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Abstract

We investigate the “generalized Heron polynomial” that relates the squared area of ann-gon in-
scribed in a circle to the squares of its side lengths. For a(2m + 1)-gon or(2m + 2)-gon, we express
it as the defining polynomial of a certain variety derived from the variety of binary(2m − 1)-forms
havingm − 1 double roots. Thus we obtain explicit formulas for the areas of cyclic heptagon
octagons, and illuminate some mysterious features of Robbins’ formulas for the areas of cyc
tagons and hexagons. We also introduce a companion family of polynomials that relate the s
area of ann-gon inscribed in a circle, one of whose sides is a diameter, to the squared lengths
other sides. By similar algebraic techniques we obtain explicit formulas for these polynomials
n � 7.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Heron of Alexandria (c. 60 BC) is credited with the formula that relates the areaK of a
triangle to its side lengthsa, b, andc:

K = √
s(s − a)(s − b)(s − c)

wheres = (a + b + c)/2 is the semiperimeter. For polygons with more than three s
the side lengths do not in general determine the area, but they do if the polygon is c
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andcyclic (inscribed in a circle). Brahmagupta, in the seventh century, gave the anal
formula for a convex cyclic quadrilateral with side lengthsa, b, c, andd :

K = √
(s − a)(s − b)(s − c)(s − d)

wheres = (a + b + c + d)/2. See [2] for an elementary proof.
Robbins [7] found a way to generalize these formulas. First, drop the requirem

convexity and consider the square of the (signed) areaK of a possibly self-intersectin
oriented cyclic polygon. For this purpose we can define the area enclosed by a
curveC to be

∮
C

x dy. Second, express the relation betweenK2 and the side lengths a
a polynomial equation with integer coefficients. Given a cyclic polygon, one can pe
its edges within its circumscribed circle without changing its area, so the polynomia
be symmetric in the side lengths, and in fact it can be written in terms of 16K2 and the
elementary symmetric functionsσi in the squaresof the side lengths. For instance, t
Heron and Brahmagupta formulas can be written

16K2 − 4σ2 + σ 2
1 − ε · 8

√
σ4 = 0

in which ε is 0 for a triangle, 1 for a convex quadrilateral, and−1 for a nonconvex quadri
lateral. Hence all cyclic quadrilaterals satisfy the polynomial equation(16K2 − 4σ2 +
σ 2

1 )2 − 64σ4 = 0. The general result is as follows.

Theorem 1 [7]. For eachn � 3, there is a unique(up to sign) irreducible polynomial
αn with integer coefficients, homogeneous inn + 1 variables with the first variable hav
ing degree2 and the rest having degree1, such thatαn(16K2, a2

1, . . . , a2
n) = 0 whenever

a1, . . . , an are the side lengths of a cyclicn-gon andK is its area.

The polynomialsαn are now known in the literature asgeneralized Heron polynomial.
For certain sets ofn side lengths, as shown in [7], one can find up to∆n distinct squared
areas, where

∆n = n

2

(
n − 1⌊
n−1

2

⌋)
− 2n−2.

Hence one expects thatαn has degree∆n in its first variable. This conjecture of Robbin
and two others made in [7], have recently been established. We summarize them in
rem 2.

Theorem 2 [1,3,8]. The polynomialαn is monic in16K2 and has total degree2∆n. If n is
even, thenαn = βnβ

∗
n for some polynomialβn in the variables16K2, σ1, . . . , σn−1,

√
σn,

where
√

σn = a1 · · ·an andβ∗
n is βn with

√
σn replaced by−√

σn.

See [3] or Section 5 for the degree, [8] or [1] for monicity, and [8] for the factoriza
whenn is even. Robbins’ main interest, however, and the motivation for our research

to find reasonably explicit formulas for allαn andβn.
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In [7], Robbins found formulas forα5 andβ6 that have a curious form. To present the
concisely, we reformulate the definition [7] of thecrossing parityε of a cyclic n-gon.
Assume that then-gon has verticesv1, . . . , vn in the complex plane and circumcenter
For oddn let ε = 0, and for evenn = 2m + 2 define

ε = (−1)m sign

[
v1 − v2

v1
· v2 − v3

v2
· · · vn − v1

vn

]
∈ {−1,+1},

which is well defined because the product in brackets is real and nonzero if all edge
positive length. (Observe that the complex conjugate of 1− vj+1/vj is 1− vj /vj+1, so
conjugation just multiplies the product by(−1)n.) The factor(−1)m ensures thatε = 1 for
a convex cyclic(2m+2)-gon. Hence this definition ofε agrees with the previous definitio
for n ∈ {3,4}.

Now assumen ∈ {5,6}. Defineu2 = −4K2, and make the substitutions

t1 = σ1,

t2 = −σ2 + 1

4
t2
1 − u2,

t3 = σ3 + 1

2
t1t2 − ε · 2

√
σ6,

t4 = −σ4 + 1

4
t2
2 + ε · t1√σ6,

t5 = σ5 + ε · t2√σ6. (1)

Then, for any cyclic pentagon or hexagon of the given crossing parity, the cubic polyn
u2 + t3z + t4z

2 + t5z
3 has a double root, so its discriminant vanishes:

t2
3 t2

4 − 4u2t
3
4 − 4t3

3 t5 + 18u2t3t4t5 − 27u2
2t

2
5 = 0. (2)

When theti are expanded, this discriminant is a polynomial of degree∆5 = 7 in u2, and
hence in 16K2. Multiplying it by 218 makes it monic in 16K2 and yieldsα5, β6, or β∗

6
according to whetherε is 0,+1, or−1. Equations (1) and (2) are the main formulas of [
slightly simplified.

In Section 3, we generalize this construction. Fixn and the crossing parityε, and let
m = �(n − 1)/2�. We introduce auxiliary quantitiesu2, . . . , um, with u2 = −4K2, and
inductively define certain polynomial expressionsti in theσj anduj with j � i. Forn = 5
or 6, these definitions reduce to (1). Our Corollary 5 then says that the polynomial

Pn(z) = u2 + · · · + umzm−2 + tm+1z
m−1 + · · · + t2m+1z

2m−1

is divisible by the square of a polynomial of degreem−1. In other words, for any values o
the ti anduj coming from a cyclicn-gon,Pn(z) hasm − 1 double roots overC (counting
with multiplicity, and including roots at infinity). In the projective spaceP2m−1 of nonzero

polynomials of degree� 2m − 1 considered up to scalar multiples, the polynomials with
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a squared factor of degreem − 1 form a variety of codimensionm − 1, defined locally
by m − 1 equations. So, if we regardu2 throughum as indeterminates and expand ea
ti in terms of theσj anduj , we can in principle eliminate them − 2 unwanted quantitie
u3, . . . , um and recover a single polynomial, which isα2m+1, β2m+2, or β∗

2m+2 depending
on ε. In Section 4 we carry out this program form = 3 to obtain formulas forα7 andα8,
the generalized Heron polynomials for cyclic heptagons and octagons.

