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Abstract The problem of designing passive fault-tolerant flight controller is addressed when the

normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are

formed by polytopes. As considering that the safety of a post-fault system is directly related to

the maximum values of physical variables in the system, peak-to-peak gain is selected to represent

the relationships among the amplitudes of actuator outputs, system outputs, and reference com-

mands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant

flight controllers in the absence/presence of system uncertainty for actuator failure cases are

designed, respectively. Case studies of an airplane under actuator failures are carried out to validate

the effectiveness of the proposed approach
ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
1. Introduction

Modern technological systems with increasing design complex-

ities are becoming more and more vulnerable to system/com-
ponent malfunctions. Meanwhile, safety is tremendously
demanded. However if no effective actions are taken, even a

minor defection may develop into a catastrophic incident.
Fault-tolerant controller (FTC) is a controller to maintain sys-
tem safety and an acceptable degree of performance in the

presence of faults, using the configured system redundancy.1,2

Depending on the way of utilizing system redundancy, the
design methods of FTC can be generally classified into two
sorts: passive and active approaches.3

The philosophy of passive FTC (also named as reliable con-
troller earlier) is that a set of faulty cases as well as the normal
condition are taken into account at the controller’s design

stage. Since neither real-time fault detection and diagnosis
(FDD) nor control reconfiguration is needed, a single passive
FTC is engaged in the absence or presence of system faults.
Thus, the term ‘‘passive’’ underlies that no further action needs

to be taken by the designed FTC when the prescribed faults
occur during the course of operation. Due to that (1) a passive
FTC has a relatively simple structure to be implemented, and

(2) no time delays exist between the fault occurrence and cor-
responding actions, the design of passive FTC has attracted
significant attention since 1990s.3

In 1992, Veillette and the co-authors propose a design
method of reliable centralized and decentralized control
systems.4 Facing the prescribed fault cases, the developed

reliable controller is capable of ensuring the stability and H1
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Fig. 1 Diagram of a hydraulic-driven actuator.
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performance of the closed-loop system. The concept is
regarded as the baseline of the current studies of passive
FTC. In 1995, the linear-quadratic (LQ) regulator technique

is exploited to design a reliable controller against a class of
actuator outages.5 As an essential factor of designing any
FTC, redundancy is quantitatively investigated in Ref. 6, based

on which the passive FTC design is proposed using pole region
placement method. LQ/H1 performance is used as the objec-
tive of designing passive FTC,7 while an iterative linear matrix

inequality (LMI) based method is developed to synthesize the
FTC. Numerical simulation results illustrate that the passive
FTC can not only stabilize the system under actuator failures,
but also maintain a favorable level of tracking performance. In

Ref. 8, a mixed H2/H1 passive FTC is designed to counteract
actuator failures based on an enhanced LMI approach. From
the aspect of performance, the approaches in Refs. 7,8 are less

conservative when compared with the conventional LMI meth-
ods. Moreover, with respect to nonlinear systems, Hamilton–
Jacobi inequality,9,10 variable structure,11 passivity theory,12

and sliding mode control13 are used to design passive FTCs,
which are capable of accommodating actuator malfunctions.

Although passive FTC design has been a focus of extensive

studies in the last two decades, there still exist some open
issues. One of the most important factors is that the system
safety requires system variables not exceed specific bounds at
every time instant. More specifically in flight control systems,

there are allowable ranges corresponding to the angle of attack
(AOA), altitude, etc. Once these limits are broken in faulty
cases, the airplane will enter irreversible state. Another aspect

lies in that the performance of model-based controller design
solely relies on the accuracy of modeling.14 It is particularly
true when designing a passive FTC in this case. The model

uncertainty has an adverse impact on the performance of the
abnormal system. Due to the constraints of wind tunnel test
data, flight test data, and identification methods, a specific

level of inaccuracy may exist in aircraft models.
Motivated by the afore-mentioned factors, this paper pro-

poses two passive FTC strategies under actuator fault situa-
tions corresponding to model uncertainty-free and model

uncertainty cases, respectively. If the modeling accuracy is sat-
isfied, the first passive FTC design approach can be chosen;
otherwise the second design strategy is an excellent alternative.

The normal and prescribed fault cases are formulated by the
concept of polytope. In the design procedure of passive
FTC, peak-to-peak gain is introduced to represent the rela-

tionships among the amplitudes of actuator outputs, system
outputs, and reference commands. Parameter dependent
Lyapunov and slack methods are also adopted so that the free-
dom degree of the design algorithm can be enhanced. Case

studies of ADMIRE (aero-data model in research environ-
ment) benchmark aircraft are conducted to verify the effective-
ness of the developed approach. For avoiding any confusion,

failure in this paper stands for the total outage of an actuator,
while fault specifies the loss of effectiveness of an actuator.

