica-
tions on the solver side. Consequently, the implementation of this
class of methods is more involved.

Non-intrusive methods: In this class of methods, the interaction is
based on the manipulation of the input/output files without mod-
ifications in the 3rd party solver. The basic concept is to use the
original input files, in ASCII format, as a basis and to modify these
files for generating valid input configurations automatically for the
numerical analysis. For this purpose, the quantities associated with
uncertainty and/or design variables are replaced in the original ASCII
phical user interfaces.



Fig. 3. Matlab command line interface.

Fig. 4. Patran plug-in for SFEM analysis.
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input files by some identifiers, i.e. strings of unique characters. These
identifiers establish the relation between the variables defined in
general purpose software and the physical variables of the model.
Regarding the extraction of the quantity of interest from the
output files of the 3rd party software, different post-processor
tools are offered. In fact, all the FE-solvers are able to export the
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quantity of interest in ASCII output files. Using these output
files, the relative and/or absolute positions of the quantities of
interest are defined and successively used to extract the values of
interest.

The manipulation of the input files and the extraction of the
quantities of interest from the output files is completely auto-
matized in the software considered here.

Intrusive methods: Intrusive methods are those where the data
structures in the 3rd party software have to be accessed.

The levels of communication between stochastic and determi-
nistic solvers are especially important in this regard. For example,
if the transfer of system matrices rely on file input/output
between these software, the overhead associated with this data
transfer becomes quite significant for large systems. Furthermore,
it should be noted that the required data vary according to the
formulation of the considered approach. Based on this, it can be
said that in case the implementation can access the data struc-
tures and modify the program flow of the FE code, improved
performance may be accomplished. These conditions are clearly
met in context with open-source FE codes. However, also pro-
prietary software may provide the means for accessing data
structures such as stiffness matrices and utilize those in an
efficient implementation of various methods.

Considering the various ways of interaction with respect to
intrusive methods, the most straightforward approach for the
transfer of system matrices from the 3rd party solvers is using
files. There are various parameters, which affect the computa-
tional efficiency of this step:
1.
 File format: Different file formats are offered by different FE
solvers to input/output (I/O) matrices. For example, MSC.Nas-
tran provides file formats such as op2 and op4, whereas in
ANSYS the Harwell–Boeing format is available for the same
purpose. The format op4 refers to ASCII files, which are read-
able on any conventional editor, and op2 is a FORTRAN binary
option, which requires a FORTRAN program to provide read-
able results. The number of digits retained in each value in
these files is controlled by an input parameter of the corre-
sponding function call. The FORTRAN binary option file is
typically one-third the size of the ASCII version.
2.
 Matrix storage format: FE models of complex structures may
result in large system matrices, which have usually many zero
entries. Hence their format, i.e. sparse or non-sparse, can
become decisive on the computational efficiency, as well as
on handling the calculations from the memory allocation point
of view. Most of the FE solvers provide the option to output the
system matrices in sparse format.
3.
 Code to I/O the matrix: The libraries which are used for I/O
matrices via files, influence the computational efficiency of the
implementation significantly and hence should be optimized
for high efficiency.
2.5. Toolboxes (analysis types)

An approach of using various layers has been considered
within the implementation of the methods and features. The
toolboxes-layer represents the core components of the software
and implements the state of the art in stochastic analysis that
have been shown to represent a robust and efficient approach for
the uncertainty management (see e.g. [42]). The combination of
various algorithms with specific solution sequences permits the
analysis of engineering problems as shown by different applica-
tions presented in Section 3. These algorithms then eventually
form the applications-layer, such as UQ, reliability analysis, life
cycle management, etc.
2.5.1. Modeling of the uncertainties

Uncertainties can be described within the framework of
probability. Scalar values can be modeled using random variables
(RVs), e.g. static load; time variant quantities can be represented
using stochastic processes, e.g., wind speed or earthquake excita-
tion; space variant quantities can be described using random
fields, e.g. material properties in a solid.

In the software described in this work, a RV is defined by
specifying the distribution type, e.g. normal, log-normal, uniform,
etc., together with either the parameters of the distribution, or its
moment(s). Alternatively, a RV can be constructed starting from a
set of realizations. In the latter case, the parameters leading to an
optimal fit of the set of realizations by a specific distribution are
automatically determined using the maximum likelihood method,
which is very versatile tool and yields estimators of the distribu-
tion parameter with optimal statistical properties (see e.g. [24]).

The software allows to define multivariate distributions by
defining the marginal distributions and introducing a correlation
matrix between them. Samples from multiple correlated distribu-
tions cannot be generated directly, since pseudo-random number
generators are supposed to generate independent samples. Thus, in
order to generate samples from correlated multivariate distribu-
tions, it is necessary to transform the random variable space to
obtain an uncorrelated multivariate distribution, where indepen-
dent RVs can be used. This requirement is fulfilled in the so-called
standard normal space, which is an uncorrelated multi-dimensional
random variable space with zero mean, unit standard deviation
Gaussian marginal probability density functions.

Let us consider a set of RVs ðX1, . . . ,XnÞ having correlation
coefficients rij, i,j¼ 1, . . . ,n and marginal cumulative density
functions FXi

, i¼ 1, . . . ,n. First, a transformation to correlated
standard normal variables is performed according to

zi ¼F�1
ðFXi
ðxiÞÞ for i¼ 1, . . . ,n ð1Þ

where F�1 denotes the inverse of the standard normal cumulative
density function, i.e. cumulative density function of a Gaussian
distribution with zero-mean and unit variance. After the trans-
formation described in Eq. (1), the correlation coefficient r0ij of the
variables is so that Eq. (2) is verified [18]

r0ij ¼
Z þ1
�1

Z þ1
�1

xi�mi

si

� �
xj�mj

sj

� �
jðzi,zj,rijÞ dzi dzj ð2Þ

where j denotes the probability density function of a bivariate
standard normal Gaussian distribution. An analytic approxima-
tion of r0ij is adopted if applicable [18], alternatively, a numerical
solution of Eq. (2) is carried out using Monte Carlo (MC) simulation.
The RVs in the standard normal space ðu1, . . . ,unÞ are expressed as

ui ¼
Xn

j ¼ 1

bijzj for i¼ 1, . . . ,n ð3Þ

where bij denotes the terms of the inverse of the Choelsky decom-
position of the correlation matrix defined by the terms r0ij. Finally,
isoprobabilistic transformation to the physical space of the corre-
lated distributions is carried out.