There is another family of area polynomials, not previously considered, that is su
tible to the same analysis. Call an(n + 1)-gonsemicyclicif it is inscribed in a circle with
one of its sides being a diameter. Its squared area satisfies a polynomial relation w
squares of the lengths of the othern sides; the degree in the squared area turns out to

∆′
n = n

2

(
n − 1⌊
n−1

2

⌋)
= ∆n + 2n−2.

Theorems 1 and 2 carry over to this setting as follows.

Theorem 3. For eachn � 2, there exists a unique monic irreducible polynomialα′
n with

integer coefficients, homogeneous inn+1 variables with the first variable having degree2
and the rest having degree1, such thatα′

n(16K2, a2
1, . . . , a2

n) = 0 whenevera1, . . . , an are
the lengths of the sides of a semicyclic(n+1)-gon excluding a diameter, andK is its area.
The total degree ofα′

n is 2∆′
n.

The proof thatα′
n exists and is unique (without assuming monicity) follows the pr

of Theorem 1 in [7] almost verbatim, and the argument in [1] shows thatα′
n is monic. We

establish the degree in Section 5 by an elementary argument, which is independen
rest of this paper.

Cyclic and semicyclic polygons are similar in many ways. For instance, just a
polygon of largest area one can make withn given side lengths is convex and cyclic, t
polygon of largest area one can make withn given side lengths and one free side is con
and semicyclic. We will adduce many algebraic similarities in the following sections
now we just observe that the polynomialα′

3, which can be worked out by hand, also tak
the form of a discriminant: ifu2 = −4K2, then

α′
3 = 16 Discr

(
z3 + σ1z

2 + (σ2 + u2)z + σ3
)
.

2. The main identity

All our area formulas are based on a generating function identity, Theorem 4. This
tity relates the elementary symmetric functionsσi in the squared side lengthsa2

1, . . . , a2
n to

certain quantitiesτj that arise in Robbins’ proofs of the pentagon and hexagon form
It holds for both cyclic and semicyclic polygons and for both odd and evenn.

Suppose we have a cyclicn-gon or semicyclic(n + 1)-gon inscribed in a circle o

radiusr centered at the origin in the complex plane. Let its vertices bev1, . . . , vn and
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vn+1 = δv1, where δ = 1 for a cyclic n-gon andδ = −1 for a semicyclic(n + 1)-
gon. Following [7], we introduce the vertex quotientsqi = vi+1/vi for i = 1, . . . , n,
and letτ0, τ1, . . . , τn be the elementary symmetric functions in theqi . Thenτ0 = 1 and
τn = q1q2 · · ·qn = δ. Elementary geometry yields the equations

a2
i = r2(2− qi − q−1

i

)
, 1� i � n, (3)

16K2 = −r4(q1 + · · · + qn − q−1
1 − · · · − q−1

n

)2 = −r4(τ1 − δτn−1)
2. (4)

Using (3) one can express eachσi in terms ofr and theτi . Letg(y) = (y −1)2+xy/r2.
Observe thatx is one of the valuesa2

i exactly wheng(y) has one of the vertex quotien
qi as a root, or in other words, wheng(y) has a common root with the polynomialf (y) =∏n

i=1(y − qi) = ∑n
i=0(−1)iτiy

n−i . Hence the resultant off (y) andg(y) is a constan
times

h(x) =
n∏

i=1

(
x − a2

i

) =
n∑

i=0

(−1)iσix
n−i .

Examining the coefficient ofxn in the resultant

Res(f, g) =
n∏

i=1

g(qi) =
n∏

i=1

(
(qi − 1)2 + xqi/r2)

reveals that the constant isδr−2n. Furthermore, eachσi is a homogeneous quadratic po
nomial in theτ0, . . . , τn, which is apparent if one writes the resultant as the determina
the Sylvester matrix [4, p. 398]. A particularly simple example is

σn = δ(−1)nr2n(τ0 − τ1 + τ2 − · · · ± τn)
2.

If n = 2m + 2 andδ = 1, Robbins showed that
√

σn is expressible in terms ofr , theτi ,
and the crossing parityε:

√
σn = |v1 − v2| · · · |vn − vn+1| = rn|1− q1| · · · |1− qn|

= (−1)mεrn(1− q1) · · · (1− qn)

= (−1)mεrn(τ0 − τ1 + τ2 − · · · + τn). (5)

Until now we have been following [7] except for the inclusion of semicyclic polygons
Consider now the involution that reflects the polygon across the real axis. This ope

preserves the squared area and the side lengths, but it replaces eachqi with qi = q−1
i

and hence replaces eachτi with δτn−i . Because eachσi is a quadratic form in theτj

preserved by the involution, it can be uniquely decomposed into two parts: a quadrati
in symmetric linear combinations of theτj , and a quadratic form in antisymmetric line
combinations of theτj . When we perform this decomposition on the whole genera∑

function i (−x)iσi , each part factors in a surprising way, which our main identity records.
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To write the identity explicitly, we need the following linear combinations of theτj , for
0� k � n/2:

dk =
k∑

i=0

(−1)i
(

n − 2k + i − 1

i

)
(τk−i − τn−k+i ), (6)

ek =
k∑

i=0

(−1)i
[(

n − 2k + i

i

)
+

(
n − 2k + i − 1

i − 1

)]
(τk−i + τn−k+i ). (7)

We follow the convention that
(
l
k

) = 0 for everyl whenk < 0. Let D(x) = ∑
dkx

k and
E(x) = ∑

ekx
k be the generating functions fordk andek .

Theorem 4 (Main Identity). For a cyclicn-gon or semicyclic(n+ 1)-gon of radiusr , with
δ = 1 or −1 respectively, the symmetric functionsσi of the squared side lengths andτi of
the vertex quotients are related by

δ ·
n∑

i=0

(−x)iσi = 1

4
E

(
r2x

)2 +
(

r2x − 1

4

)
D

(
r2x

)2
. (∗)

Proof. When theσi are expanded in terms of theτj , both sides of the main identity becom
polynomials inr2x, so we may assumer = 1. Letf (y) = ∑n

i=0(−1)iτiy
n−i as before, and

replacex with x−1 in the definition ofg to yield g(y) = (y − 1)2 + x−1y. The left-hand
side of (∗) is then

δ ·
n∑

i=0

(−x)iσi = δxnh
(
x−1) = xn Res(f, g). (8)

We will calculate the resultant using itsPGL(2)-invariance and other standard prop
ties [4]. Make the change of variabley = (z − 1)/(z + 1) so that the roots ofg are related
by z �→ −z instead ofy �→ y−1. We obtain the polynomials

f ∗(z) = (z + 1)nf

(
z − 1

z + 1

)
=

n∑
i=0

(−1)iτi(z − 1)n−i (z + 1)i ,

g∗(z) = (z + 1)2g

(
z − 1

z + 1

)
= x−1(z2 + 4x − 1

)
.

