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SUMMARY

The conserved Hippo kinase pathway plays a pivotal
role in organ size control and tumor suppression by
restricting proliferation and promoting apoptosis.
Whereas the function of the core kinase cascade,
consisting of the serine/threonine kinases Hippo
and Warts, in phosphorylating and thereby inactivat-
ing the transcriptional coactivator Yorkie is well es-
tablished, much less is known about the upstream
events that regulate Hippo signaling activity. The
FERM domain proteins Expanded and Merlin appear
to represent two different signaling branches that
feed into the Hippo pathway. Signaling by the atyp-
ical cadherin Fat may act via Expanded, but how
Merlin is regulated has remained elusive. Here, we
show that the WW domain protein Kibra is a Hippo
signaling component upstream of Hippo and Merlin.
Kibra acts synergistically with Expanded, and it
physically interacts with Merlin. Thus, Kibra predom-
inantly acts in the Merlin branch upstream of the
core kinase cascade to regulate Hippo signaling.

INTRODUCTION

Understanding organ size control is a major task of develop-

mental biology and affects our conception of tumorigenesis.

The conserved Hippo tumor suppressor pathway has recently

emerged as a crucial mechanism to restrict tissue growth by

promoting cell cycle exit and apoptosis (Harvey and Tapon,

2007; Pan, 2007; Saucedo and Edgar, 2007). The core of the

Hippo pathway is composed of two serine/threonine kinases,

the Ste20-like kinase Hippo (Hpo) and the NDR family kinase

Warts (Wts). Hpo phosphorylates and activates Wts (Harvey

et al., 2003; Pantalacci et al., 2003; Tapon et al., 2002), which

in turn phosphorylates and thereby inactivates the transcrip-

tional coactivator Yorkie (Yki) (Huang et al., 2005; Oh and Irvine,

2008). Yki binds the transcription factor Scalloped (Sd) (Goulev

et al., 2008; Wu et al., 2008; Zhang et al., 2008) to regulate the

expression of Cyclin E (CycE), Diap1, and bantam, thereby

promoting cell proliferation and inhibiting apoptosis (Bandura

and Edgar, 2008; Edgar, 2006; Hariharan and Bilder, 2006;

Pan, 2007; Reddy and Irvine, 2008; Saucedo and Edgar, 2007).

Whereas the function of the core Hpo kinase cascade is well es-

tablished, much less is known about the upstream events
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membrane-associated FERM domain proteins, Merlin (Mer) and

Expanded (Ex), have been suggested to function in parallel to acti-

vate the Hippo pathway (Hamaratoglu et al., 2006; Zeng and

Hong, 2008). Mutations in Mer or ex result in milder tissue over-

growth as compared to mutations in Hippo signaling core compo-

nents, but the Merex double mutant phenotype closely resembles

the hpo loss-of-function phenotype (Hamaratoglu et al., 2006).

The atypical cadherin Fat (Ft) and its ligand Dachsous (Ds) appear

to signal through Ex to activate the Hippo pathway (Bennett and

Harvey, 2006; Cho et al., 2006; Tyler and Baker, 2007; Willecke

et al., 2006). Badouel and colleagues recently showed a physical

interaction between Ex and Yki that may directly inhibit Yki activity

(Badouel et al., 2009), and Oh and colleagues also identified Ex,

Wts, and Hpo as Yki binding partners that mediate a phosphoryla-

tion-independent repression of Yki activity (Oh et al., 2009). By

contrast, the molecular details of Mer function have remained

elusive. Since FERM domain proteins serve as linkers between

the cytoskeleton and transmembrane proteins and have been

implicated in the signal transduction from the plasma membrane

to cytosolic signaling complexes (Chishti et al., 1998), uncovering

the signaling inputs of Mer may help to explain how cell-cell

contact activates Hippo signaling to inhibit growth and restrict

organ size (Zhao et al., 2007).