Multivariate distributions can also be defined using limited
experimental data, adopting an efficient approach based on a
mixture of one or more multivariate Gaussian distribution com-
ponents [12]. In this method, the probability density function of
such distribution is defined as the sum of n kernels with a
Gaussian distribution

f XðxÞ ¼
Xn

i ¼ 1

aif Y i
ðxÞ ð4Þ

where f X denotes the multivariate probability density function of
a multidimensional random variable X defined as a combination
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of Gaussian distributions, and x is a point of the sample space. f Y i

indicates the correlated multidimensional Gaussian distributions,
centered around support points that can be manually specified or
automatically determined in the case experimental realizations
are supplied. Finally, ai, i¼ 1, . . . ,n are used to weigh the con-
tribution of each Gaussian probability density function. The
weights are set so that

Pn
i ¼ 1 ai ¼ 1.

Stochastic processes and random fields allow to model quantities
showing both a random variability, and a functional dependence in a
multidimensional continuous space, i.e., time dependence or spatial
variability respectively, (see e.g. [37,51]). In the case the stochastic
process (random field) is Gaussian, it is fully defined by the mean
function and the covariance function. The covariance function
represents the mutual influence of the process at two different
spatial-coordinates/time-instants.

For practical engineering applications, the functional depen-
dence is studied for a finite set of discrete coordinates (e.g. time
discretization, mesh of a FE model, etc.). In this case, the mean
and covariance functions degenerate to a mean vector and
covariance matrix, respectively. Realizations from any Gaussian
distributed stochastic process (random field) are computed using
the Karhunen–Lo�eve expansion [14,19]. For the case of discrete
coordinates is

Y ¼ mYþ
Xn

i ¼ 1

ffiffiffiffi
li

p
xiFi ð5Þ

where the li and Fi, i¼ 1, . . . ,n are the eigenvalues and eigen-
vectors of the covariance matrix, respectively; n¼ x1, . . . ,xn are
random values generated from a set of n independent standard
normal RVs and mY is the mean vector of the stochastic process
(random field). The Karhunen–Lo�eve expansion allows accurate
representation for Gaussian processes with a truncation of the
sum to mon, using the m biggest eigenvalues of the correlation
matrix. The number of terms of the expansion is determined
according to the decay of the eigenvalues, so that an acceptable
fraction of the variance is captured. The general purpose software
allows to generate samples from Gaussian processes only.

2.5.2. Reliability

Reliability engineering provides the theoretical and practical
tools whereby the probability and capability of parts, components,
equipment, products and systems to perform their required func-
tions can be specified, designed in, predicted, tested and demon-
strated [15]. In reliability analysis the quantity of interest is the time
to failure, T (often called mission time) and the probability of failure,
pf, for dynamic and static systems, respectively.

For time-invariant problems the evaluation of the pf of com-
ponents and systems involves the calculation of the following
multidimensional volume integral:

pf ¼ P½F� ¼

Z
� � �

Z
F

f ðy1, . . . ,ynÞdy1, . . . ,dyn ð6Þ

where F defines the event that causes the failure of the system.
This amount is traditionally defined by a so-called scalar perfor-
mance function gðhÞ in a n-dimensional space, where gðhÞr0
defines the failure domain F and gðhÞ40 the safe domain.

Mechanical systems arising in typical engineering applica-
tions usually exhibit a degree of complexity that prevents an
analytical solution of the failure probability since gðhÞ is not
known explicitly. The failure probability can, in theory, always
be estimated via MC simulation. However, for most practical
applications, the evaluation of a single point of the function gðhÞ

requires a full analysis of the model. Therefore, the computational
time required by the MC simulation might become infeasible for
the cases, where a substantial number of samples are required by
the analysis.
In order to circumvent this drawback, the failure probability
may be estimated by means of approximate methods (see e.g. [9])
or advanced simulation-based methods (see e.g. [43]). First and
second order reliability method and estimation of bounds can be
mentioned within the first category. The family of the advanced
simulation-based methods includes importance sampling [44],
line sampling [43] and subset simulation [5].

Furthermore, the reliability analysis involves the estimate of
the probability of occurrence of a single failure model as well as
the probability of occurrence of certain combinations of events,
i.e. system reliability (see e.g. [32]).

2.5.3. Optimization

The optimization problem can be defined mathematically as
the identification of an optimal solution x of the function g, that is,
a feasible solution f ðxÞ

minfgðx0Þ9x0A f ðxÞg ð7Þ

The field of optimization is vast. Therefore, several ways exist
to classify the available algorithms (see e.g. [3]). Among these
possibilities, a classical criterion is to distinguish between gradi-
ent-based and gradient-free algorithms. The reason for selecting
this classification approach is due to the fact that the computation
of gradients may be rather involved, especially when the func-
tions are noisy. However, gradient-free algorithms usually require
much more function evaluations than gradient-based algorithms
although they are better to handle noisy functions. Moreover,
some of the gradient-free algorithms are also capable of perform-
ing global optimization. Therefore, the classification of gradient-
based and gradient-free optimization algorithms reflects the
trade-off that exists between these two types of methods.

The optimization toolbox provides a set of widely used algo-
rithms to solve constrained and unconstrained, continuous and
discrete, standard and large-scale optimization problems. The opti-
mization toolbox includes the gradient-based optimization method
Sequential Quadratic Programming (see e.g. [3]) and the following
gradient-free algorithms: Genetic Algorithms, Simulated Annealing,
Constrained Optimization by Linear Approximation (COBYLA), Cross
Entropy and Evolution Strategies (see e.g. [13]).

Combining optimization and reliability methods, it is possible
to perform the so-called reliability based optimization analysis
and robust design optimization [41], which aims to identify
optimal design solutions considering uncertainties and conse-
quently the risk. When such kind of analyses are an integral part
of the development cycle to make the end-product, i.e. the
component/system, less sensitive to factors that could adversely
affect the performance.

2.5.4. Meta-modeling

In case of multiple evaluation of the numerical model, the
computational efforts might become infeasible. One way to
reduce the analysis time is to use meta-models, which approx-
imate the quantity of interest at low computational cost. Meta-
models mimic the behavior of the original model, by creating
input–output relations that approximate the real one by means of
basic mathematical operations. Surrogate models exist to approx-
imate generic input–output relations, like response surfaces [23]
and Artificial Neural Networks (ANN) [1], or can be specifically
tailored for particular applications, like the non-probabilistic
model [46] and the mode-based meta-model [33] used in struc-
tural dynamics.

As an example of application, a meta-model can be used to
evaluate an objective function and/or constraints for each trial
candidate solution explored within an optimization algorithm.
Often, the quantities of interest are retrieved from a time-
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consuming analysis, e.g. a detailed FE model. In reliability-based
optimization this will be even more demanding, since it requires a
full stochastic analysis to compute the probability of failure and
the corresponding performance.