The transformationy = (z − 1)/(z + 1) has determinant 2, so [4, p. 399]

xn Res(f, g) = 2−2nxn Res
(
f ∗, g∗) = 2−2nf ∗(√1− 4x

)
f ∗(−√

1− 4x
)
.

Write f ∗(z) = f0(z
2) + zf1(z

2), separating even and odd powers ofz. Then[ ]

xn Res(f, g) = 2−2n f0(1− 4x)2 − (1− 4x)f1(1− 4x)2 , (9)
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which, combined with (8), explains the form of the main identity.
It remains to evaluatef0(1− 4x) andf1(1− 4x). We consider onlyf0, asf1 is similar

but simpler. To do this, it helps to introduce the Fibonacci polynomials

Fn(x) =
�n/2�∑
i=0

(
n − i

i

)
xi,

which count compositions ofn by 1’s and 2’s. They satisfy the recurrence

Fn(x) = Fn−1(x) + xFn−2(x), n � 1, (10)

with F0(x) = 1 andFn(x) = 0 for n < 0, and have generating function

F(x; t) =
∑
n

Fn(x)tn = (
1− t − xt2)−1

. (11)

Using these polynomials, the generating functionsD(x) andE(x) can be written

D(x) =
�n/2�∑
k=0

dkx
k =

�n/2�∑
i=0

(τi − τn−i )x
iFn−2i−1(−x),

E(x) =
�n/2�∑
k=0

ekx
k =

�n/2�∑
i=0

(τi + τn−i )x
i
(
Fn−2i (−x) − xFn−2i−2(−x)

)
.

To evaluatef0(1 − 4x), we use the definition off ∗(z) to rewritef0(z
2) = (f ∗(z) +

f ∗(−z))/2 in terms of the sumsτi +τn−i . If we let θi = 1/2 if 2i = n andθi = 1 otherwise,
then

f0
(
z2) =

�n/2�∑
i=0

(−1)nθi(τi + τn−i )
(
1− z2)i

∑
j�0

(
n − 2i

2j

)
z2j . (12)

Next, we want to substitutez2 = 1 − 4x and evaluate the sum overj . Using the identity∑
m

(
m
k

)
tm = tk(1− t)−k−1 we obtain

∑
m�0

tm
∑
j�0

(
m

2j

)
(1− 4x)j = 1− t

1− 2t + 4xt2
= (1− t)F (−x;2t).

We extract the coefficient oftn−2i via (11) to rewrite (12) as

f0(1− 4x) =
�n/2�∑

(−1)nθi(τi + τn−i )(4x)i2n−2i

(
Fn−2i (−x) − 1

Fn−2i−1(−x)

)
.

i=0
2
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The recurrence (10) shows that

θi

(
Fn−2i (−x) − 1

2
Fn−2i−1(−x)

)
= 1

2

(
Fn−2i (−x) − xFn−2i−2(−x)

)
,

and sof0(1 − 4x) = (−1)n2n−1E(x). Likewise f1(1 − 4x) = (−1)n2n−1D(x). These
equations, combined with (8) and (9), yield the main identity (∗). �

3. Consequences of the main identity

The main identity tells us how to generalize the definition of the quantitiesti anduj

that were so useful in simplifying the pentagon and hexagon formulas. Cyclicn-gons have
e0 = τ0 + τn = 2 by (7), so the expansion ofE(r2x)2 includes linear terms in theek . The
substitutions that replace theσi with theti exploit these linear terms to isolate and elimin
the variablesek . This process, in effect, movesE(r2x)2/4 to the left-hand side of the ma
identity and rewrites the new left-hand side in terms of the new variablesti anduj . The
algebraic relationship among theti anduj is then expressed by the factorization of t
remaining term on the right-hand side.

Corollary 5. Given a cyclicn-gon of crossing parityε and radiusr , let m = �(n − 1)/2�
and letuj = r2j

∑j−1
i=1 (di/4− di−1)dj−i for j � 1. Inductively definet0 = −2 and

tj = (−1)j+1σj +
∑

1�i,j−i�m

ti tj−i

4
+

{−uj , if j � m,

εtj−m−1
√

σn, if j > m,
(13)

for j = 1, . . . ,2m + 1. Thentj = −ej r
2j for 0 � j � m, and the polynomial

Pn(z) = u2 + u3z + · · · + umzm−2 + tm+1z
m−1 + · · · + t2m+1z

2m−1

factors as(1/4− r2z)(z−1D(r2z))2.

By (6) and (4), we haveu2 = r4d2
1/4 = r4(τ1 − τn−1)

2/4 = −4K2, andu1 = 0 by
definition. Thus thetj anduj in Corollary 5 agree with those defined in Section 1; see

Proof. We havee0 = τ0+τn = 2 by the definition (7), sot0 = −e0r
0. Now, for 1� j � m,

we prove by induction onj that tj = −ej r
2j . The coefficient ofxj in E(r2x)2/4 is

r2j

j∑
i=0

eiej−i

4
= r2j ej +

j−1∑
i=1

ti tj−i

4

by the induction hypothesis. The coefficient ofxj in (r2x − 1/4)D(r2x)2 is −uj , by the
definition ofuj , so the equationtj = −ej r

2j follows by comparing coefficients ofxj in

the main identity.
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For j > m we must consider the coefficientr2m+2em+1 of xm+1 in E(r2x). If n =
2m + 1, thenE has degreem by definition so this coefficient is zero. But ifn = 2m + 2,
then the coefficient is

r2m+2em+1 = rn

(
2τm+1 +

m+1∑
i=1

(−1)i2(τm+1−i + τm+1+i )

)
= −2ε

√
σn

by (7) and (5). So form < j � 2m + 1, the coefficient ofxj in E(r2x)2/4 is

r2j

m∑
i=j−m

eiej−i

4
+ r2j ej−m−1em+1

2
=

m∑
i=j−m

ti tj−i

4
+ tj−m−1ε

√
σn,

and this equation holds whethern is odd or even becauseε = 0 whenn is odd. Thus, by
the main identity,−tj is the coefficient ofxj in (r2x − 1/4)D(r2x)2 for j = m + 1, . . . ,

2m + 1.
We now see that(r2x − 1/4)D(r2x)2, which is a polynomial of degree 2m + 1 whose

two lowest terms vanish, is exactly−x2Pn(x). �
There is a geometric argument that Corollary 5 contains enough information to re

the generalized Heron polynomialαn. To simplify the explanation, assumen = 2m+1 and
m � 2. The nonzero polynomials that factor likePn(z), namely{

p(z) = (az + b)q(z)2 ∈ C[z] ∣∣ deg(q) � m − 1, p(z) 	≡ 0
}
,

naturally form a projective variety of codimensionm − 1 in P2m−1, the homogeneou
coordinates being the coefficients ofp(z). This variety is irreducible because it is the ima
of P1×Pm−1 under a regular map. Hence the affine varietyXm ⊂ A2m of such polynomials
(now including the zero polynomial), which has the same ideal, is also irreducible.