Here, we show that the WW domain protein Kibra is a Hippo

signaling component. Kibra was originally identified as a binding

partner of human Dendrin (Kremerskothen et al., 2003). It

contains two amino-terminal WW domains and a C2-like

domain. In mammals Kibra is predominantly expressed in kidney

and brain, and it has mainly been associated with memory

performance (Papassotiropoulos et al., 2006; Schaper et al.,

2008). Apart from a carboxy-terminal extension, the Drosophila

homolog of Kibra displays overall homology (51% similarity,

32% identity) to its human counterpart, and they share their

domain structure. Our genetic analysis revealed that Kibra acts

upstream of Hpo and Mer to control organ size in Drosophila.

Kibra genetically synergizes with ex, and the Kibra protein phys-

ically interacts with Mer. We propose a model whereby Kibra

functions in the Mer branch upstream of the Hippo core kinase

cascade to regulate Hpo activity.

RESULTS

Kibra Regulates Growth and Restricts Organ Size
by Controlling Cell Number
Overexpression of Drosophila Kibra in the developing eye

decreased the size of the adult organ (Figure 1B) (Tseng and
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Figure 1. Kibra Regulates Tissue Size by Controlling Cell Number

(A and B) Eyes overexpressing the indicated UAS transgenes under the control of GMR-Gal4.

(C and D) Eye-specific reduction of Kibra function by eyFlp/FRT-mediated mitotic recombination (D) as compared to the control (C).

(E) Overgrowth of the Kibra mutant eye is rescued by the presence of a UAS-Kibra transgene.

(F and G) Compartment-specific reduction of Kibra function in the wing by enFlp/FRT-mediated mitotic recombination (F) as compared to the control (G).

(H) The Kibra locus (drawn to scale) spans 26 kb and contains nine exons (filled boxes). The initiating ATG is indicated. Kibra1, Kibra2, and Kibra4 are deletions

and the EMS allele Kibra3 carries a point mutation in the Start codon.

(I) A part of a wing imaginal disc containing two clones of Kibra mutant cells (lacking GFP expression) and their twin clones is shown. The scale bar represents

50 mm.

(J and K) Statistical analyses of twin-spot clones (n = 22). Kibra mutant clones cover significantly larger areas (12,524 ± 6,083 pixels) than their sister clones

(7,057 ± 3,750 pixels; p = 0.0000001) (J). Kibra mutant clones contain more cells (21 ± 9) than their sister clones (16 ± 7; p = 0.001) (K). Note that clones

homozygous for a precise jump out allele are not enlarged (7,304 ± 3,015 pixels) when compared to their sister clones (7592 ± 2724 pixels; p = 0.590), and

both contain the same number of cells (17 ± 7 and 19 ± 8; p = 0.329). Analyses were done with Student’s t test (two-tailed).

(L) A part of a mid-pupal retina containing Kibra4 mutant tissue (marked by the absence of GFP) and neighboring wild-type tissue (bright green) is shown. The

tissue was stained with a-Discs large antibodies to visualize cell outlines (red). The scale bar represents 25 mm.
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Hariharan, 2002). We generated four different loss-of-function

alleles of Kibra to define its function in growth control (Figure 1H).

Deletion of the first exon (harboring the translational start site) by

imprecise excision of a P element resulted in the alleles Kibra1

and Kibra2. Kibra3, a mutation in the initiating ATG, was gener-

ated by means of an EMS reversion mutagenesis of the EP-

mediated Kibra overexpression phenotype. Finally, the entire Ki-

bra locus was removed by the hybrid element insertion (HEI)

technique (Parks et al., 2004) (Kibra4). All alleles were lethal

when homozygous and failed to complement each other but

were complemented by the precise P element excision used

as a control throughout this study. All mutants displayed the

same growth phenotypes, and homozygous mutant animals

died as first-instar larvae. We conclude that all Kibra alleles are

genetically null.
310 Developmental Cell 18, 309–316, February 16, 2010 ª2010 Elsev
Kibra mutant heads were enlarged in comparison to controls

