Without question LC/MS is the most dominant application of mass spectrometry in the pharmaceutical industry. Yet, as I have observed the full integration of LC/MS into pharmaceutical applications over the past two decades, I have been frequently reminded about how limited the knowledge of chromatography is among LC/MS practitioners. If a younger scientist asks you for reading material on the subject of high-performance liquid chromatography (HPLC), I am happy to report that you now have a suitable recourse.

The recent publication of HPLC for Pharmaceutical Scientists by Kazakevich and LoBrutto is an 1104 page text covering all aspects encompassed by this vast title. The book is divided into three sections and contains 22 chapters representing the output of 52 contributing authors. Like all good texts, this book does not need to be read cover to cover to convey great understanding. Although the chapters flow together in a logical sequence, each chapter stands alone as a distinct review of a particular subject, complete with numerous citations from the current literature. For this reason, the target audience is quite broad and ranges from the neophyte analyst to the seasoned veteran.

As mentioned, the book is divided into three sections. Part I—entitled “HPLC Theory and Practice”—covers the basics and itself could pass as a general text on HPLC. After providing a thorough treatment of HPLC theory, this section addresses various topics including stationary phases, normal and reversed-phase HPLC, size exclusion, and LC/MS. The first section ends with chapters devoted to method development and validation.

Part II—“HPLC in the Pharmaceutical Industry”—begins with an insightful review of how HPLC and LC/MS are currently being used in drug discovery. This chapter is followed by overviews of several relevant pharmaceutical applications, which include preformulation, formulation, pharmacokinetics and drug metabolism, process development, and manufacturing.

The final section of the book (Part III) is entitled “Hyphenated Techniques and Specialized HPLC Separations.” In this section, the reader will find several chapters on specific topics that are highly relevant to pharmaceutical applications. Examples include fast HPLC methods, preparative chromatography, chiral HPLC, protein analysis, and LC-NMR.

As a closing note to the JASMS readership, I must warn that if you decide to add this text to your personal library, it will occupy considerable space on your bookshelf. That being said, the editors should be commended for how well they took on such a comprehensive subject and worked with several recognized contributors to make a text that is both manageable and highly informative.