The rest of the paper is arranged as follows. The considered

fault sets are established in Section 2. The objective and prob-
lem of designing the passive FTC are stated in Section 3, where
the relationships among commands, control inputs, and sys-

tem outputs are examined as well. In Section 4, the design
algorithms of passive FTCs with/without consideration of
model uncertainty are developed, in which the parameter
dependent Lyapunov and slack methods are introduced to
reduce the conservatism. Linear and nonlinear simulations
are performed in Section 5 to illustrate the effectiveness of
the proposed approach, followed by some concluding remarks

in Section 6.
Notation. Throughout the paper, the superscript T specifies

matrix transposition, the symbol * within a matrix represents a

symmetric entry, and Co{.} stands for the convex hull. Rn

denotes the n-dimensional Euclidean real space, Rn�m is the
set of all n�m real matrices. L1 norm of any

t : 0;1Þ½ ! Rk is defined as the sup over all time of the
Euclidean norm of t at every time instant.
ktk1 ¼ ess supt>0½tTðtÞtðtÞ�

1=2
, in which ess means essential.

2. Representation of actuator faults

At a specified trimming point, the linear time invariant (LTI)

model of ADMIRE without model uncertainty is represented
by

_xðtÞ ¼ AxðtÞ þ BuðtÞ
xð0Þ ¼ x0

yðtÞ ¼ CxðtÞ

8><
>: ð1Þ

where xðtÞ 2 Rn is the state vector of the aircraft, uðtÞ 2 Rm

indicates the control inputs of m independent actuators, and

yðtÞ 2 Rh is the system output vector. A; B; and C are system
matrices with appropriate dimensions.

Actuators play an important role in flight control systems.15

A diagram of a typical hydraulic actuator in an airplane is
shown in Fig. 1. The control signal from the flight controller
is transferred to the physical action exerted on an airplane
by the actuation device. The control signal that is normally

formed by a voltage signal is exposed on the torque motor.
The amplitude of the control signal determines the angular dis-
placement of the baffle of the torque motor, which therefore

results in a differential pressure of the servo-valve. The piston
of the actuator chamber is then pushed to a specific position by
the hydraulic source passing through the servo-valve. Conse-

quently, the control surface, which is connected to the rod, is
deflected in order to provide the required force and moment
for the airplane maneuver.

As can be seen from Fig. 1, the control surface deflection is

driven by the hydraulic power, whilst the deflection degree is
decided by the command from the flight controller. The actu-
ator rod cannot move to the expected position or even worse

react at all due to but not limited to hydraulic issues.16,17 As
a result, the efficiency of surface deflection is shrunk or com-
pletely lost. According to the analysis of actuator faults,16



Fig. 2 Scheme of the proposed passive FTC.
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the control input of Eq. (1) in the event of actuator faults is
simplified by

uFðtÞ ¼ LuðtÞ; ð2Þ

where the diagonal matrix L ¼ diag½l1; l2; . . . ; lm� represents the
health condition of actuators. The element li 2 ½0; 1� describes
the effectiveness of the ith actuator, ranging from total failure
with li ¼ 0; i ¼ 1; . . . ;m, partial loss fault with 0 < li < 1, and

fault-free (normal) case with li ¼ 1.18 Thus, the aircraft under
actuator malfunctions is expressed by

_xðtÞ ¼ AxðtÞ þ BLuðtÞ
xð0Þ ¼ x0

yðtÞ ¼ CxðtÞ

8><
>: ð3Þ

Retracing the actuator redundancy defined in Ref. 6, it is
known that the aircraft has m� h redundant actuators. The

worst case in which the configured redundancy is capable of
accommodating is that m� h actuators are complete failures.
Before designing any passive FTC, the fault sets need to be

determined within the capability of the configured redundancy
and the admissible solutions.

Let no denote the number of the defined fault sets, the actu-

ator faults/failures can be described by

uFðtÞ ¼ LiuðtÞ ð4Þ

where the scaling factor Li; i ¼ 0; 1; . . . ; no satisfies:

Li 2 X,fLi ¼ diagðli1; li2; . . . ; limÞ; lij ¼ 0 or 1; j

¼ 1; 2; . . . ;mg ð5Þ

If the fault sets are chosen as (8i ¼ 0; 1; . . . ; no), the aircraft
model can be subsequently written by

_xðtÞ ¼ AxðtÞ þ BLiuðtÞ
xð0Þ ¼ x0

yðtÞ ¼ CxðtÞ

8><
>: ð6Þ

Each case in the considered fault sets is known a priori, which
can be regarded as the corner of the polytope. In addition, the
faulty system falls into the convex hull of these corners. There-

fore, the aircraft system with the considered fault sets can be
modeled by the polytopic uncertainties.19 The system matrices
are represented by

AðhÞ ¼
Pno

i¼0Aihi

BFðhÞ ¼
Pno

i¼0BiLihi

CðhÞ ¼
Pno

i¼0Cihi

8><
>: ð7Þ

with the uncertain constant parameter vector h ¼
½h0; h1; . . . ; hno �

T 2 Rnoþ1 satisfying:

h 2 H, h 2 Rnoþ1 : hi P 0;
Xno
i¼0

hi ¼ 1

( )
ð8Þ

One convex of the polytope represents the normal case, and
each of the rest denotes the individual set of actuator outages.