(Figures 1C and 1D). Similarly, wings containing posterior

compartments largely mutant for Kibra were larger than control

wings (Figures 1F and 1G). The presence of a UAS-Kibra overex-

pression construct, without any Gal4 driver, rescued the lethality

of Kibra homozygous mutant flies as well as the size defects of

Kibra mutant organs (data not shown and Figure 1E), proving

that the growth alterations are caused by the loss of Kibra func-

tion. Thus, Kibra is a general regulator of growth that is required

to restrict organ size.

To determine the cause of the Kibra mutant overgrowth

phenotypes, we performed a clonal analysis in wing imaginal

discs. Clones of Kibra mutant cells were larger than their corre-

sponding wild-type sister clones (Figures 1I and 1J). The number

of cells per clone was increased in Kibra mutant clones
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compared to wild-type clones but not to the same extent as the

clone size (Figure 1K). However, FACS analysis revealed that cell

size was unchanged in Kibra mutant cells (data not shown), sug-

gesting a change in cellular architecture in cells devoid of Kibra

function. We conclude that Kibra mutant clones in the wing imag-

inal disc were enlarged because Kibra mutant cells exhibit

a proliferative advantage over wild-type cells.

We also analyzed tangential sections of mosaic compound

eyes consisting of Kibra mutant cells surrounded by heterozy-

gous cells. The mutant ommatidia were normally structured

and the different cell types properly differentiated, but the inter-

ommatidial regions were enlarged compared to the control (data

not shown). The increased distance between mutant ommatidia

was due to more cells, because clones of Kibra mutant cells in

the pupal retina displayed an increase in the number of interom-

matidial cells (Figure 1L). Supernumerary interommatidial cells

are a hallmark of inactivation of the Hippo pathway (Kango-Singh

et al., 2002; Tapon et al., 2002). Whereas a complete loss of

Hippo signaling causes a pronounced excess of interommatidial

cells, a mild extra interommatidial cell phenotype is observed in

mutants that reduce but do not abrogate Hippo signaling, such

as ex or Mer (Hamaratoglu et al., 2006).

Overexpression of Kibra Causes Apoptosis
A reduction in Hippo signaling activity results in extra interomma-

tidial cells because the developmental apoptosis in pupal retinae

is largely eliminated (Harvey and Tapon, 2007). Conversely, over-

expression of hpo or ex induces apoptosis in third instar eye discs

(Pantalacci et al., 2003; Pellock et al., 2007). Overexpression of

Kibra in clones in the wing imaginal disc reduced clone size (see

Figures S1A–S1D available online). Kibra-overexpressing clones

contained fewer cells than control clones (Figure S1E). To inves-

tigate whether overexpression of Kibra induces apoptosis, we

generated Kibra overexpression clones in the third instar eye

disc by using the Gene-Switch system (Rogulja and Irvine,

2005). Indeed, the Kibra-overexpressing clones located anterior

to the morphogenetic furrow (MF) showed an increase in pro-

grammed cell death as judged by staining for cleaved Caspase-

3 and TUNEL staining (Figures S1F and S1G; data not shown),

suggesting that overexpression of Kibra induces inappropriate

apoptosis of proliferating cells. Consistently, co-overexpression

of Diap1, a direct Yorkie transcriptional target (Wu et al., 2008),

partially rescued the small eye phenotype associated with Kibra

overexpression (Figure S1M). Co-overexpression of CycE,

another target of the Hippo pathway (Udan et al., 2003), also

resulted in a partial rescue of the small eye (Figure S1N). The

size of Kibra-overexpressing eyes was further restored by

concomitant overexpression of Diap1 and CycE (Figure S1O).

These results suggest that the effects elicited by Kibra overex-

pression are at least partly due to a reduction in the expression

of the Hippo pathway target genes Diap1 and CycE.