Meta-models require to be calibrated (also referred to as
trained) in order to accurately predict the model outputs. This is
achieved by feeding a collection of input–output data-sets of the
‘‘real’’-model only. The inner parameters of the surrogate model
are then modified by dedicated calibration algorithms, until a
desired accuracy of the meta-model is achieved. An important
indicator of the goodness of a meta-model after the training is the
coefficient of determination R2, defined as

R2
¼ 1�

PNdata

i ¼ 1ðyi�ŷiÞ
2

PNdata

i ¼ 1ðyi�yiÞ
2

ð8Þ

where yi are the outputs of the physical or full model, yi ¼

ð1=NdataÞ
PNdata

i ¼ 1 yi and yi are the outputs predicted by the meta-
model. The accuracy of the output prediction of the meta-model
can be judged by the closeness of the value R2 to the target value
of 1.0, which expresses an exact match of the surrogate model
prediction and the output of the full model. This quantity is
computed both using the calibration set and a new set of input/
output values, not used by the calibration procedure, called
validation or verification set. In this second case, an indication
of the generalization capabilities of the meta-model is obtained.
2.5.5. Sensitivity

Sensitivity toolbox allows to study the relationships between
the input and output factors, and to identify the most significant
variables affecting the results of the model [31,35]. In particular,
sensitivity analysis can also be used for model calibration, model
validation, decision making process, i.e. any process where it is
crucial to identify which are the variables that mostly contribute
to the output variability.

Sensitivity analysis may be divided into three broad cate-
gories: local sensitivity analysis, screening methods and global
sensitivity analysis. Since the sensitivity analysis may be compu-
tationally very demanding, the local sensitivity analysis is the
only analysis performed in practical cases [36].

Local sensitivity analysis provide information about the sys-
tem behavior only around a reference point. The local response of
the model, obtained by varying input factors One-At-a-Time, is
investigated while holding the others fixed to a central (nominal)
value. This involves the estimation of the partial derivatives,
possibly normalized by the nominal value of the factor or by its
standard deviation [7].

The simplest sensitivity measure, SðlÞi , is based on the derivative
of the function

SðlÞi ¼
@Y

@Xi
ð9Þ

where Xi represents the uncertain input and Y the quantity of
interest considered (e.g. the response of the model). Taking into
account only the derivative of the function, this measure is not
very informative. An available practice is the normalisation of the
derivatives by the nominal values or, more often, by the standard
deviations, sXi

, of the uncertain input, Xi, and normalized by the
standard deviation, sY , of the response Y, i.e.

SðsÞi ¼
sXi

sY

@Y

@Xi
¼
sXi

sY
SðlÞi ð10Þ

The local sensitivity analysis (or point sensitivity analysis)
provides a quantification for the importance of input variables at a
single point in the input domain. Clearly the results of sensitivity
analysis depends on the choice of the reference point, except for
linear functions.

The sensitivity toolbox includes a MC procedure to estimate
the gradient of a function with sufficient accuracy and it has been
shown that the procedure is particularly efficient for high dimen-
sional problems (see [34]).

In this MC approach, the gradient of the function, rgðxÞ, is not
determined directly, as it is the case for finite difference method
or direct differentiation procedures. Instead, it is estimated by
random sampling in the close neighborhood of an arbitrary
reference point, x¼ ~x.

The global sensitivity analysis techniques take into account the
entire range of the variation of the input parameters. Their aim is
to apportion the whole output uncertainty according to the
different sources of uncertainty in the model inputs (see e.g
[35]). Generally, the global sensitivity methods are based on
estimating the fractional contribution of each input factor with
respect to the total variance of the model under investigation, also
called ANOVA (ANalysis Of VAriance) techniques. The so-called
Sobol’ measure [45] is mostly used in this regard, where each
effect is computed by evaluating a multidimensional integral via
MC simulation.

Although the sensitivity toolbox provides the most efficient
algorithms to perform sensitivity analysis (see e.g. [31,50]), the
global sensitivity analysis remains as a powerful but computa-
tionally expensive method, especially considering complex indus-
trial applications. For instance, the total number of sensitivity
indices that should be estimated is as high as 2k

þ1, where k

represents the number of uncertain parameters. The resulting
cost of the estimate is then Nt ¼Nð2k

þ1Þ, where N represents the
sample size needed to estimate a single index. It is well known
that, for complex computer models, an accurate estimation of
these indices by the simple MC method requires N41000. The
computational time can be significantly reduced by replacing the
complex computer code by a meta-model (see Section 2.5.4).
2.5.6. Stochastic finite elements

The stochastic finite element method (SFEM) is an important
tool for modeling and propagating uncertainties in computa-
tional mechanics. In essence, the SFEM extends the FE method
to account for uncertainties associated with the parameters of the
modeled structure. A variety of methods accomplishing this task
have been proposed, extended and reviewed previously (see e.g.
[37,47,48].

The computational efficiency of SFEM analysis has been recog-
nized as a critical aspect already for quite some time. Besides
depending on the computational costs for performing the numerical
computations required by the various SFEM algorithms, the compu-
tational efficiency is also greatly affected by more implementation-
related factors. This is mainly because SFEM implementations by
definition need to be integrated with external programs or with
program modules performing FE analysis.

Since it is beyond the scope of this manuscript to provide the
theoretical background of the various SFEM algorithms, it is
referred to e.g. [38,48] for the formulations of the considered
and well known methods within this context, such as the
Neumann Expansion method [52], the Perturbation method [16]
and Spectral SFEM, which utilizes the Polynomial Chaos (P-C)
Expansion formulation [11]. P-C has been applied with success in
several fields of engineering, see e.g. [4,20]. Instead, some of the
key aspects considered within the development of this toolbox
are to be explained briefly in the following part. The main
capabilities of the SFEM toolbox are summarized in Table 1. As
can be seen from the table, this toolbox is specifically designed to
handle structural analysis problems only.



Table 1
Overview of the capabilities of the SFEM toolbox.

Solvers NASTRAN, ABAQUS, ANSYS

Random parameters Young’s Modulus, density, shell elements thickness, beam elements cross sectional dimensions, force

Formulations Perturbation, Neumann expansion, polynomial-chaos expansion

Implementations Component-wise, solver-based, reduced model

Analysis types Linear static, modal
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For the detailed descriptions of the introduced implementa-
tions and algorithms, the reader is again referred to the references
mentioned above.

Data management: The first step through the development of
this toolbox has been to identify the bottlenecks within the SFEM
analysis. These efforts have revealed that the data transfer
between the 3rd party software (i.e. deterministic FE solvers)
and the main driver program (i.e. SFEM Toolbox) plays a crucial
role in this regard. The computational costs for this task become
especially cumbersome, as the size of the FE model and the
number of random parameters increase. In order to overcome this
difficulty, optimized data handling concepts are developed within
the toolbox. More specifically, one implementation exploits the
fact that in engineering structures distinct components frequently
have distinct properties (therefore called component-wise imple-
mentation); the second implementation concept greatly reduces
the cost of data transfer by performing the linear algebra opera-
tions within the FE solver’s programming environment (therefore
called solver-based implementation, please refer to [26] for further
details).