In summary, the aircraft model in the case of the faulty and
normal conditions can be described by

_xðtÞ ¼ AðhÞxðtÞ þ BFðhÞuðtÞ
xð0Þ ¼ x0

yðtÞ ¼ CðhÞxðtÞ

8><
>: ð9Þ
Additionally, considering the linearized model under
uncertainty14:

_xðtÞ ¼ ðAþ DAÞxðtÞ þ ðBþ DBÞuðtÞ
xð0Þ ¼ x0

yðtÞ ¼ CxðtÞ

8><
>: ð10Þ

where DA; DB½ � ¼ DFðtÞ E1; E2½ �; D, E1, and E2 are known

constant matrices, and F(t) e R
d·w is the modeling or parame-

ter uncertainty, which satisfies FTðtÞFðtÞ 6 I. Thus, the system
with consideration of both uncertainty and actuator failures

can be written by

_xðtÞ ¼ AUðhÞxðtÞ þ BUFðhÞuðtÞ; xð0Þ ¼ x0

yðtÞ ¼ CðhÞxðtÞ

�
ð11Þ

where the matrices in Eq. (11) are

AUðhÞ ¼
Pno

i¼0ðAi þ DAiÞhi

BUFðhÞ ¼
Pno

i¼0ðBi þ DBiÞLihi

CðhÞ ¼
Pno

i¼0Cihi

8><
>: ð12Þ

with h satisfying Eq. (8) as well.

Remark 1. Since the specified fault sets fall into the actuator

outages, the matrices Ai; Bi; and Ciði ¼ 0; 1; . . . ; noÞ are
identical to the matrices A; B; and C of Eq. (1), in the case
of one trimming condition. The uncertainty matrices DAi and

DBi are namely equivalent to DA and DB in Eq. (10). The
individual prescribed set is identified by the varying element Li,
i= 0, 1, . . ., no.
3. Objective and formulation

3.1. Objective

The objective of this paper is to develop the passive FTC strat-
egies with regards to the model uncertainty-free and uncer-
tainty cases in the presence of actuator failures. Within the

considered actuator failures, the stability and tracking perfor-
mance can be ensured.

3.2. Formulation

An integral part is introduced in the scheme of the designed
passive FTC to eliminate the steady-state tracking error.7 As
shown in Fig. 2, the designed passive FTC to counteract actu-

ator failures is based on state feedback.
Given the considered fault sets, the corresponding aug-

mented system without uncertainty is
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eðtÞ
_xðtÞ

� �
¼

0 �CðhÞ
0 AðhÞ

� � R
eðtÞdt

xðtÞ

� �
þ

0

BFðhÞ

� �
uðtÞ þ

I

0

� �
yrðtÞ

ð13Þ

where eðtÞ ¼ yrðtÞ � yðtÞ, and yrðtÞ is the reference vector.

When the augmented state vector is defined as xa(t) =
[(�e(t)dt)T, xT(t)]T, Eq. (13) can be simplified by

_xaðtÞ ¼ AaoðhÞxaðtÞ þ BaoðhÞuðtÞ þ GaoðhÞyrðtÞ ð14Þ

where

AaoðhÞ ¼
0 �CðhÞ
0 AðhÞ

� �
2 RðnþhÞ�ðnþhÞ

BaoðhÞ ¼
0

BFðhÞ

� �
2 RðnþhÞ�m

GaoðhÞ ¼
I

0

� �
2 RðnþhÞ�h

8>>>>>>>><
>>>>>>>>:
On basis of Eq. (12), the augmented system with consideration
of uncertainty is

_xaðtÞ ¼ AUaoðhÞxaðtÞ þ BUaoðhÞuðtÞ þ GUaoðhÞyrðtÞ ð15Þ

where

AUaoðhÞ ¼ AaoðhÞ þDaFEa

BUaoðhÞ ¼ BaoðhÞ þDaFE2LðhÞ

GUao ¼
I

0

� �
Da ¼

0

D

� �
Ea1 ¼ 0 E1½ �

8>>><
>>>:

;

The performance output zaðtÞ is defined by

zaðtÞ ¼ CzxaðtÞ þDzLðhÞuðtÞ ð16Þ

where LðhÞ ¼
Pno

i¼0Lihi.
For the sake of aircraft safety, it is required that safety

bounds are not exceeded to prevent the handicapped aircraft
Ui ¼
kYi � ðAaoiSþ BaoiNÞ � ðAaoiSþ BaoiNÞT �Gaoi Yi þ S� ðAaoiSþ BaoiNÞT