Kibra Acts Genetically Upstream of yki, hpo,
and Mer and Synergizes with ex

The striking similarities of the Kibra, ex, and Mer phenotypes

prompted us to test genetically whether Kibra restricts tissue

size via Hippo signaling. We started our interaction studies at

the level of the transcriptional coactivator yki, which induces

target genes promoting cell proliferation and cell survival and is
Developm
inactivated by Hippo signaling. Three lines of evidence suggest

that Kibra acts via inactivation of Yki. First, the coexpression of

Kibra and yki during eye development suppressed the eye size

reduction caused by Kibra and resulted in the same overgrowth

phenotype as observed in eyes overexpressing yki alone

(Figures 2A–2C). Second, the growth advantage of Kibra mutant

cells was completely abolished by the concomitant loss of yki

function (Figures 2D–2F). Third, a pupal lethal hypomorphic

combination of Kibra alleles was rescued to viability by removal

of a single copy of yki (Figures 2G and 2H).

To determine whether (and at which level) Kibra acts in the

Hippo pathway to inactivate Yki, we performed a series of epis-

tasis tests. We found that the loss-of-function phenotypes of

hpo, sav, and wts were epistatic to the Kibra overexpression

phenotype (Figures 2J–2L; Figures S2A–S2D), indicating that

Kibra acts upstream of Hpo.

Next, we tested for interaction with the upstream components

Ex and Mer. Overexpression of ex in a Kibra mutant background

resulted in an intermediate phenotype (Figures S2E–S2G). Vice

versa, overexpression of Kibra also yielded an additive effect in

an ex mutant head (Figures S2H–S2J). Conversely, Kibra overex-

pression failed to reduce organ size in a Mer mutant head

(Figures 2M and 2N), indicating that Kibra requires Mer to exert

its function. We used the eyFlp/FRT recombination system

(without cell lethal) to generate mosaic animals with heads

largely homozygous for ex and Mer mutations, as well as ex Kibra

and Mer Kibra double mutations, respectively. Both ex and Mer

mosaic heads showed only mild overgrowth (Figures 2O and

2Q). Strikingly, pupae with mosaic heads doubly mutant for ex

and Kibra did not eclose, and normal head structures were dis-

placed by overgrown tissue (Figure 2P). In contrast, flies with

Mer Kibra mosaic heads were viable. However, Mer Kibra double

mutant clones showed stronger overgrowth than Mer clones

(Figures 2Q and 2R). Reducing ex function during eye develop-

ment by the expression of a hairpin RNAi construct (Dietzl

et al., 2007) did not alter the wild-type eye size but resulted in

a severe enhancement of the Kibra loss-of-function phenotype

(Figures 2U and 2V), and the resulting eyes resembled those of

hpo mutants. Reducing Mer function caused subtle overgrowth

but enhanced the Kibra mutant phenotype much less (Figures

2W and 2X).

Whereas single mutants for ex and Mer cause a mild over-

growth phenotype, ex Mer double mutants display strong syner-

gistic effects, suggesting that the two FERM domain proteins act

in separate branches to activate Hippo signaling (Hamaratoglu

et al., 2006; Pellock et al., 2007). Our findings suggest that Kibra

acts primarily upstream of Mer. However, since Mer Kibra double

mutant clones show stronger overgrowth than Mer mutant

clones and a reduction of Mer function enhances the Kibra

loss-of-function phenotype, Kibra also contributes to Mer-inde-

pendent regulation of Yki activity.

Kibra Regulates a Minimal Hippo-Responsive Element
To confirm that Kibra acts via Hippo signaling, we also tested

whether Kibra mutant clones upregulated the expression of a

Diap1 enhancer element (diap1-GFP4.3) that had been pub-

lished to be a minimal Hippo responsive element (HRE; Zhang

et al., 2008). A pronounced upregulation of diap1-GFP4.3 was

evident in clones of hpo mutant cells posterior and, to a weaker
ental Cell 18, 309–316, February 16, 2010 ª2010 Elsevier Inc. 311



Figure 2. Mer, hpo, and yki are Epistatic to Kibra, and ex Synergizes with Kibra

(A–C) Eyes overexpressing the indicated UAS transgenes under the control of GMR-Gal4.