It should be noted that regarding the transfer of system
matrices/vectors, various factors come into the play. In other
words, different FE solvers export these quantities in different
formats, e.g. op2 or op4 format (NASTRAN), Harwell-Boeing format
(ANSYS) or mtx format (ABAQUS), etc. Clearly, one requires
dedicated scripts to read and transfer these data into a mean-
ingful format for the main program (in this case, into MATLAB
matrices/vectors). Hence, the overall efficiency of this step
becomes a function of all these parameters, namely the capability
of the FE solver in exporting system quantities, efficiency of the
utilized methods to import, format of the data, etc.

Parameter settings: As mentioned above, the user-friendliness
is one of the key aspects of the toolbox. In this regard, it is aimed
that also users without much experience in SFEM analysis can
perform stochastic structural analysis. For this purpose, algo-
rithms, which adjust the required input parameters automatically
for a given problem, are developed. For example, the utilization of
iterative solvers (e.g. Preconditioned Conjugate Gradient solver)
and preconditioners (e.g. incomplete Cholesky factorizations) is
necessary in order to handle the large size system of equations
resulting from Galerkin based P-C Expansion formulations.
Through the development of this toolbox, it has been observed that
the input parameters for these tools affect the overall efficiency
significantly. Therefore, novel strategies have been introduced, which
determine adequate values for their input parameters, e.g. drop
tolerance or convergence threshold (see [27] for details). It should be
however noted that the proposed approaches do not remove the
already existing drawbacks or limitations of the selected precondi-
tioner, iterative solver or the P-C method itself. Instead, these
algorithms aim to improve the user-comfort of the use of these
tools, i.e. which enable to use these tools in a black-box fashion.

Since the efficiency of the analysis has been at the focus during
the development, various strategies have been considered in
order to reduce the computational costs to a minimum. One
approach followed for this purpose has been to pre-calculate and
store some quantities in a database. Instead of calculating these
quantities at every analysis, they are then simply retrieved from
the database. Examples to such quantities are the coefficients
required to construct the system of equations arising from the P-C
formulation or DMAP (Direct Matrix Abstraction Programming)
scripts for NASTRAN, which are used to export the system
matrices/vectors.

Deterministic model reduction techniques: The integration of
deterministic model reduction techniques within the SFEM ana-
lysis has been considered in the toolbox. The proposed imple-
mentation is based on the idea that, if the quantities of interest to
be investigated are limited to only certain critical components of
the overall structure, the stochastic problem can be reformulated
only for those locations. In other words, the system matrices can
be reduced to the DOFs of interest only. This approach has been
implemented for the P-C expansion formulation, where the size of
the FE model is reduced using the Guyan reduction formulation. It
is shown that due to the reduction in the size of the system of
equations to be solved, a significant improvement in the overall
efficiency can be achieved. This has also given rise to the
application of the P-C method on structures of engineering
practice, which might contain a substantial number of random
parameters (see e.g. [28]).
2.5.7. High performance computing

Since all of the stochastic analysis methods require to perform
an analysis multiple times, it is possible to decrease the overall
analysis time by exploiting the inherent parallelism showed by
the stochastic analysis algorithms on parallel computers.

In fact, computer industry has been rapidly transitioning from
CPUs with a single processing core to multi-core configurations.
Furthermore, in a matter of just a few years, the general-purpose
computation on the Graphical Process Units (GPU) systems are
already outperforming CPU-only clusters in many fields. The
multi-core CPUs and the GPUs can be linked by forming a
heterogeneous computing power network, i.e. a grid computing.
High performance computing is nowadays largely available.
Hence, efficient algorithms must take advantage of the availabil-
ity of large number of cores and the heterogeneity of the grid
computing, i.e. submitting a specific task to a specific hardware in
order to reduce the wall-clock time significantly.

The described software offers the possibility to perform
stochastic analysis adopting the immense computational power
and the great opportunity provided by grid computing (e.g.
[29,30]). In fact, grid computing offers at a relatively low costs
more flexibility than the traditional parallel execution of the code
in very expensive supercomputers [21]. Furthermore, by interfa-
cing with grid managers (e.g. Oracle Grid Engine [49]) it is
possible to distribute the execution of the analysis on the
available (remote) resources on a computer grid and to maximize
the use of the available licenses, while reducing the execution
time (wall clock time) of the analysis task (see Fig. 5).

2.6. Competitive edges

The competitive edges of the general purpose software for
stochastic analysis are briefly summarized in this section. The
core components are based on Matlab environment, known for its



Fig. 5. Deterministic analysis vs uncertainty analysis and reduction of the computational wall-clock time adopting advanced algorithms and parallel computing.

Table 2
Main algorithms and procedures implemented in the general purpose software.

Toolbox Main algorithms and procedures

Uncertainty RVs, stochastic processes, random fields

Reliability Advanced MC and approximate methods (FORM, bounds)

Sensitivity Local and global sensitivity (Sobol’ measures), bounds

Optimization Genetic algorithms, COBYLA, simulated annealing, SQP

Meta-modeling ANN, response surface, polynomial-chaos exp.

SFEM Neumann/polynomial-chaos exp., perturbation method

HPC Parallel/distributed computing licence optimization
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highly optimized matrix and vector calculations. These components
include several predefined solution sequences to solve a number of
different problems. Typical applications include UQ and manage-
ment, reliability based optimization and robust optimization, life-
cycle management, model validation and verification.

In order to address these problems efficiently, the software
includes the state-of-the-art of the algorithms and numerical
procedures for simulation, reliability and optimization analysis,
respectively. Table 2 shows the main algorithms and procedures
implemented in the general purpose software considered here.
3. Numerical examples: large-scale FE models

In this section, the applicability of the proposed approaches to
analyse problems of practical industrial interest is demonstrated.
In Section 3.1, the capabilities of the SFEM toolbox are demon-
strated analyzing a 5-storey building. In Section 3.2, the reliability
analysis of a multi-storey building modeled with the 3rd-party
software ABAQUS, ANSYS and NASTRAN is presented. In Section
3.3, an optimization analysis of a cylindrical shell modeled with
the software ABAQUS is presented. Finally, in Section 3.4 the
global sensitivity analysis of the GOCE satellite [10] modeled with
the software NASTRAN is shown.

3.1. Uncertainty management of a multi-storey building

3.1.1. Description of the model

The following example is presented to describe how the effect
of uncertainties within structural parameters of a large and
complex FE model can be analyzed using the SFEM framework.
More specifically, it is aimed to show that by utilizing advanced
intrusive SFEM implementations, where the data management is
optimized, the uncertainty management can be carried out at
affordable computational costs.