By the inductive definition (13), eachtj for 1� j � 2m+ 1 is a polynomial function o
σ1, . . . , σj andu2, . . . , umin(j,m). These functions give rise to a morphismf :A3m → A2m,
namely

f : (σ1, . . . , σ2m+1;u2, . . . , um) �→ (tm+1, . . . , t2m+1;u2, . . . , um),

which we claim is a trivial bundle with fiberAm. Consider a pointx = (tm+1, . . . , t2m+1;
u2, . . . , um) in the range, and choose arbitrary values forσ1, . . . , σm. Let j > m. The defi-
nition of tj involvesσj in exactly one term, whose coefficient is(−1)j+1, so we can turn
it around to expressσj as a polynomial function oftj−m, . . . , tj , and thence by further us
of (13) as a polynomial in(σ1, . . . , σm;u2, . . . , um; tm+1, . . . , tj ). Thus there is a uniqu
point in f −1(x) having the chosen values of(σ1, . . . , σm). In other words, each fiber off
is naturally parameterized by(σ1, . . . , σm).

Putting these facts together, we find thatf −1(Xm) ≈ Xm × Am is irreducible and of

codimensionm − 1. When we apply the projectionπ :A3m → A2m+2 that eliminates the
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m− 2 variablesu3, . . . , um, the closure of the imageπ(f −1(Xm)) is an irreducible variety
of codimension at least 1 that containsV (αn), so it must equalV (αn). The polynomialαn

is determined (up to a normalizing constant) as the defining polynomial of this variet
Corollary 5 therefore reduces the problem of findingαn to two subproblems: finding th

defining equations of the varietyXm, and then, after expandingtm+1, . . . , t2m+1 in terms
of theσi anduj , eliminating them − 2 variablesu3, . . . ,um.

The application of the main identity to semicyclic polygons is similar but slightly
ferent. In this casee0 = τ0 + τn = 0 andd0 = τ0 − τn = 2, so the main identity involve
linear terms in thedk but not theek . Our definitions ofti anduj are therefore designed
extract and eliminate the variablesdk . Again we can distill the relationship among theti
anduj to the factorization of a polynomialP ′

n(z). This time, due to the factor(r2x − 1/4)

in the main identity, the expression forti explicitly includesr2, so there remains one mo
unwanted variable to eliminate for a givenn.

Corollary 6. Given a semicyclic(n + 1)-gon of radiusr , let m = �(n − 1)/2� and let
uj = r2j

∑j−1
i=1 eiej−i/4 for 1� j � m. Inductively definet0 = −2 and

tj = (−1)j+1σj +
∑

1�i�m
1�j−i�m

ti tj−i

4
− r2

∑
0�i−1�m
0�j−i�m

ti−1tj−i +
{−uj , if j � m,

0, if j > m,
(14)

for j = 1, . . . , n. Thentj = −dj r
2j for 0� j � m, and the polynomial

P ′
n(z) = u2 + u3z + · · · + umzm−2 + tm+1z

m−1 + · · · + tnz
n−2

is the square ofE(r2z)/2z. In particular, tn = 0 if n is odd.

Againu2 = r4e2
1/4= r4(τ1 + τn−1)

2/4= −4K2 by (4), since nowδ = −1.

Proof. As in Corollary 5, the claims follow from equating coefficients ofxj in the main
identity and inducting onj to evaluatetj for 0� j � m. If n = 2m+1, the degree ofE(x)

is justm, sotn = 0. �
The polynomialP ′

n(z) containsm − 1 unwanted variables, namelyr2 andu3, . . . , um.
If n = 2m + 1, thenP ′

n(z) is a polynomial of degree 2m − 2 that is a perfect square, whic
gives rise tom−1 equations in its coefficients, and we have the additional equationtn = 0.
If n = 2m + 2, thenP ′

n(z) is a square of degree 2m, which yieldsm equations. In eithe
case Corollary 6 holds enough information, in principle, to derive the area formulaα′

n. As

before, one can make this claim precise using some algebraic geometry.
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4. Explicit formulas

In this section we apply the results of Section 3 to produce area formulas for
heptagons and octagons, and also semicyclic quadrilaterals, pentagons, hexagons,
tagons. The formulas are collected in Theorems 8 and 9 below.

Because the degree of the generalized Heron polynomialαn is exponential inn, and the
number of terms could be exponential inn2, there is some question as to what constitu
an explicit formula. Our formulas have concise descriptions, and if a polygon is
with exact (for instance, rational) side lengths, the polynomial satisfied by its area c
computed exactly using standard operations such as evaluating the determinant of a
of univariate polynomials.

We begin by applying Corollary 5 ton ∈ {7,8}. It gives us a binary quintic form

x5Pn(y/x) = u2x
5 + u3x

4y + t4x
3y2 + t5x

2y3 + t6xy4 + t7y
5

whose coefficients are polynomials inu2, u3, σ1, . . . , σ7 and perhaps
√

σ8, and which,
when its coefficients are evaluated for any cyclicn-gon, has two linear factors overC
of multiplicity two. The condition for a quintic formQ to factor in this way is given by th
vanishing of a certain covariantC, which in the notation of transvectants [6] is

C = 2Q(H, i)(2) + 25H(Q, i)(2) + 6Qi2, H = (Q,Q)(2), i = (Q,Q)(4).

Here(f, g)(d) = ∑d
i=0(−1)i

(
d
i

)
(∂df/∂xi∂yd−i )(∂dg/∂xd−i∂yi). This fact about quintics

is presumably classical, but we have not found a reference.
In any case,C is a form of degree 9 in{x, y} whose coefficients are forms of degree 5

the coefficients of the original quintic, so its coefficients give us ten degree-5 polyno
in u2, u3, t4, t5, t6, t7 that must vanish. These same ten polynomials can be obtained
Gröbner basis, with a graded term ordering, for the ideal of the variety of quintic f
that factor as a linear form times the square of a quadratic. The ten polynomials r
homogeneous when we regarduj andtj as having degreej .