� �lI �GT
aoi

� � Sþ ST

2
64

3
75 < 0 ð22Þ
entering an irreversible state (e.g. tail stall). On the other side,
the amplitudes of actuator movements and system outputs

highly rely on the commands. Therefore, it is of paramount
importance to examine the relationships among the peak val-
ues of references, actuator outputs, and aircraft outputs. Based

on this consideration, following peak-to-peak gain is proposed
to be employed to represent such relationships in this paper:

kTzayrk1;1 :¼ sup
0<kyrk<1

kzak1
kyrk1

< c ð17Þ

where Tzayr is the transfer function from yr to za, and c denotes
the upper bound of the peak-to-peak gain. As considering that
kPðhÞ þ ðAaoðhÞ þ BaoðhÞKPFTCÞTPðhÞ þ PðhÞðAaoðhÞ þ BaoðhÞKPF

�

"

actuator and system outputs are included in the chosen perfor-

mance output, the physical interpretation behind Eq. (17) is to
describe and link the peak values of actuator and system out-
puts in response to the maximum commands. Hence, the

objective of designing passive FTCs against the considered
fault cases turns to minimize the upper bound c and maintain
the stability of the closed-loop system for all h 2 H.

4. Passive fault-tolerant flight controller design

Considering the designed passive FTC with respect to Eq. (9)
in the following form which includes both proportional and

integral actions:

uðtÞ ¼ KxxðtÞ þ Ke

Z s

0

eðtÞdt ¼ KPFTCxaðtÞ ð18Þ

where KPFTC ¼ ½Ke;Kx� 2 Rm�ðnþhÞ. Thus, the closed-loop aug-
mented system in the case of actuator outages is

_xaðtÞ ¼ ðAaoðhÞ þ BaoðhÞKPFTCÞxaðtÞ þ GaoðhÞyrðtÞ ð19Þ

Analogously, in the condition of model uncertainty, the

closed-loop augmented system can be represented by

_xaðtÞ ¼ ðAUaoðhÞ þ BUaoðhÞKPFTCÞxaðtÞ þ GUaoðhÞyrðtÞ ð20Þ

Subsequently, the regulated output is:

zaðtÞ ¼ ðCz þDzLðhÞKPFTCÞxaðtÞ ð21Þ

Theorem 1. (Uncertainty-free case). If there exist positive
definite matrices Yi ¼ YT

i > 0; i ¼ 0; 1; . . . ; no, matrices S

and N; and scalars k > 0; l > 0; c > 0 satisfying the
following:
Hi ¼
kYi 0 ðCzSþDzLiNÞT

� ðc� lÞI 0

� � cI

2
64

3
75 > 0 ð23Þ

therefore, KPFTC ¼ NS�1 guarantees that system Eq. (19) is sta-

bilized and the peak-to-peak norm of Tzayr is smaller than c.

Proof. In accordance with the sufficient condition of
peak-to-peak gain in Ref. 20 and the multiple convexity
concept proposed in Ref. 21, the following inequalities hold

true so that the peak-to-peak norm of the transfer function
Tzayr is less than c,
TCÞ PðhÞGaoðhÞ
�lI

#
< 0 ð24Þ
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kPðhÞ 0 ðCz þDzLðhÞKPFTCÞT

� ðc� lÞI 0

� � cI

2
64

3
75 > 0 ð25Þ

if yr 2 L1 with kyrk1 6 1.

With the help of Projection Lemma in Ref. 22, Eq. (26) is

equivalent to Eq. (24),
kPðhÞ � VðAaoðhÞ þ BaoðhÞKPFTCÞ � ðAaoðhÞ þ BaoðhÞKPFTCÞTVT �VGaoðhÞ PðhÞ þ V� ðAaoðhÞ þ BaoðhÞKPFTCÞTVT

� �lI �GT
aoðhÞVT

� � Vþ VT

2
64

3
75 < 0

ð26Þ
where V is a general matrix.
Defining S ¼ V�T and then pre- and post-multiplying Eq.

(26) by diagðST; I;STÞ and diagðS; I;SÞ, one can derive:
kYðhÞ � ðAaoðhÞ þ BaoðhÞKPFTCÞS� STðAaoðhÞ þ BaoðhÞKPFTCÞT �GaoðhÞ YðhÞ þ S� STðAaoðhÞ þ BaoðhÞKPFTCÞT

� �lI �GT
aoðhÞ

� � Sþ ST

2
64

3
75 < 0

ð27Þ
where YðhÞ,STPðhÞS: If N,KPFTCS is defined, Eq. (27) is
recast by the following inequality:
kYðhÞ � ðAaoðhÞSþ BaoðhÞNÞ � ðAaoðhÞSþ BaoðhÞNÞT �GaoðhÞ YðhÞ þ S� ðAaoðhÞSþ BaoðhÞNÞT

� �lI �GT
aoðhÞ

� � Sþ ST

2
64

3
75 < 0 ð28Þ
If the condition YðhÞ ¼
Pno

i¼0hiYi is satisfied, Eq. (28) can be
represented by:Xno

i¼0
hiUi < 0 ð29Þ

Therefore, for every i ¼ 0; 1; . . . ; no, Ui < 0 guarantees that
Eq. (29) holds true.