In this numerical example a multi-storey building concrete
structure (see Fig. 6), modeled with PATRAN, is selected as the
deterministic model. The FE model contains 64,185 DOFs, where
the floors and C-section walls in each floor have been modeled
with shell elements. For modeling the girders and the columns,
beam elements with rectangular cross sections have been used.

The building is fully constrained at the ground nodes and is
loaded in þy direction as shown in Fig. 6(b). In this example, the
quantities of interest are selected as the y displacements at five
different locations, i.e. Nodes 6710, 6485, 6260, 6035 and 9,
respectively as shown in Fig. 6(c). These displacements reveal
the inter-storey drift occurring between various floors, due to the
loading and asymmetry of the structure. The loading has been
assumed deterministic in order to investigate the effects of the
uncertainties in the material properties solely. It should be noted
that the SFEM analysis has been performed while choosing
various different FE solvers, i.e. NASTRAN, ABAQUS and ANSYS,
in order to present the capabilities of the toolbox in terms of
interacting with various 3rd party solvers.

Regarding the stochastic part of the analysis, the effect of the
uncertainties in the Young’s modulus has been analyzed. These
uncertainties are modeled by (truncated, i.e. negative, non-phy-
sical values ignored) normally distributed RVs, where each RV
corresponds to the material of a certain component of the
building. Fifteen RVs are considered in this example and the
detailed description of this probabilistic model can be found in
Table 3. The mean values of the Young’s modulus (25 GPa) is a
typical value for the grade 30 concrete [54].

3.1.2. SFEM analysis

The effect of the uncertain structural parameters on the response
is investigated using the offered algorithms within SFEM toolbox,
namely the Perturbation, Neumann Expansion and P-C Expansion
formulations. It should be noted here that for the standard imple-
mentations, full size system matrices, i.e. 64,185 �64,185, are
transferred between the general purpose software and the FE
solvers. Considering the component-wise implementation on the
other hand, the different random parts of the building are consid-
ered separately. As a result, only the corresponding random compo-
nents of the system matrices are transferred between software.
Regarding the solver-based implementation, the transfer of the
system matrices are avoided totally and instead only the quantities
required for the post-processing are carried to the toolbox. Finally, in
the case of the reduced model implementation (Guyan P-C), only the
DOFs for which the variation of the displacements are sought, are
processed in the analysis. As a result, the size of the deterministic
model is reduced to 5 DOFs in this case.

3.1.3. Results and comments

To start with, the second-order statistics of the response
estimated using the available algorithms are compared in order
to verify the implementations within the toolbox. A fairly good



Fig. 6. (a) FE model of the multi-storey building model; (b) applied load and (c) deflection of the building due to the loading.

Table 3
Description of the probabilistic input model.

Random parameter Mean value (GPa) CoV

Young’s modulus—columns (1 RV per floor) 25 0.15

Young’s modulus—beams (1 RV per floor) 25 0.15

Young’s modulus—C-section walls (1 RV per floor) 25 0.15

Table 4
Second order statistics of the response of the multi-storey building model.

Node

ID

Perturbation

(second order)

P-C (second

order)

Neumann (100

samples)

DMCS (500

samples)

9 m¼ 0:0032 m¼ 0:0032 m¼ 0:0032 m¼ 0:0032

CoV¼0.070 CoV¼0.073 CoV¼0.076 CoV¼0.076

6035 m¼ 0:0054 m¼ 0:0055 m¼ 0:0055 m¼ 0:0055

CoV¼0.057 CoV¼0.060 CoV¼0.066 CoV¼0.060

6260 m¼ 0:0076 m¼ 0:0077 m¼ 0:0078 m¼ 0:0077

CoV¼0.051 CoV¼0.053 CoV¼0.054 CoV¼0.054

6485 m¼ 0:0095 m¼ 0:0096 m¼ 0:0097 m¼ 0:0097

CoV¼0.047 CoV¼0.049 CoV¼0.047 CoV¼0.049

6710 m¼ 0:0107 m¼ 0:0109 m¼ 0:0110 m¼ 0:0109

CoV¼0.044 CoV¼0.047 CoV¼0.045 CoV¼0.048
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agreement between the implemented formulations and the direct
MC simulation (reference results) as shown in Table 4. It should
be also noted that the resulting CoV of the displacements are
significantly smaller than the CoV of the input parameters. This
indicates that the influence of the variability of the Young’s
modulus on the responses considered in this example is not very
significant.

It should be noted that the SFEM toolbox allows also to
compute the pdf of the quantity of interest from the samples of
the Neumann expansion method or generating samples from the
analytical expression obtained by the P-C expansion.

Computational aspects: As far as the efficiency of the SFEM
analysis is concerned, the computational costs of the SFEM analysis
are summarized in Fig. 7. These have been reported in terms of CPU
units, where each CPU unit corresponds to the time required for a
single deterministic FE analysis (in this example, 1 CPU unit C5 s).

More specifically, Fig. 7(a) provides a comparison for the
computational costs of the various methods and implementations
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Fig. 8. FE-model of a multi-storey building with indication of the loading and the

observed column of interest (showed in red color). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

E. Patelli et al. / Finite Elements in Analysis and Design 51 (2012) 31–48 41
offered by the SFEM toolbox. It should be noted that the results
presented in this plot have been obtained, while NASTRAN has
been used as the deterministic FE solver. One can note here the
substantial computational savings thanks to the optimized imple-
mentations. Considering for example the component-wise imple-
mentations, the overall analysis times are much less than the
standard implementations, since the amount of data transfer is
significantly less. The same argument applies also to the solver-
based and reduced model implementations. However, it should
be pointed out that for the reduced model implementation, in
addition to the reduced data transfer, also the size of the system
of equations is significantly smaller.

Fig. 7(b) shows the computational costs for the standard Pertur-
bation implementation while selecting different FE solvers as the 3rd
party software. It should be remarked at this point that these results
are not meant to provide a measure for the efficiency of these solvers.
Instead as mentioned previously, the motivation here is to show the
interaction capability of the SFEM toolbox with different solvers.
Furthermore, this plot is meant to provide information about the
different stages of the SFEM analysis. For examples, the preprocessing

stands for the part, where the various deterministic input files are
prepared for the solvers according to the probabilistic model. Then,
the FE solver is executed for each of these input files (FE Solver stage)
in order to export the required system matrices/vectors. The third
stage corresponds to the transfer part, where these quantities are
transferred to the toolbox. Finally, in the postprocessing part, these
transferred system quantities are processed according to the selected
formulation. As a result, the second-order statistics are estimated for
the structural responses. In summary, the CPU times reported here
are affected by many factors, such as the time required to execute the
solver, the preparation of the input files, the efficiency of the tools
used to transfer system matrices from different formats, etc.