To obtain the desired relation betweenu2 and theσi , we must expand the coefficien
of C as polynomials inu3 and then eliminateu3. We can do this most explicitly usin
resultants with respect tou3. The two simplest coefficients ofC are

F = u2
3t

3
4 − 4u2t

4
4 − 4u3

3t4t5 + 18u2u3t
2
4 t5 − 27u2

2t4t
2
5

+ (
8u4

3 − 42u2u
2
3t4 + 36u2

2t
2
4 + 54u2

2u3t5 − 80u3
2t6

)
t6

+ (
8u2u

3
3 − 30u2

2u3t4 + 50u3
2t5

)
t7, (15)

of total degree 18, and

G = u2
3t

2
4 t5 − 4u2t

3
4 t5 − 4u3

3t
2
5 + 18u2u3t4t

2
5 − 27u2

2t
3
5

+ (
2u3

3t4 − 8u2u3t
2
4 − 6u2u

2
3t5 + 36u2

2t4t5 − 8u2
2u3t6

)
t6( )
+ 16u4

3 − 74u2u
2
3t4 + 40u2

2t
2
4 + 110u2

2u3t5 − 200u3
2t6 t7, (16)
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of total degree 19. LetP �→ P̃ denote the operation of expanding theti in terms ofu2, u3,
andσ1, . . . , σn as specified by Corollary 5. This operation preserves total degree. BoF̃

andG̃ have degree 6 inu3. Their resultant with respect tou3 therefore has total degre
6× 19= 114, and it must have the polynomialα7 of total degree 2∆7 = 76 as a factor.

The resultant Res(F̃ , G̃) seems to be too large to compute and factor explicitly, bu
can describe its unwanted factors as follows with a little computer assistance. First o
that every term inF andG is divisible by eitheru2 or u3, and hence the same is true ofF̃

andG̃. It follows that Res(F̃ , G̃) is divisible byu2. In factu7
2 | Res(F̃ , G̃), as we will see

in Lemma 7 below. Next, consider the polynomials

F1 = 4u3
3 − 15u2u3t4 + 25u2

2t5, (17)

G1 = 7u2
3t4 − 20u2t

2
4 − 5u2u3t5 + 100u2

2t6, (18)

which are closely related to the coefficients oft7 in F and G. Specifically, F1 =
(2u2)

−1∂F/∂t7 andG1 = u−1
2 (2u3F1 − ∂G/∂t7). We will show that Res(F̃1, G̃1) divides

Res(F̃ , G̃).
First we claim that ifF1 = G1 = 0, thenF = G = 0. The ideal〈F1,G1〉 does not

containF and G, but by some easy calculations, it does containu2F , u3F , u2G, and
u3G. If F1 = G1 = 0, then all four of these polynomials vanish; so if eitheru2 	= 0 or
u3 	= 0, we must haveF = G = 0, while if u2 = u3 = 0, we already know thatF = G = 0.
This establishes the claim. It follows that̃F1 = G̃1 = 0 impliesF̃ = G̃ = 0. Consequently
wherever Res(F̃1, G̃1) vanishes, so does Res(F̃ , G̃). Algebraically, this means that eve
irreducible factor of Res(F̃1, G̃1) divides Res(F̃ , G̃). The resultant of̃F1 and G̃1 with
respect tou3 is simple enough to compute explicitly. It has total degree 30, and it fa
asu3

2 times an irreducible polynomial inQ[u2, σ1, . . . , σ7] of total degree 24.
Thus, not only does Res(F̃1, G̃1) divide Res(F̃ , G̃), butu4

2 Res(F̃1, G̃1) does also. The
quotient by the latter polynomial has total degree 114− 8 − 30= 76= 2∆7, so it must
be a scalar multiple of the desired polynomialα7, β8, or β∗

8; there are no more unwante
factors. The scalar can be computed by settingσ2, . . . , σ7 to zero (see Theorem 8 for th
result). It remains only to prove the following lemma.

Lemma 7. With the definitions above,u7
2 | Res(F̃ , G̃, u3).

Sketch of proof. By direct calculation on a computer,u7
2 divides Res(F,G,u3) but u8

2
does not. The only component ofV (F,G) lying on the hyperplaneu2 = 0 is the linear vari-
etyV (u2, u3), soV (F) andV (G) must intersect with multiplicity 7 alongV (u2, u3) ⊂ A6.
Now, assumingn = 7 for definiteness, pull back via the projectionf :A9 → A6 that maps
(σ1, . . . , σ7, u2, u3) �→ (t4, . . . , t7, u2, u3). Becausef is smooth, the intersection multiplic
ity of V (F̃ ) andV (G̃) alongf −1V (u2, u3) = V (u2, u3) ⊂ A9 is also 7. For fixed generi
values ofσ1, . . . , σ7, we therefore haveu7

2 | Res(F̃ , G̃, u3). We conclude that this divisibil

ity holds globally as well. �
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To summarize, the generalized Heron polynomialsα7 andα8 = β8β
∗
8 can be computed

as follows, remembering thatσk represents thekth elementary symmetric function in th
squaresa2

1, . . . , a2
n of the side lengths, andu2 represents−4 times the area squared.

Theorem 8 (Heptagon/Octagon Formula). Given a crossing parityε ∈ {−1,0,+1}, define
polynomialsF,G,F1,G1 ∈ Q[u2, u3, σ1, . . . , σ7,

√
σ8] by Eqs.(15)–(18)and the induc-

tive definition(13)with m = 3, regardingu2 andu3 as indeterminates. Then

210155 Res(F,G,u3)

u4
2 Res(F1,G1, u3)

=


α7, if ε = 0,

β8, if ε = +1,

β∗
8, if ε = −1.

(19)

Example. Consider a cyclic octagon with crossing parityε = 1 and all side lengths equ
to 1. We haveσk = (8

k

)
, and by (13) we compute

t4 = 1

4
u2

2 − 4u3 − 10u2 − 4,

t5 = 1

2
u2u3 + 2u2

2 + 6u3 + 20u2 + 16,

t6 = 1

4
u2

3 + 2u2u3 + 4u2
2 − 4u3 − 17u2 − 24,

t7 = −u3 − 4u2 + 16.

Now F andG can be evaluated as polynomials inu2 andu3. (They have 34 and 38 term
respectively, so we refrain from writing them out.) Using a computer algebra system
can calculate and factor the resultant ofF andG with respect tou3. The result is

−2−33(u2
2 + 96u2 + 256)(u2 + 3)8(u2 + 4)28

× u7
2

[
19321u12

2 + 401584u11
2 + · · · + 223u2 + 224].

The resultant ofF1 andG1 is −2−855u3
2 times the same degree-12 polynomial inu2 that

appears in brackets above. Therefore Eq. (19) says

β8 = β8(−4u2,1,1, . . . ,1) = 276(u2
2 + 96u2 + 256

)
(u2 + 3)8(u2 + 4)28.

The factors in this formula have the following meanings.

• The rootu2 = −16(3+ √
8) of u2

2 + 96u2 + 256 corresponds to a regular octagon
side length 1, whose area isK = ±2(1+ √

2). The other rootu2 = −16(3− √
8) cor-

responds to a regular eight-pointed star with vertices atr, re3πi/4, re3πi/2, . . . , where
r2 = 1− √

2/2.
• The factor(u2 + 3) represents an equilateral triangle of side length 1 that is trave
twice by the cyclic octagon, except that one edge is traversed three times “forward”
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and once “backward”. The signed area isK = ±√
3/2. There are eight ways to choo

the backward edge, so there are eight factors of this type.
• The factor(u2 + 4) corresponds to a square of area 1 formed by a cyclic octagon

six forward edges and two backward edges. There are
(8
2

) = 28 ways to choose the tw
backward edges, so this factor occurs with multiplicity 28.