If Eq. (25) is pre- and post-multiplied by the following

matrices diagðST; I;STÞ and diagðS; I;SÞ and defining

N,KPFTCS and YðhÞ,STPðhÞS, thus:

kYðhÞ 0 ðCzSþDzLðhÞNÞT

� ðc� lÞI 0

� � cI

2
64

3
75 > 0 ð30Þ

Moreover, Eq. (30) can be written by:
Ui ¼

kYi � ðAaoiSþ BaoiNÞ � ðAaoiSþ BaoiNÞT �Gaoi

� �lI

� �
� �
� �

Yi þ S�
�GT

aoi

Sþ ST

�
�

2
6666664
Xno

i¼0
hiHi < 0 ð31Þ

Therefore, it renders that Hi < 0; i ¼ 0; 1; . . . ; no is the suffi-
cient condition for Eq. (30)’s holding true. This completes the
proof. h

Remark 2. Theorem 1 possesses three major advantages: (1)
Projection Lemma22 is used to decouple Lyapunov matrix
from system matrices; (2) parameter dependent Lyapunov
method is adopted to set up different Lyapunov matrices in
response to each prescribed set; and (3) the slack matrix S
that does not have to be positive definite replaces Lyapunov
matrix. Thus the techniques ensure that the proposed algo-
rithm is less conservative compared with the classical method
in Ref. 20.

Remark 3. At the design stage, the algorithm is to minimize
the upper bound of peak-to-peak gain c subject to Eqs. (22)

and (23), where i ¼ 0; 1; . . . ; no. Using LMI Toolbox,23 the pas-
sive FTC gain without consideration of model uncertainty is
KPFTC ¼ NoptS

�1
opt, where Nopt and Sopt are the optimal solutions

of matrices N and S, respectively.

Theorem 2. (Uncertainty case). If there exist positive definite
matrices Yi ¼ YT

i > 0; i ¼ 0; 1; . . . ; no, matrices S, N, and Q,
and scalars k > 0; l > 0; c > 0; e > 0 satisfying the following

inequalities:
ðAaoiSþ BaoiNÞT ðEa1Sþ E2LiNÞT QDa

0 0

0 0

�eI 0

� �e�1I

3
7777775
< 0 ð32Þ
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Hi ¼
kYi 0 ðCzSþDzLiNÞT

� ðc� lÞI 0

� � cI

2
64

3
75 > 0; ð33Þ

thus, KPFTC ¼ NS�1 guarantees that system Eq. (20) is stabi-
lized and the peak-to-peak norm of Tzayr is smaller than c.

Proof. In accordance with the sufficient condition of peak-to-
peak gain in Ref. 20 and the multiple convexity concept pro-
posed in Ref. 21, the following inequalities hold true so that
the peak-to-peak norm of the uncertain system Eq. (20) is less

than c,
kPðhÞ þ ðAUaoðhÞ þ BUaoðhÞKPFTCÞTPðhÞ þ PðhÞðAUaoðhÞ þ BUaoðhÞKPFTCÞ PðhÞGUaoðhÞ
� �lI

" #
< 0 ð34Þ
kPðhÞ 0 ðCz þDzLðhÞKPFTCÞT

� ðc� lÞI 0

� � cI

2
64

3
75 > 0 ð35Þ

if yr 2 L1 with kyrk1 6 1. According to the uncertainty repre-
sentation, Eq. (34) equals to:
kPðhÞ þ ðAaoðhÞ þ BaoðhÞKPFTCÞTPðhÞ þ PðhÞðAaoðhÞ þ BaoðhÞKPFTCÞ PðhÞGaoðhÞ
� �lI

" #

þ ðDaFEa1 þDaFE2LðhÞKPFTCÞTPðhÞ þ PðhÞðDaFEa1 þDaFE2LðhÞKPFTCÞ 0

0 0

" #
< 0 ð36Þ
From Ref. 14 and FTF 6 I; the following inequality holds true

for any e > 0:

ðDaFEa1þDaFE2LðhÞKPFTCÞTPðhÞþPðhÞðDaFEa1þDaFE2LðhÞKPFTCÞ
6 ePðhÞDaFF

TDT
aPðhÞþ e�1ðEa1þE2LðhÞKPFTCÞTðEa1þE2LðhÞKPFTCÞ

ð37Þ

In consequence, the sufficient condition for Eq. (36) to be held
is
kPðhÞ þ ðAaoðhÞ þ BaoðhÞKPFTCÞTPðhÞ þ PðhÞðAaoðhÞ þ BaoðhÞKPFTCÞ PðhÞGaoðhÞ
� �lI