(D–F) Eye imaginal discs containing yki mutant clones (D), yki Kibra double mutant clones (E), and Kibra mutant clones ([F]; all black) and their wild-type sister

clones (bright green or red, respectively). Quantification of clone sizes for yki (2,448 ± 1,075 pixels whereas the corresponding twin spots yield 7,563 ±

3,830 pixels; p = 0.0007) and yki Kibra (2,612 ± 1,688 pixels whereas the corresponding twin spots yield 10,195 ± 5,704 pixels; p = 0.0009) mutant clones revealed

no significant difference (p = 0.825). Analyses were done with Student’s t test (two-tailed). The scale bar represents 100 mm.

(G and H) The hypomorphic combination of Kibra alleles Kibra1/ P{PZ}l(3)neo42[02404] results in pupal lethality (G) and is rescued to viability by removal of one

copy of yki (H).

(I–L) Eyes mutant for hpo and overexpressing Kibra (L) are compared to control eyes (I), to eyes overexpressing Kibra (J), and to hpo mutant eyes (K).

(M and N) Eyes mutant for Mer and overexpressing Kibra (N) are compared to Mer mutant eyes (M).

(O–R) Eyes partially mutant (generated by eyFlp mediated mitotic recombination; without cell lethal) for ex (O), ex Kibra (P), Mer (Q), or Mer Kibra (R). The head

shown in (P) is from a pharate adult.

(S–X) Eyes mutant for Kibra and overexpressing UAS-ex-RNAi or UAS-Mer-RNAi under the control of GMR-Gal4 (V and X) are compared to control eyes (S),

to Kibra mutant eyes (T), to eyes overexpressing UAS-ex-RNAi (U), and to eyes overexpressing UAS-Mer-RNAi (W).
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extent, anterior to the MF in eye imaginal discs (Figure 3A).

Cells lacking Kibra function also upregulated diap1-GFP4.3

expression, although to a lesser degree and with restriction to

the differentiating tissue posterior to the MF (Figure 3B). Clones

of ex mutant cells, in resemblance to hpo clones, upregulated

diap1-GFP4.3 strongly behind and somewhat weaker before

the MF (Figure 3C), whereas Mer mutant cells, like Kibra mutant

cells, upregulated diap1-GFP4.3 expression weakly and solely

posterior to the MF (Figure 3D). Thus, the loss of Kibra results

in an upregulation of a Hippo signaling reporter gene. The similar

response of diap1-GFP4.3 to loss of Kibra or Mer suggests that

Kibra and Mer act in the same way on Hippo signaling to regulate

the HRE.
312 Developmental Cell 18, 309–316, February 16, 2010 ª2010 Elsev
ex Kibra double mutant clones showed strong upregulation of

diap1-GFP4.3 on both sides of the MF (Figure 3E). Note that both

ex mutant clones as well as ex Kibra double mutant clones were

homozygous for the enhancer trap insertion exe1 lacZ. Clones in

Figures 3C and 3E are therefore marked by the absence of cyto-

plasmic LacZ plus upregulation of nuclear LacZ, since Ex is

induced upon Yki activity (Hamaratoglu et al., 2006). Although

Kibra mutant cells in the eye disc did not regulate exe1 lacZ

(data not shown), upregulation of nuclear LacZ and, accordingly,

Yki activity was much higher in the case of ex Kibra double

mutant clones (Figure 3E) as compared to ex mutant clones

(Figure 3C). Additionally, clones of ex Kibra double mutant cells

were very large and invariantly adopted a rounded shape
ier Inc.