In each case one can check that the crossing parityε is 1.

For the rest of this section, we turn our attention to semicyclic(n + 1)-gons withn = 3,
4, 5, and 6, and switch to the definitions ofti anduj given in Corollary 6. To state th
area formulas most cleanly we introduce a notion of parity for semicyclic polygons
n be even, and observe that the quantitiese1 = τ1 + τn−1 = ∑

qi − ∑
q−1
i anden/2/2 =∑

(−1)iτi = ∏
(1−qi) are both pure imaginary. (Compute their complex conjugates u

qi = q−1
i .) Hence their product is real. Letε ∈ {−1,0,+1} be its sign. Then we have

ε|K|√σn = ε · 1

4
r2|τ1 + τn−1| · |v1 − v2||v2 − v3| · · · |vn − v1|

= ε · 1

4
r2|τ1 + τn−1| · rn|1− q1| · · · |1− qn|

= rn+2 · 1

4
e1 · 1

2
en/2.

Definew = 2ε|K|√σn = ε
√

u2tn for n even, and letw = 0 for n odd. Our formulas forα′
4

andα′
6 factor when written in terms ofw rather thanσn. We do not know whether this typ

of factorization occurs in general.

Theorem 9. Let n ∈ {3,4,5,6} andm = �(n − 1)/2�. Define polynomialst1, . . . , t2m+1 ∈
Q[u2, r

2, σ1, . . . , σn] inductively by Eq.(14). The generalized Heron polynomialα′
n for

semicyclic(n + 1)-gons is given by

α′
3 = 16 Discr

(
x3 − σ1x

2 + (σ2 + u2)x − σ3
)
, (20)

β ′
4 = 16 Discr

(
x3 − σ1x

2 + (σ2 + u2)x − (
σ3 − 2

√
u2t4

))
, (21)

α′
5 = 1

4
Res

(
t2
3 − 4u2t4, t5, r

2), (22)

β ′
6 = Res(t2

3 − 4u2(t4 − 2
√

u2t6), u2t5 − t3
√

u2t6, r
2)

4u6
2

, (23)

together withα′
4 = (β ′

4)(β
′
4)

∗ and α′
6 = (β ′

6)(β
′
6)

∗, where the asterisk denotes negat
every occurrence of

√
u2tn.

Proof. For n ∈ {3,4}, it is simplest to use the main identity directly. Defininge2 = 0 if

n = 3, we have
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1

4
E

(
r2x

)2 = 1

4
r4e2

1x
2 + 1

2
r6e1e2x

3 + 1

4
r8e2

2x
4

= u2x
2 + 2wx3 + · · ·

so, by Theorem 4, the cubic 1− σ1x + (σ2 + u2)x
2 − (σ3 − 2w)x3 factors as−(r2x −

1/4)D(r2x)2. In particular, its discriminant vanishes. Replacingx by −x−1, we obtain
Eq. (20) forn = 3, and forn = 4 we have factoredα′

4 as the product of two discriminan
β ′

4 and(β ′
4)

∗ corresponding toε = +1 andε = −1 respectively.
For largern we need Corollary 6. Forn = 5, it says thatu2 + t3z + t4z

2 + t5z
3 is the

square of the linear polynomialE(r2z)/(2z), which yields the two equationst2
3 −4u2t4 = 0

andt5 = 0. Their degrees inr2 are 6 and 5 respectively, so their resultant with respect tr2

has the correct total degree 2∆′
5 = 30. (Remember thatr2 has degree 1.) It remains only

scale the resultant to be monic in−4u2, and we get Eq. (22).
Forn = 6, Corollary 6 gives us the factorization

u2 + t3z + t4z
2 + t5z

3 + t6z
4 = 1

4
r4(e1 + e2r

2z + e3r
4z2)2

.

Usingw = r8e1e3/4, we derive the equations

u2t5 − t3w = 0,

u2 + t3z + (t4 − 2w)z2 = 1

4
r4(e1 + e2r

2z
)2

,

the second of which implies that the discriminantt2
3 − 4u2(t4 − 2w) of the left-hand side

vanishes. Thus we can form the resultant oft2
3 − 4u2(t4 − 2w) andu2t5 − t3w to eliminate

r2 and obtain a multiple of the desired area formula. The resultant is small enou
compute and factor symbolically. We obtainα′

6 = (β ′
6)(β

′
6)

∗ whereβ ′
6 is given by Eq. (23),

and(β ′
6)

∗ is β ′
6 with the opposite sign on

√
u2t6. �

5. Degree calculations

In this section we show by elementary means that the homogeneous polynomαn

andα′
n have total degrees 2∆n and 2∆′

n respectively, where∆n = n
2

(
n−1

(n−1)/2

) − 2n−2 and
∆′

n = n
2

(
n−1

(n−1)/2

)
.

First we explain why the degrees cannot be smaller. In [7], Robbins shows
deg(αn) � 2∆n by constructing∆n cyclic n-gons with generically different squared a
eas from a given set of edge lengths. He takes the edge lengths to be nearly equan is
odd, and adds a much shorter edge ifn is even. For semicyclic polygons, we can take
edge lengths to be nearly equal ifn is even; the argument of [7] then yields the desi
number∆′

n of semicyclicn-gons.
Suppose now thatn is odd. It is not necessary (and in fact not possible) to construc∆′

n

inequivalent semicyclicn-gons with given positive real edge lengthsaj . It suffices instead

to construct∆′

n configurations(r, q1, . . . , qn) of complex numbers satisfying
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ield
a2
j = r2(2− qj − q−1

j

)
, j = 1, . . . , n,

q1 · · ·qn = −1, (24)

since it is from these equations, together with the relation 16K2 = −r4(
∑

qj − ∑
q−1
j )2,

that one derives the existence and uniqueness of the irreducible polynomialα′
n. In our

configurationsr is always real and positive, but sometimesr < min{aj/2}, in which case
the qj are negative real numbers instead of complex numbers of norm 1. The plan
regard eachqj as a function ofr by choosing a branch of Eq. (24), and then find value
r such thatq1 · · ·qn = −1.

Let n = 2m + 1, let the first 2m edge lengths be large and nearly equal, and letan = 2.
To find configurations withr > max{aj/2}, choose arbitrarily whether 0< argqn < π

(the short edge goes “forward”) or−π < argqn < 0 (“backward”), and likewise choos
a set ofk < m of the long edges to go backward. Then there existm − k semicyclic
polygons with the given edge lengths and edge directions whose angle sums

∑
argqj

areπ,3π, . . . , (2m − 2k − 1)π . (Apply the Intermediate Value Theorem to
∑

argqj asr

varies from max{aj/2} to ∞.) The total number of such configurations is

m−1∑
k=0

2

(
2m

k

)
(m − k) = m

(
2m

m

)
.