" #

þ ePðhÞDaFF
TDT

aPðhÞ ðEa1 þ E2LðhÞKPFTCÞT

� �eI

" #
< 0 ð38Þ
By virtue of Projection Lemma in Ref. 22, Eq. (38) is equivalent
to Eq. (39),
kPðhÞ � VðAaoðhÞ þ BaoðhÞKPFTCÞ
�ðAaoðhÞ þ BaoðhÞKPFTCÞTVT þ ePðhÞDaFF

TDT
aPðhÞ

þe�1ðEa1 þ E2LðhÞKPFTCÞTðEa1 þ E2LðhÞKPFTCÞ
�
�

2
6666664

�VGaoðhÞ
�lI

�

where V is a general matrix. Similar to the derivation process

of Eq. (22) and defining Q,STPðhÞ; it is obtained that Eq. (32)
is the sufficient condition for Eq. (34) holding true.In addition,
the proof process of Eq. (33) is identical to that of Eq. (23) in

Theorem 1. For the interest of space, it is omitted herein. This
completes the proof. h

Remark 4. Theorem 2 offers an option of designing a passive
FTC against actuator failures in the presence of model uncer-

tainty. In the design process, the matrices D, E1, and E2, which
are known to specify the degree of model uncertainty, are
taken into account. As a result, the passive FTC generated
by Theorem 2 can not only accommodate the prescribed
actuator failures, but also work in the case with modeling
errors.

Remark 5. By minimizing the upper bound of the peak-to-

peak gain c, the maximum value of performance output
(including the aircraft and actuator variables) can be estimated

provided that the information of reference commands is
known a priori. In this sense, the developed approach coincides
with the requirements of safety-critical processes. In addition,

this concept can also be extended to flight envelope protection
in fault cases.
PðhÞ þ V� ðAaoðhÞ þ BaoðhÞKPFTCÞTVT

�GT
aoðhÞVT

Vþ VT

3
7777775
< 0 ð39Þ



Table 1 Trimming condition of the ADMIRE model.

Symbol Physical meaning Value

MTrim
a Mach number at the trimming condition 0.45

HTrim Altitude at the trimming condition 3000 m

VTrim Air speed at the trimming condition 147.86 m/s

aTrim AOA at the trimming condition 3.74�
qTrim Pitch rate at the trimming condition 0

TTrim Throttle stick setting 0.08

dTrimRC RC at the trimming condition 0.05�
dTrimLC LC at the trimming condition 0.05�
dTrimROE ROE at the trimming condition �0.04�
dTrimLOE LOE at the trimming condition �0.04�
dTrimRIE RIE at the trimming condition �0.04�
dTrimLIE LIE at the trimming condition �0.04�
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5. Numerical case studies

5.1. Developed simulation platform

The simulation platform that is developed by Diagnosis, Flight
Control and Simulation Lab at Concordia University is illus-

trated in Fig. 3. The platform is basically made up by two
units. The controller to be validated, actuator models, sensor
models, and aircraft models are integrated in Unit 1. For the

convenience of simulation, the functionalities of data storage
and failure injection are designed as well. The data from Unit
1 are transmitted to Unit 2 by User Datagram Protocol (UDP)
networks. Unit 2 is designed to demonstrate the flight anima-

tion of the selected aircraft using FlightGear software.

5.2. Selected aircraft model

In the selected ADMIRE model, the state vector is defined as
xðtÞ ¼ ½a; b; p; q; r�T, the control input vector is uðtÞ ¼
½dRC; dLC; dROE; dRIE; dLIE; dLOE�T, and the system output vec-

tor is yðtÞ ¼ ½a; b�T. a; b; p; q, and r are the AOA, sideslip angle,
roll rate, pitch rate, and yaw rate, respectively. The control
inputs dRC; dLC; dROE; dRIE; dLIE, and dLOE specify the deflec-

tions of right canard (RC), left canard (LC), right outer elevon
(ROE), right inner elevon (RIE), left inner elevon (LIE), and
left outer elevon (LOE), respectively. The actuator dynamics
is modeled by 1=ð0:05sþ 1Þ: The operating range of each actu-

ator is [�25�, 25�]. The trimming conditions are detailed in
Table 1, under which the system matrices are:

A ¼

�1:0649 0:0034 0 0:9728 0

0 �0:2492 0:0656 0 �0:9879
0 �22:5462 �2:0457 0 0:5432

8:1633 �0:0057 0 �1:0476 0

0 1:7970 �0:1096 0 �0:4357

2
6666664

3
7777775
Fig. 3 Diagram of the developed simulation platform.
B¼

�0:0062 �0:0062 �0:0709 �0:1172 �0:1172 �0:0709
�0:0072 �0:0072 0:0039 0:0188 �0:0188 �0:0039
1:2456 �1:2456 �10:6058 �9:2345 9:2345 10:6058

2:7172 2:7172 �2:4724 �4:0101 �4:0101 �2:4724
�0:7497 0:7497 �0:4923 �1:1415 1:1415 0:4923