3.2. Reliability analysis of a multi-storey building

In the second example, a multi-storey building modeled with
ABAQUS (shown in Fig. 8) is used for the application of efficient
reliability analysis. The load case under investigation is the
combination of (simplified) lateral wind load and self weight.
The former load type is modeled by deterministic concentrated
static forces acting on the nodes of one edge of each floor and on
the upper part of the staircase (indicated by the small arrows in
Fig. 8), where the magnitudes increase with the height of the
building. Failure is defined as the exceedance of the yield stress in
a bar element of one column of the fifth floor marked in red in
Fig. 8, where the yield curve is defined by the Tresca criterion.
Hence, the performance function is defined by

gðyÞ ¼ smax�sðyÞ ð11Þ

where smax defines the maximum stress level and sðyÞ is the
element stress as extracted from the output file of the FE-analysis
using the structural parameter vector y.

The FE-model of the structure involves approximately 8200
elements and 66,300 DOFs, where solid elements (C3D8I) are used
for the foundation, the mesh of the floors consists solely of quad-
rilateral elements (S4) and each of the 16 columns of all floors are
modeled with 2-node beam elements (B31). In order to consider the
uncertainties within the structural parameters, a total number of 244
independent RVs are used. More precisely, a Gaussian distribution is
used to represent the resistance, i.e. the maximum allowable stress,
while log-normal distributed RVs are assigned to the Young’s
modulus, the density and the Poisson ratio of the columns, the walls
and the stairs. In addition, the cross sectional properties of the
columns are modeled by uniform distributions assigned to both the
width and the height. A summary of the distribution parameters
characterizing the stochastic analysis is listed in Table 5. The shear
moduli are defined as functions of the RVs representing the respective
Young’s moduli and Poisson ratios.

3.2.1. Sensitivity and reliability analysis

The solution strategy adopted to estimate the failure prob-
ability of the multi-storey building is depicted in Fig. 9. This



Table 5
Random variables used for modeling the uncertainties within the multi-storey building.

RV IDs Distribution Component property

1 Gaussian (1.0E�8, 1.0E�7) Pa Column resistance

2-193 Uniform [0.36, 0.44] m Columns height and width section

194-212 Lognormal (3.5E�10, 3.5E�9) Pa E-modulus of columns, floors, stairs

213-231 Lognormal (2500, 250) kg/m3 Density of columns, floors, stairs

232-244 Lognormal (0.25, 0.025) Poisson ratio of floors, stairs

Fig. 9. Solution strategies adopted to estimate the failure probability of the multi-storey building.
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estimation using direct MC simulation of this large FE-model may
become unfeasible due to the large sample size needed to trust-
worthy identify the failure region. Hence, an advanced sampling
method, namely Line Sampling [17,43], is adopted here. The proce-
dure requires a priori information on the important direction point-
ing towards the failure domain. Therefore, as a first step, the gradient
at the origin of the standard normal space is determined by means of
finite differences (Sensitivity toolbox). Then, the Line Sampling
method (Reliability toolbox) is used by passing the computed
gradient.

Since the samples needed for the finite differences are not
dependent on each other, the determination of the gradient is
parallelized by employing the features of the High Performance
toolbox. In addition, also the parallelism associated with the
possibility to concurrently evaluate the responses along the lines
when performing Line Sampling is exploited.

In the following, the results of the parallelized reliability analysis
are discussed.
3.2.2. Results and comments

The importance of the random structural parameters with
respect to the performance function is evaluated by investigating
the amplitude of the gradient in the 244-dimensional standard
normal space. The components of the unit vector of the gradient a
are shown in Fig. 10(a), where the first component is the resistance,
the components between 2-193 concern the cross sectional proper-
ties, the components 194-212 the Young’s moduli, the components
213-231 the density and the remaining components 232-244 the
Poisson ratios (see also Table 5). From this figure, it can be observed
that the performance function is governed by the resistance and also
the Young’s modulus of the columns in floor 6 (component no. 199).
Furthermore, the densities of the columns in floor 5 and 6 (compo-
nents no. 224 and 223) reveal a dominant influence.
The results of Line Sampling are shown in Fig. 10(b), where the
values of the performance function as defined in Eq. (11) are plotted.
Each curve corresponds to the responses evaluated along one of the
lines in the direction of a. The responses have been evaluated at ca,
where for each line, c takes the values of ð1, 2, . . . ,5Þ. Between these
points, the responses have been approximated by using splines. The
pronounced downwards trend of all lines confirms that the impor-
tant direction has been identified. In addition, the sensitivity of the
performance function with respect to variations in the direction
orthogonal to a is small. Based on this observation, it can be
concluded that the non-linearities of the performance function with
respect to the RVs are small and therefore a high accuracy in the
estimation of the failure probability can be achieved (in the ideal, i.e.
linear case, all lines would overlap). The resulting failure probability
of pf ¼ 1:4� 10�4 is obtained from the mean value of the resulting
values of c leading to the intersections with the performance
function. The associated coefficient of variation of the estimated pf

results to Cov¼0.044.
Computational aspects: The computation of the gradient a is

amenable to parallel processing due to the independence in the
evaluation of the single components. However, in practice, this
parallelization is usually limited by the number of available
licenses for the FE-solver. Here, in order to represent this, a total
number of three ABAQUS licenses have been used in the present
example. The thereby resulting time needed for the evaluation of
the gradient amounts up to tpar ¼ 59 min, which constitutes a
significant reduction to the wall clock time needed in a sequential
analysis (tseq ¼ 148 min). The achieved speed-up S¼ tseq=tpar ¼ 2:5
is however smaller than the ideal (linear) speed-up of 3.0. The
main reasons can be found in the differences in the hardware
architecture, in the queuing time and also in the sequentially
executed extraction of the response from the FE-output files.

In case of direct MC simulation, a total number of Ns ¼ 3:7�
106 samples would have been required in order to reach the same
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coefficient of variation as obtained by the Line Sampling method,
which would exceed a feasible analysis time. In the present case,
the number of model evaluations needed for performing Line
Fig. 10. Graphical representation of the (a) 244 components of the gradient unit

vector and (b) line sampling of the performance function, respectively.

Fig. 11. Solution strategies adopted t
Sampling is Ns¼500 leading to the total analysis time of
tLS,seq � 5 h. If this advanced reliability method is further com-
bined with parallel processing, the wall clock time decreases
remarkably to tLS,seq � 1:9 h, leading to a similar speed-up as for
the determination of the gradient.

In conclusion, it can be seen that by utilizing advanced
simulation methods together with the parallel computing fea-
tures, reliability assessment of realistic models can be performed
for reasonable computational costs.