Figure 3. Kibra, hpo, ex and Mer Regulate a Minimal Hippo-Respon-

sive Element

(A–F) Eye imaginal discs bearing hpo mutant clones (A–A00), Kibra mutant

clones (B–B00), ex mutant clones (C–C00), Mer mutant clones (D–D00), ex Kibra

double mutant clones (E–E00), or Mer Kibra double mutant clones (F–F00). The

clones are marked by the absence of LacZ (red, [A0, B0, D0, and F0]) or by the

absence of cytoplasmic LacZ (red, [C0 and E0 ]), respectively. Expression of

GFP driven by the Diap1 enhancer element diap1-GFP4.3 is shown in green.

Dotted lines indicate the MF. The scale bar represents 50 mm.
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(Figure 3E), reminiscent of yki-overexpressing clones (Huang

et al., 2005). These phenotypes suggest a high level of Yki

activity in ex Kibra mutant cells. In contrast, Mer Kibra double

mutant cells showed strong upregulation of diap1-GFP4.3

posterior to the MF but none in the proliferative region anterior
Developm
to the MF (Figure 3F). Thus, both ex and Mer act synergistically

with Kibra to activate diap1-GFP4.3 posterior to the MF. The

additional synergism of Kibra and ex, but not Mer, anterior to

the MF most likely explains the strong overgrowth phenotype

of ex Kibra double mutant tissue as compared to the overgrowth

of Mer Kibra tissue (Figures 2P, 2R, 2V, and 2X). We conclude

that Kibra acts together with Mer, in parallel to ex, to regulate

diap1-GFP4.3 activity in both proliferating and postmitotic cells.

In addition, Kibra contributes to Mer-independent regulation of

Yki activity in differentiating cells.

One particularly interesting observation was that Mer, Kibra,

and Mer Kibra mutant clones, but not hpo or ex mutant clones,

seemed to exert a weak non-autonomous effect on diap1-

GFP4.3 activity of individual wild-type cells along clone borders

(Figures S3A–S3D and S3F). In the case of ex Kibra double

mutant clones, we even observed an upregulation of diap1-

GFP4.3 activity in an entire row of wild-type cells adjacent to

the clone border (Figure S3E). It will be important to learn more

about this non-autonomous regulation of a Hippo signaling

reporter gene in order to gain mechanistic insight into Kibra-

mediated regulation of Hippo target genes.

Kibra Binds Mer in Drosophila S2 Cells
Consistent with our genetic findings, Kibra has been identified in

a yeast two-hybrid candidate screen as physical interactor of

Mer (Formstecher et al., 2005). Coimmunoprecipitation experi-

ments in Drosophila S2 cells revealed an interaction of the two

proteins in both directions (Figures 4A and 4B). Interestingly,

the binding was weak with full-length Kibra but stronger with a

truncated version of Kibra lacking both N-terminal WW domains

(DWW Kibra) (Figures 4A and 4C). Overexpressed Mer was local-

ized at the cortex as well as in cytoplasmic punctae, whereas

both overexpressed full-length Kibra and DWW Kibra were found

exclusively in cytoplasmic punctae. When Mer was overex-

pressed together with full-length Kibra, we did not observe any

colocalization (Figure 4D). In contrast, Mer colocalized weakly

at the cortex and in a more pronounced way in cytoplasmic

punctae with DWW Kibra (Figure 4D).

We also checked whether Kibra and Ex/Mer would affect each

other’s localization in vivo. Loss of Kibra did not affect the

cortical localization of Mer or Ex (Figures S4A–S4E). Vice versa,

the localization of Kibra at the apical cortex of epithelial cells, as

seen in Kibra-overexpressing cells (Figures S4F–S4H) or in hpo

mutant cells (Figures S4I–S4K) (Genevet et al., 2010 [this issue

of Developmental Cell]), was not changed in Mer ex double

mutant cells (Figures S4L–S4N). Further studies will be required

to analyze the dynamics of the subcellular localization of the

Hippo signaling upstream components.