2
6666664

3
7777775

C ¼
1 0 0 0 0

0 1 0 0 0

� �
5.3. Simulation scenarios

Two simulation scenarios are set up, which are (1) ADMIRE
model without uncertainty; and (2) ADMIRE model with
model uncertainty. It should be mentioned that in scenario
2, the model uncertainty matrices are:

D ¼
1 0 0 0 0

0 1 0 0 0

� �T

E1 ¼
�0:5 0 0 0 0

0 0:5 0 0 0

� �

E2 ¼ �0:0005�
1 1 1 1 1 1

2 2 2 2 2 2

� �

The reference signals of AOA and sideslip angle with ampli-

tudes of 5� and 1� are initiated at 1 s. The four elevons are
assumed to become complete failures at 10 s. In the numerical
simulation studies, a nominal controller,20 a LQ/H1-based

passive FTC,7 and the proposed passive FTC are implemented
and compared, respectively. Interested readers can visit web
www.youtube.com/user/NAVConcordia or http://i.youku.
com/NAVConcordia to watch the video clips of ADMIRE

animation under those three control strategies. The detailed
comparison and evaluation are provided as follows.

5.4. Results of Scenario 1 and evaluation

As can be seen from Fig. 4, the nominal controller, LQ/H1-
based passive FTC(PFTC), and proposed passive FTC can

maintain the tracking performance when all actuators are
working normally. It is indicated by Table 2 in the normal con-
dition, the AOA (2.64 s, 0%) and sideslip angle (1.99 s, 0%)

track the commands with superior performance under the

http://www.youtube.com/user/NAVConcordia
http://www.i.youku.com/NAVConcordia
http://www.i.youku.com/NAVConcordia


Fig. 4 Aircraft output responses in Scenario 1.
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nominal controller as compared with those in the LQ/H1-
based passive FTC and proposed passive FTC. It is true since

the nominal controller is only concentrated on the best perfor-
mance in the normal condition. From Fig. 5, when all actua-
tors are healthy, the LQ/H1-based passive FTC drives RC

and LC to deflect more angles than those under the nominal
controller and the proposed passive FTC. When the LQ/H1-
based passive FTC is commissioned, it is easy to reach the
physical limits of RC and LC even though the aircraft is flying

ordinarily.
When all elevons are outages at 10 s, the safety cannot be

ensured by the nominal controller any more as the AOA and

sideslip angle become oscillatory as the dash-dot lines shown
in Fig. 4. In this situation, the aircraft becomes unstable and
unrecoverable as the physical bounds are broken. By contrast,

the LQ/H1-based passive FTC and the designed passive FTC
are capable of keeping the faulty aircraft stabilized and return-
ing the aircraft outputs to the intended angles. Fig. 4 and

Table 2 also indicate that the returning time and overshoot
of AOA (2.35 s, 11.8%) and sideslip angle (2.7 s, 14.4%)
achieved by the LQ/H1-based strategy are interior to those
by the proposed FTC (AOA: 1.4 s, 10%; sideslip angle:

0.75 s, 4%). Fig. 5 exhibits that after elevon outages occur,
RC and LC are saturated under supervision of the nominal
controller. However, when the proposed passive FTC is
Table 2 Performance of the three controllers in Scenario 1.

Different controller Condition Propose

Range of AOA Normal [0, 5�]
Failure [5�, 5.5�

Range of sideslip angle Normal [0, 1.12�
Failure [0.96�, 1

Peak value of RC Normal �2.75�
Failure �4.39�

Peak value of LC Normal �4.64�
Failure �8.56�

Settling/returning time (AOA, D = 5%) Normal 2.86 s

Failure 1.17 s

Overshoot (AOA) Normal 0

Failure 8%

Settling/returning time (Sideslip angle, D = 5%) Normal 3.12 s

Failure 0.75 s

Overshoot (Sideslip angle) Normal 11.7%

Failure 4%
commissioned, the amplitudes of the healthy actuators are
considerably less than those of the normal controller. There-
fore, the results of scenario 1 illustrate that the designed pas-

sive FTC can not only maintain the safety of the airplane
when the prescribed failures occur, but also obtain an accept-
able level of performance.

5.5. Results of scenario 2 and assessment

The simulation results of scenario 2 are illustrated by Figs. 6

and 7 and Table 3. As shown in Fig. 6, before elevon outages
occur, AOA and sideslip angle can track the reference signals
under the selected three controllers. However, the settling time

and overshoot of AOA and sideslip angle achieved by the
nominal controller and LQ/H1-based passive FTC are consid-
erably degraded as comparison of those without model uncer-
tainty. The degree of performance degradation in the

developed FTC is remarkably less than those by the other
two controllers. The details are: (1) the performance of AOA
returning time, sideslip angle returning time, sideslip angle

overshoot in the case of nominal controller is decreased by
27.27%, 53.27%, and 0 fi 2.5%, respectively; (2) when the
LQ/H1-based passive FTC is used, the degraded degree of

the above performance is 28.42%, 40.53%, and 185.71%,
respectively; and (3) under the proposed FTC, the performance
degradation of AOA returning time, sideslip angle returning
time, sideslip angle overshoot is 24.13%, 0.96%, and