To find configurations withr < min{aj /2} = 1, choose the branchqj < −1 for exactly
m of the long edges, and choose the branchqj > −1 for the otherm long edges. Le
εj = +1 orεj = −1 respectively. Asr → 0, the productq1 · · ·q2m approaches the consta∏2m

j=1 a
2εj

j , and henceq1 · · ·qn approaches 0 ifqn > −1 or −∞ if qn < −1. By choosing
the branch forqn according to whetherq1 · · ·q2m, evaluated atr = 1, is greater or les
than 1, we guarantee thatq1 · · ·qn = −1 for some intermediate value ofr . Thus we obtain
another1

2

(2m
m

)
configurations. (The factor of 1/2 is present because inverting everyqj

preserves the radius and the squared area; it corresponds to reversing the orientati
total number of configurations is therefore at least(

m + 1

2

)(
2m

m

)
= n

2

(
n − 1⌊
n−1

2

⌋)
= ∆′

n.

To establish matching upper bounds on the degrees ofαn and α′
n, we proceed indi-

rectly. First we revive an argument of Möbius from the 19th century [5], which prod
a polynomial of degree∆n that relatesr2 for a cyclic polygon to the squared side lengt
(Another version of this argument appears in [3].) Hence there are generically at mo∆n

circumradii for a given set of edge lengths. For generic side lengths (in particular, n
equal) and a radiusr that admits a solution(q1, . . . , qn) to the system of equations (24
the solution is unique up to inverting all theqj . (Any other solution would differ by in
verting a proper subset of theqj , so thoseqj would need to have product±1.) Thus,
becauser and theqj determine the area, there are generically at most 2∆n possible signed
areas, so deg(αn) � 2∆n. The same argument applied to semicyclic polygons will y

deg(α′

n) � 2∆′
n.



F. Miller Maley et al. / Advances in Applied Mathematics 34 (2005) 669–689 685

e

e

ping

pos-
nged.

n a

ees of
as

o

t

Given a cyclicn-gon with circumradiusr and side lengthsaj = 2yj for 1 � j � n, let
θj = sin−1(yj /r) be half the angle subtended by thej th side. Letε2, . . . , εn ∈ {−1,+1}
be chosen according to whether thej th side goes “backward” or “forward” relative to th
first side. Then the sumθ1 + ε2θ2 + · · · + εnθn is a multiple ofπ . Therefore∏

εj =±1

rn sin(θ1 + ε2θ2 + · · · + εnθn) = 0. (25)

The factors ofr make this a polynomial relation overQ betweenr2 and the squared sid
lengths. To see why, recall thatyj = r sinθj and letxj = r cosθj = (r2 − y2

j )1/2. Expand
(25) using sinθ = (eiθ − e−iθ )/2i to get

∏
ε2,...,εn

1

2i

[
n∏

j=1

(xj + iεj yj ) −
n∏

j=1

(xj − iεj yj )

]
= 0 (26)

whereε1 = 1. The left-hand side of (26) has a great deal of symmetry. Obviously, flip
the sign ofyj is equivalent to negatingεj . Flipping the sign of anyxj is equivalent to
flipping εj and negating each product overj . If j = 1, we can restore the conditionε1 = 1
by flipping everyεj and negating every bracket. All these operations just permute and
sibly negate all the 2n−1 bracketed factors, so they leave the overall expression uncha
Therefore, no odd powers ofxj occur in the expansion of (26), and hence eachx2

j can
be replaced byr2 − y2

j . Likewise eachyj occurs only to even powers. Thus we obtai
polynomial equationM(r2, y2

1, . . . , y2
n) = 0.

The remaining part of Möbius’ argument uses series expansion to find the degr
the leading and trailing terms ofM . Fix theεj , and rewrite the bracketed factor of (26)

n∏
j=1

(√
r2 − y2

j + iεj yj

)
−

n∏
j=1

(√
r2 − y2

j − iεj yj

)
.

To find the term of highest degree inr , expand aroundr = ∞; the highest terms cancel, s
the degree isn − 1. To find the term of lowest degree, expand aroundr = 0 to get

n∏
j=1

iyj

(
1+ εj − r2

2y2
j

− · · ·
)

−
n∏

j=1

iyj

(
1− εj − r2

2y2
j

− · · ·
)

.

Its initial term has degree min(k, n − k) in r2, wherek is the number ofεj equal to−1.
ThereforeM is a power ofr2 times a polynomial inr2 of degree

2n−1n − 1

2
−

n−1∑
k=0

(
n − 1

k

)
min(k, n − k),

which simplifies to∆n. We can factor out the unwanted power ofr2 because it was no

needed to make Eq. (25) hold.
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For semicyclic polygons, the signed sum of theθj is an odd multiple ofπ/2. Equation
(25) therefore becomes

∏
εj =±1

rn cos(θ1 + ε2θ2 + · · · + εnθn) = 0,

which expands to a polynomial relationM ′(r2, y2
1, . . . , y2

n) = 0. Using series expansio
again, one finds thatM ′ is monic of degreen2n−2 in r2, and its lowest nonzero term h
the same degree as that ofM . HenceM ′ is a power ofr2 times a polynomial whose degre
in r2 is ∆n + 2n−2 = ∆′

n.

6. Specializations

Corollary 5 characterizes the generalized Heron polynomialαn as the relation amon
u2 = −4K2 andσ1, . . . , σn which says that the polynomialPn(z) hasm − 1 double roots
for some values ofu3, . . . , um. Likewise Corollary 6 characterizesα′

n in terms of properties
of P ′

n(z). These characterizations allow us to understand and factor certain specializ
of αn andα′

n. With a little extra work one can describe some of the factors explicitly
this section we offer two such results concerning cyclicn-gons withn odd.

Let n = 2m + 1 � 5, and consider the constant term ofαn regarded as a polynomia
in 16K2; that is, letu2 = 0. ThenPn(z) hasm − 1 double roots if and only if eithe
(Pn|u2=0)/z hasm − 1 double roots, oru3 = 0 and(Pn|u2=u3=0)/z

2 hasm − 2 double
roots. Geometrically, the projective variety

X = {[u2 : · · · : um : tm+1 : · · · : t2m+1]∣∣ Pn(z) factors as(b0 + b1z)
(
c0 + c1z + · · · + cm−1z

m−1)2}
intersects the hyperplane{u2 = 0} in two irreducible components, one corresponding
b0 = 0 and one corresponding toc0 = 0. The second component has intersection m
tiplicity two becauseX is tangent to{u2 = 0} along it. Chasing through the geomet
interpretation ofαn (after Corollary 5), we regardαn|u2=0 as a polynomial inσ1, . . . , σn

and find that it is an irreducible polynomial times the square of another irreducible
factors are not necessarily irreducible as polynomials in the side lengthsai , however.