DISCUSSION

Our study provides genetic and biochemical evidence that the

WW domain protein Kibra is a Hippo signaling component.

Several lines of evidence indicate that Kibra acts predominantly

in the Mer branch (Figure 4E). First, the mild overgrowth pheno-

type caused by loss of Kibra function is akin to the Mer pheno-

type. Second, genetic epistasis experiments place Kibra

upstream of Mer. Third, the effects of Kibra and Mer loss-of-

function on a reporter for Hippo signaling activity are very similar.
ental Cell 18, 309–316, February 16, 2010 ª2010 Elsevier Inc. 313



Figure 4. Kibra Is a Binding Partner of Mer in Drosophila S2 Cells

(A) Mer coimmunoprecipitates with both full-length Kibra and DWW Kibra in S2 cells. Kibra-HA (or DWW Kibra-HA) and Mer-FLAG were cotransfected in S2 cells.

HA immunoprecipitates were blotted for Mer-FLAG. HA-GFP was used as a negative control. A schematic representation of the Kibra domain structure is shown

below the blot.

(B and C) Both full-length Kibra (B) and DWW Kibra (C) coimmunoprecipitate with Mer in S2 cells. Kibra-FLAG (B) (or DWW Kibra-FLAG [C]) and Mer-HA were

cotransfected in S2 cells. HA immunoprecipitates were blotted for Kibra-FLAG (or DWW Kibra-FLAG). HA-GFP was used as a negative control.

(D) S2 cells were cotransfected with Kibra-GFP and Mer-RFP (upper panel) or with DWW Kibra-GFP and Mer-RFP (lower panel). The scale bar represents 5 mm.

(E) Model of the Hippo signaling pathway.

Developmental Cell

Kibra Acts in Hippo Signaling
Forth, Kibra and Mer synergise with ex in a similar fashion. Fifth,

Kibra physically interacts with Mer. However, since our genetic

analysis of Kibra also revealed a synergism with Mer, Kibra

also acts on Yki activity in a Mer-independent manner.

FERM domain proteins, such as Mer, have been suggested to

connect membrane proteins with the underlying cortical cyto-

skeleton in order to integrate signals from the membrane and

initiate intracellular signaling cascades (McClatchey and Fehon,

2009). Thus, it is conceivable that Mer, together with as yet

unknown proteins, assembles downstream cytoplasmic compo-

nents of the Hippo pathway at the membrane and that controlled

assembly and stabilization of such multiprotein complexes regu-

lates the activity of the Hippo kinase cascade. In such a scenario,

adaptor proteins providing multiple protein-protein interaction

domains are of special interest.

The WW domain protein Kibra binds Mer and could enable

signaling events at the membrane/cytoskeleton interface that

activate the Hpo kinase cascade. Since a truncated Kibra protein

lacking the WW domains interacts more fiercely with Mer, it is

likely that the physical association of Kibra and Mer is modulated

by binding of other factors to the WW domains of Kibra.

Interestingly, the effects caused by the concomitant loss of ex

and Kibra functions are more severe than those elicited by

mutated Hippo signaling core components. In addition to

massively overgrowing, clones of ex Kibra double mutant cells

round up, a behavior that we never observed in clones of hpo
314 Developmental Cell 18, 309–316, February 16, 2010 ª2010 Elsev
mutant cells. Furthermore, the diap1-GFP4.3 reporter indicates

higher Yki activity in proliferating ex Kibra mutant eye imaginal

disc cells as compared to hpo mutant cells. It thus appears

that Yki activity is unleashed in cells lacking both ex and Kibra

functions. Since Ex has been shown to directly bind Yki (Badouel

et al., 2009; Oh et al., 2009), it is tempting to speculate that Kibra

participates in a distinct (Mer-independent) mechanism to

prevent nuclear Yki localization.