53.85%, respectively.
After elevon outages, the nominal control strategy cannot

guarantee the safety of the faulty aircraft. Although the LQ/

H1-based passive FTC can counteract elevon failures as
shown in Fig. 6, the system performance is greatly deteriorated
according to Tables 2 and 3. On the other hand, the developed

passive FTC with consideration of model uncertainty is
capable of obtaining better performance rather than those
under the other two controllers. Moreover, the performance

achieved by the proposed FTC is slightly degraded in compar-
ison of the model uncertainty-free case. Based on Fig. 7, the
redundant actuators RC and LC deflect more than the
normal case (before 10 s) so as to accommodate the elevon

failures and maintain the safety of the faulty system. It is also
d passive FTC LQ/H1-based passive FTC Nominal controller

[0, 5�] [0, 5�]
] [4.4�, 5�] Oscillatory

] [0, 1.06�] [0, 1�]
�] [0.86�, 1�] Oscillatory

�8.38� �2.21�
�4.42� Saturated

�12.75� �5.36�
�8.58� Saturated

2.85 s 2.64 s

2.35 s Oscillatory

0 0

11.8% Oscillatory

3.38 s 1.99 s

2.7 s Oscillatory

5.6% 0

14.4% Oscillatory



Fig. 5 Actuator deflections in Scenario 1.

Fig. 6 Aircraft output responses in Scenario 2.

Fig. 7 Actuator deflec
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demonstrated by Fig. 7 and Table 3 that the peak values of
actuator deflections are controlled within the allowable operat-
ing ranges by the proposed passive FTC.

Thus, it is known that model uncertainty is detrimental to
performance both in normal and faulty cases. The comparison
also illustrates that the developed passive FTC is a viable

option of compensating for the adverse effects caused by
model uncertainty and actuator failures.

5.6. Results of nonlinear simulation

Scenarios 1 and 2 are further investigated in the case with non-
linear dynamics of the selected ADMIRE for the purpose of

further verifying the proposed passive FTCs. It is shown in
tions in Scenario 2.



Table 3 Performance of the three controllers in Scenario 2.

Different controller Condition The proposed

passive FTC

LQ/H1-based

passive FTC

Nominal

controller

Range of AOA Normal [0, 5�] [0, 5�] [0, 5�]
Failure [5�, 5.5�] [4.2�, 5�] Oscillatory

Range of sideslip angle Normal [0, 1.18�] [0, 1.16�] [0, 1.03�]
Failure [0.96�, 1�] [0.82�, 1�] Oscillatory

Peak value of RC Normal �3.6� �10.4� �2.6�
Failure �4.04� �4.05� Saturated

Peak value of LC Normal �4.8� �14.5� �5.7�
Failure �7.9� �7.9� Saturated

Settling/returning time (AOA, D = 5%) Normal 3.55 s 3.66 s 3.35 s

Failure 1.4 s 2.95 s Oscillatory

Overshoot (AOA) Normal 0 0 0

Failure 8.2% 16% Oscillatory

Settling/returning time (Sideslip angle, D = 5%) Normal 3.15 s 4.75 s 3.05 s

Failure 1.0 s 2.8 s Oscillatory

Overshoot (Sideslip angle) Normal 18% 16% 2.5%

Failure 6% 18% Oscillatory
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Fig. 8 that without model uncertainty, the AOA and sideslip
angle are controlled to return the intended angles after all ele-

von complete failures (at 10 s). Based on Fig. 9, the designed
passive FTC can still maintain the safety of the aircraft in
the presence of elevon outages and model uncertainty. Fig. 9

exemplifies that the developed controller with explicit consider-
ation of model uncertainty can obtain gracefully degraded per-
formance as compared to the uncertainty-free case illustrated

in Fig. 8.
Fig. 8 Aircraft outputs in nonlinear simulation without model

uncertainty.

Fig. 9 Aircraft outputs in nonlinear simulation of developed

controller with explicit consideration of model uncertainty.
6. Conclusion remarks

The prescribed actuator failures are developed in terms of

polytopic uncertainty. Peak-to-peak norm of the closed-loop
system is adopted to describe the relationships among the max-
imal values of actuator outputs, reference signals, and system

outputs. Based on a clear understanding of the safety require-
ments, the concept of peak-to-peak gain is incorporated in the
design procedure of passive FTC, in which the parameter
dependent Lyapunov and slack variable methods are applied

for reducing conservatism. From a practical perspective, the
passive FTC strategies corresponding to model uncertainty-
free and uncertainty cases are investigated. Both linear and

nonlinear simulation studies subject to the ADMIRE aircraft
model with elevon outages are conducted. It is demonstrated
conclusively that the developed approach is effective in the

presence of both actuator failures and model uncertainty.
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