3.3. Robust optimization of a cylindrical shell

The third numerical example aims to perform robust design of
a cylindrical shell under deterministic axial compression. The aim
of the design optimization is to minimize the total weight of the
cylinder, while choosing cylinder radius and shell thickness as
design parameters. Geometric imperfections of the cylinder sur-
face are also considered in the analysis, i.e. the geometry of the
structure slightly differs from the shape of a perfect cylinder.
Thus, the buckling load shows a high variability even for cylinder
of the same design, with buckling loads lower than the one
predicted by classic analysis. In order to take into account the
variability of the buckling load for each proposed design, a
constraint derived from the so-called Design-for-Six-Sigma [53]
is introduced for the normalized buckling load, l. The normalized
buckling load is the ratio of the buckling load of the imperfect
cylinder and of the buckling load given by the classic analytic
formula. The constraint of the optimization is thus imposed as

mðlÞ�4sðlÞZllim ð12Þ

where mðlÞ and sðlÞ are the mean and the standard deviation of
the buckling load respectively. The selected load threshold level
for this analysis is llim ¼ 0:1. Assuming that the buckling load is
normally distributed, the limit in Eq. (12) corresponds to a
probability of 3� 10�5.

A visualization of the applied solution strategy is presented in
Fig. 11.

3.3.1. Description of the problem

A FE model of the cylindrical shell have been constructed to
compute the buckling load. The cylinder shows isotropic material
properties with a Young modulus equal to 104.4 GPa and a
Poisson ratio equal to 0.3. The geometry is meshed with mem-
brane, finite strain quadrilateral shell elements and has in total
49,000 degrees of freedom. A vertical displacement is imposed at
the extremities of the cylinder and the reaction forces at an
o optimize the cylindrical shell.
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extremity of the cylinder are computed, obtaining a force–
displacement relation. The buckling load is defined as the first
maximum of the force–displacement function. Once buckling is
initiated, the reaction force drops. FE simulation is performed
using a stabilized Newton–Raphson scheme in ABAQUS consider-
ing geometrical non-linearity.

A database of imperfections of seven aluminium cylindrical
shell has been obtained from a study of TU-Delft [2]. These
experimental data have been fitted to a regular grid, common to
all cylinders, in order to describe the surface imperfections with a
two-dimensional random field. This random field represents the
variation of the surface of the cylinder from the nominal radius as
a function of the circumferential coordinate and of the axial
coordinate. In this case, the covariance matrix is directly com-
puted from the experimental data with no additional assumption,
obtaining a non-homogeneous Gaussian random field. New sam-
ples of the random field are obtained with the Karhunen–Lo�eve
expansions [14,19]. Since the covariance matrix is established
directly on the measured imperfections only very few eigenvalues
are larger than zero. The imperfections are inserted into the input
file as deviation of the nodal coordinates of the perfect FE
model nodes.

For each proposed cylinder design, the mean and standard
deviation of the buckling load of imperfect cylinders have been
computed by means of MC simulation. Each MC simulations is
performed using 100 samples where the imperfections show
identical statistical properties.

3.3.2. Meta-modeling and optimization

In this example, the value of the radius and of the thickness have
been normalized to their nominal values, which are respectively
1:016� 10�2 and 1:016� 10�4 m. In order to reduce the computa-
tional time of the optimization, a response surface of the constraint
function has been trained, considering the thickness and the radius
of the cylinder as inputs. This meta-model approximates the non-
linear constraint of the buckling load. A full quadratic response
surface has been trained using nine support points, each represent-
ing nine different candidate designs. These designs are shown in
Table 6. Furthermore, the lower bounds (0.8) and upper bounds (1.5)
of the normalized radius of the cylinder and of the normalized
thickness are considered as additional constraints, respectively.

The optimization is performed using Sequential Quadratic

Programming. The efficiency of the proposed approach has been
verified by repeating the optimization procedure starting from
various different initial points.

3.3.3. Results and comments

The cylinder designs used as calibration points of the response
surface have been characterized totally by their buckling beha-
vior. Table 6 shows the mean and the standard deviation of the
buckling load w.r.t. design parameters. The radius of the cylinder
Table 6
Normalized mean and standard deviation of the buckling load obtained at the

design of experiment points.

Normalized radius

and thickness

Normalized buckling load

(1, 1) m¼ 0:3851, s¼ 0:0791

(0.8, 0.8) m¼ 0:3606, s¼ 0:0835

(0.8, 1.5) m¼ 0:4097, s¼ 0:0783

(1.5, 0.8) m¼ 0:4295, s¼ 0:1113

(1.5, 1.5) m¼ 0:4412, s¼ 0:0742

(0.717, 1) m¼ 0:3793, s¼ 0:0831

(1, 0.717) m¼ 0:3703, s¼ 0:0897

(1.707, 1) m¼ 0:4031, s¼ 0:0713

(1, 1.707) m¼ 0:4210, s¼ 0:0847
has more influence on the buckling load than its thickness. The
response surface of the non-linear constraint is shown in
Fig. 12(a). Fig. 12(b) shows the search of the optimum done by
the sequential quadratic programming algorithm, while taking
the nominal cylinder as initial design. The optimum has been
found at a normalized radius of 0.826 and a normalized thickness
of 1.46. For this configuration, the normalized weight is approxi-
mately 1.2 and the non-linear constraint on the buckling load is
satisfied.

The optimization process was repeated several times with
initial design parameters taken randomly within the area of
interest. All the optimization schemes converged to the same
optimum. Fig. 13 shows the evolution of the objective function
and non-linear constraint during optimization.

The use of response surface allows performing the optimiza-
tion efficiently within affordable computational time. Indeed, the
gradient of the buckling load needs to be computed accurately.
Each MC simulation lasts approximately 50 h on a dual quad-core
Intel Xeon E5430 machine with 8 Gbytes of RAM. Two concurrent
executions of the ABAQUS solver were performed. Each FE
computation was additionally parallelized using four CPUs.
The overall computational time required to train the response
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Fig. 14. FE model of the GOCE satellite (courtesy of Thales Alenia Space Italy).
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Fig. 13. Evolution of the properties of the cylinder during the optimization for

various starting points. (a) Normalized weight of the cylinder with respect to the

optimization iterations (evaluations of the objective function). (b) mðlÞþ4sðlÞ
with respect to the optimization iterations (evaluations of the constraint

function).

Table 7
Definition of the groups of parameters in the GOCE satellite.

Group no. Parameters

1 Young’s modulus of isotropic materials

2 Poisson’s ratio of isotropic materials

3 Young’s modulus in the principal direction of orthotropic

materials

4 Young’s modulus in the secondary direction of orthotropic

materials

5 Poisson’s ratio of orthotropic materials

6 In-plane shear modulus of orthotropic materials

7 First out-of-plane shear modulus of orthotropic materials

8 Second out-of-plane shear modulus of orthotropic materials

9 Densities of the materials

10 Thicknesses of the shells

11 Linear elastic connections of panels to the main satellite

structure

12 Linear elastic connections of panels to the satellite wings

13–18 Linear elastic connections of the wings to the main satellite

structure
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surface is equal to 18 days approximately, whereas approximately
60 days would have been necessary to perform one optimization
using the full model instead of the meta-model. It is clear that if
more licenses would have been available, the simulation time
could have been further reduced.