EXPERIMENTAL PROCEDURES

Mutants and Transgenes

The generation of the Kibra loss-of-function alleles is described in the Supple-

mental Experimental Procedures. The lethality of Kibra mutants and the Kibra

overgrowth phenotype were rescued by the presence of UAS-Kibra 9 (2nd

chromosome). Kibra overexpression was achieved by either UAS-Kibra 9 or

by the weaker UAS-Kibra 18 (3rd chromosome), respectively. One copy of

UAS-Kibra 9 was used as a Kibra+ rescue construct for ex Kibra double mutant

clones. All other mutations and overexpression constructs are indicated in the

Supplemental Experimental Procedures.

Clonal Analysis

Negatively marked mutant clones were generated using the hsFLP/FRT

recombination system. Kibra-overexpressing clones were generated either

by the Actin-flp-out-Gal4 technique (Neufeld et al., 1998) or by the Gene-

Switch system (Rogulja and Irvine, 2005). For the quantification of clones in

imaginal discs, cell number and clone area were determined using Adobe

Photoshop 7.0. Student’s t tests were used to test for significance. Details
ier Inc.
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on fly lines and heat-shock protocols can be found in the Supplemental

Experimental Procedures.

Immunostaining

Larval and pupal discs as well as S2 cells were fixed in 4% PFA, permeabilized

with PBT, and blocked in 2% NDS. Antibodies used in this study were mouse

a-b-Galactosidase (1:400; Promega), rabbit a-cleaved Caspase-3 (1:300; Cell

Signaling), mouse a-Discs large (1:100; Developmental Studies Hybridoma

Bank), rabbit a-Expanded (1:200; gift of A. Laughon), guinea pig a-Merlin

(1:5,000; gift of R. Fehon), and rabbit a-Kibra (1:200; generated and kindly

provided by N. Tapon; Genevet et al., 2010). Pictures were taken using a Leica

SPE confocal laser scanning microscope.

Cell Culture, Transfection, Cloning, Immunoprecipitation,

and Western Blot

S2 cells were cultured and transfected according to standard protocols. For

expression of tagged proteins in S2 cells, the full-length cDNA of Kibra and

a fragment encoding a truncated Kibra protein lacking both N-terminal WW

domains (DWW Kibra, aa 166–end) were cloned into Gateway vectors pMtWH,

pMtWF, and pMtWG. A full-length cDNA of Mer was cloned into pMtHW,

pMtFW, and pAWR.

Coimmunoprecipitation experiments and western blots were performed

according to standard protocols. Antibodies were mouse a-HA (1:3,000; Jack-

son ImmunoResearch), mouse a-FLAG (1:1,000; Sigma), and mouse a-HRP

(1:10,000; Jackson ImmunoResearch).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, Supplemental Experimental

Procedures, and Supplemental References and is available with this article
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Kremerskothen, J., Plaas, C., Büther, K., Finger, I., Veltel, S., Matanis, T.,

Liedtke, T., and Barnekow, A. (2003). Characterization of KIBRA, a novel

WW domain-containing protein. Biochem. Biophys. Res. Commun. 300,

862–867.

McClatchey, A.I., and Fehon, R.G. (2009). Merlin and the ERM proteins—

regulators of receptor distribution and signaling at the cell cortex. Trends

Cell Biol. 19, 198–206.

Neufeld, T.P., de la Cruz, A.F., Johnston, L.A., and Edgar, B.A. (1998). Coordi-

nation of growth and cell division in the Drosophila wing. Cell 93, 1183–1193.

Oh, H., and Irvine, K.D. (2008). In vivo regulation of Yorkie phosphorylation and

localization. Development 135, 1081–1088.

Oh, H., Reddy, B.V., and Irvine, K.D. (2009). Phosphorylation-independent

repression of Yorkie in Fat-Hippo signaling. Dev. Biol. 335, 188–197.

Pan, D. (2007). Hippo signaling in organ size control. Genes Dev. 21, 886–897.
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