3.4. GOCE satellite

3.4.1. Description of the problem

In the fourth numerical example, sensitivity analysis with
respect to modal properties is applied to a full satellite model
as shown in Fig. 14. It involves the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite, whose aim is the
determination of the geoid and to measure the gravitational field
of Earth with a very high degree of accuracy in a low Earth orbit.

The structure is modeled using MSC.Patran/Nastran where the
FE-model has been provided by Thales Alenia Space Italy. The
model involves a total number of approximately 360,000 DOFs
(� 74;000 elements) and consists of a main satellite platform and
a gravitational gradiometer. In the main GOCE platform, quad-
rilateral (QUAD4) and triangular (TRIA3) shell elements are used
to model the body panels, the wings, the winglets, the internal
floors and the solar panels. Beam elements (BAR, ROD and BEAM)
constitute the connections of the wings to the main structure and
of the instrumentation to the floors. Solid elements (HEXA and
PENTA) are used in the Launch Vehicle Adapter (LVA) ring, and
scalar spring elements (CELAS2) represent the connection
between the solar panels and the structure, as well as the fixing
of the wing to the main octagonal body.

A total number of 18 groups combining 3047 structural
parameters are defined according to the type and location of the
respective materials or geometric specifications as shown in
Table 7. This grouping is carried out in order to reduce the
number of parameters, since an independent processing of all
involved structural parameters might not have been feasible for
sensitivity analysis. Following this strategy, the most important
parameter groups, and consequently the most important para-
meters can be determined.
3.4.2. Meta-modeling and sensitivity analysis

The global sensitivity analysis requires a substantial number of
model evaluations. Therefore, it is not feasible to apply it directly
for the GOCE model since each FE analysis requires approximately
3 min. In order to overcome this drawback the solution strategy
shown in Fig. 16 has been adopted.

First an ANN has been calibrated and verified in order to
replace the computationally expensive FE model and to approx-
imate the unknown relationships between the modal properties
of the satellite and the variables defined in Table 7. More
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specifically, a set of Ndata ¼ 2000 FE simulations have been
performed with randomly perturbed structural parameters by
means of MC simulation. Among these samples, 1900 have been
dedicated to calibrate the ANN, while 100 have been used to
verify the generalization capabilities of the trained ANN. Each
ANN, constituted by Ninp ¼ 18 inputs and Nout ¼ 1 output, is
dedicated to the prediction of either one of the first 24 eigen-
frequencies or one of the diagonal values of the Modal Assurance
Criteria (MAC) matrix.

An automated training procedure has been implemented such
that various network topologies are tested. Only the best net-
works, characterized by the highest R2 value (see Eq. (8)) on
verification data, are kept. As an indication of the fairness of the
network the regression plot for the ANN for the first eigenfre-
quency is shown in Fig. 15. The values of R2 for the first seven
frequencies and MAC values are listed in Table 8. It can be seen
that all the ANN have very good generalization accuracy, except
for the eigenfrequency #5 and diagonal MAC matrix term #7.
However, the performance of these two ANN are still within
acceptable range.

Having constructed a fast and sufficiently accurate meta-
model by using ANN, global sensitivity analysis can be performed
efficiently adopting the Latin Hypercube Sampling technique and
the algorithms proposed in Ref. [36]. This efficient algorithm
allows to estimate the main effect (first order index) and the total
effect, respectively. A sample set of 6� 106 samples have been
used to estimate the sensitivity indices in approximately 2 h
thanks to the established meta-model.

3.4.3. Results and comments

The estimated main and total effect for the first MAC values
and the frequency of the first mode are shown in Figs. 17(a) and
(b), respectively. These figures reveal that the first MAC values
and eigenfrequency are mostly influenced by the thicknesses of
the shells (group number 10) and the Young’s modulus in the
principal direction of orthotropic materials (group number 3)
Fig. 18.

Computational aspects: The large number of analyses required
by the global sensitivity analysis leads to high computational
he sensitivity analysis of the GOCE satellite.

Table 8
R2 values of the first 14 ANN.

ANN output R2 of verification data

Frequencies 1–7 0.9996, 0.9997, 0.9997, 0.9996, 0.8830, 0.9780, 0.9582

Diag. MAC values 1–7 0.9989, 0.9978, 0.9958, 0.9986, 0.9495, 0.9762, 0.8278
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efforts, making this kind of analysis infeasible for large and
complex FE models.

On the employed computer facilities, namely on a dual quad-
core Intel Xeon E5430 server with 8 Gbytes of RAM, the replace-
ment of the nominal parameter values by random samples in the
FE-input file, the normal mode analysis of the full model
performed with MSC.Nastran and the import of the modal quantities
into Matlab requires � 220 s for one single normal mode analysis.
Consequently, then the total analysis time needed for 6� 106 model
evaluations would have required a (theoretical) time of � 41 years.

In the present example however, the expensive computational
analysis is replaced by a surrogate model, which requires only
0.0014 s for each evaluation. As a result, by utilizing the advance
meta-modeling techniques, global sensitivity analysis of a large a
complex model has been made feasible (analysis time could be
remarkably reduced to � 2:3 h).
4. Conclusions

In this work it has been shown that stochastic analyses of large
FE models of practical engineering interest are feasible. These kind
of analyses are made feasible thanks to a general purpose software
for stochastic analyses. The presented software allows to perform
UQ, sensitivity analysis, optimization, reliability analysis and life
cycle management study coupling the 3rd party FE solver with the
state-of-the-art of the reliability and optimization algorithms. In
this way the analyst can continue to use the deterministic FE-model
that he/she is already familiar with. In fact, it appears difficult to
otherwise adhere to the state-of-the-art, in terms of deterministic
FE-modeling. This, in fact, is a key aspect to strengthen the bridge
between the industry and academic researchers, since nowadays the
popularity of any method used on real applications is very much
dependent on the availability of efficient software, which facilitates
the use of these methods without an extensive training.

The applicability of proposed general purpose software for hand-
ling large scale problems in terms of the number of uncertain
parameters involved and the complexity of the FE models has been
demonstrated by means of a number of different numerical examples.

In conclusion, the general purpose software provides the neces-
sary tools to bring down the gap between the deterministic
and stochastic analysis for practical applications. Combining the
efficiency of advanced stochastic methods and the computational
resources provided nowadays by high performance computing, the
computational costs of a stochastic analysis can be significantly
reduced. It is crucial that the stochastic tools and procedures are
offered to the industry within an easy-to-use general purpose
software, so that these algorithms are actually used for practical
applications and its remedies can be recognized by the authorities.
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