Proposition 10. If n is odd, the constant term ofαn factors as

αn|16K2=0 = γ 2
n

∏
(a1 ± a2 ± · · · ± an)
where the product is over all2n−1 sign patterns.
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Proof. Heron’s formula takes care of the casen = 3, so we may assumen � 5 and apply
the analysis above. By Corollary 5, cyclicn-gons satisfy

Pn(z) =
(

1

4
− r2z

)(
D

(
r2z

)
/z

)2
,

so the factorγ 2
n corresponds tod1 = 0, and the other factor corresponds to[1/4 : −r2] =

[0 : 1] and represents projective solutions atr2 = ∞. The presence of the linear factorsa1±
a2 ± · · · ± an in the constant term was proved in [8], and they correspond to solutions
r2 = ∞: As a signed sum of edge lengths approaches zero, the polygon can degen
a chain of collinear line segments, which has zero area and infinite circumradius. (O
easily construct a curve of solutions to Eqs. (3) tending to any such point at infinity
n � 3, the product of these 2n−1 linear factors is symmetric in thea2

i , so by irreducibility,
no other factors can appear.�

The same kind of analysis applies toαn when the side lengthan goes to zero, and s
tn = σn = 0. It’s geometrically clear that the result should be divisible byα2

n−1 (as thenþ
side shrinks to zero, it can go either “forward” or “backward”), and the algebra con
it. We evaluatetn−1 atσn = 0 using the definitions from Corollary 5. Then the intersect
of X with the hyperplanetn = 0 includes a component of multiplicity two where

tn−1 = −σ2m + 1

4
t2
m = 0

andPn(z), considered as degree 2m−3, hasm−2 double roots. Substituting the solutio
tm = ±2

√
σ2m back into the definitions oftm+1 throught2m−1, we recover the definition

of the tj for n = 2m andε = ±1 and observe thatum becomestm. ThusPn(z) specializes
to Pn−1(z), and soαn|an=0 is divisible by(βn−1)

2(β∗
n−1)

2 = α2
n−1.

The other component ofX ∩ {tn = 0} corresponds to solutions in which the leadi
coefficientr2 of the linear factor(1/4 − r2z) vanishes. We can describe these soluti
explicitly.

Proposition 11. If n � 5 andn is odd, then

αn|an=0 = α2
n−1

∏(
16K2 + (

a2
1 ± a2

2 ± · · · ± a2
n−1

)2)
,

the product taken over all sign patterns with(n − 1)/2 minus signs.

Proof. It suffices to show that all the factors in the product are present; the resul
follows by comparing degrees (both sides being monic in 16K2).

Fix generic positive real values fora1, . . . , an−1 and signsε1, . . . , εn−1 ∈ {−1,+1} with
ε1 = +1 and

∑
εj = 0. Recall from (3) that cyclic polygons satisfy( )
q2
i + a2

i /r2 − 2 qi + 1= 0 (1� i � n)
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and q1 · · ·qn = 1, and any solution to thesen + 1 equations also satisfiesαn with the
squared area given by Eq. (4). For sufficiently small positive values ofan, the method of
Section 5 shows that there exist solutions(r2, q1, . . . , qn) with r2 < 0 andqj ≈ (a2

j /r2)εj

for 1� j < n; furthermorea2
n/r2 tends to a constant. Equation (4) now implies

lim
an→0

16K2 = −
( ∑

εj =+1

a2
j −

∑
εj =−1

a2
j

)2

,

so the set of solutions witha2
n = r2 = 0 includes all points on the hypersurface 16K2 +

(
∑n−1

j=1 εj a
2
j )

2 = 0. �

7. Conclusions

The generalized Heron polynomialsαn for cyclic n-gons andα′
n for semicyclic(n+1)-

gons are defined implicitly byn + 2 equations inn + 1 unknowns:n equations, namel
(3), relating the side lengths to the vertex quotientsq1, . . . , qn and the radiusr ; Eq. (4)
which expresses the squared areaK2, or equivalentlyu2 = −4K2, in the same way; an
the equationq1q2 · · ·qn = δ. Our analysis eliminates the variablesqj (and in the cyclic
case,r also) at the cost of introducing�(n − 5)/2� unwanted quantitiesu3, . . . , um. The
reduction in the number of auxiliary variables allows us, for smalln, to eliminate them by
ad hoc means and obtain formulas forαn andα′

n.
The quantitiesu2, . . . , um appear on equal footing in this analysis, so we could equ

well eliminate all butuk for somek > 2 and obtain a polynomial relation, presumably
total degreek∆n or k∆′

n, betweenuk and the squares of the side lengths. Unfortuna
we do not yet have a geometric interpretation foru3 or the higheruk .

For largen the goal of eliminatingu3, . . . , um seems rather distant, but Corollaries
and 6 still illuminate aspects of the polynomialsαn andα′

n. In particular, Corollary 5 estab
lishes a close relationship betweenα2m+1 andα2m+2, generalizing those between Heron
and Brahmagupta’s formulas and between Robbins’ pentagon and hexagon formula

It may be of some interest to know how our main results were obtained. Robbins s
many combinatorial and algebraic problems in his lifetime by what he called the “
method”: calculate examples, using a computer if convenient; discover a general p
and prove it, with hints from further calculations if necessary. His work on genera
Heron polynomials took this approach but was somewhat frustrated by lack of data
which to generalize. As explained in [7], Robbins first foundα5 and the closely relate
polynomialα6 by interpolating from several dozen numerical examples, and he rew
them concisely in terms of variablesti (slightly different from ours) by interacting wit
a computer algebra system. Neither step is particularly feasible forα7, whose expansio
in terms of the symmetric functionsσk has almost a million coefficients. It was possib
however, to evaluate certain specializations ofα7 andα8 by interpolation, and to conjec
ture Propositions 10 and 11. For instance, we discovered that the constant term ofα7 (the
specializationu2 = 0) is divisible by the square of the discriminant of
t4 + t5z + t6z
2 + t7z

3,
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where theti are defined as in Corollary 5 but withu2 = u3 = 0. Unfortunately, the hidde
presence ofu3 made it difficult to guess the rest ofα7.

We introduced semicyclic polygons and their area polynomialsα′
n in an effort to ob-

tain more data to study. In particular, we noticed that the mysterious cubic discrimin
prominent inα5 appeared already in the simpler polynomialα′

3, and we hoped that wha
ever new phenomenon arose inα7 would also appear inα′

5, which we could compute b
interpolation. In factα7 turns out to be rather different fromα′

5, but it was the struggle
to simplify α′

5 that led us to manipulate the relations between theσi andτj by hand and
thence to discover the main identity (Theorem 4). In the end, the most crucial calcul
turned out to be those we did on the blackboard.

Postscript

David Robbins (1942–2003) had an exceptional ability to see and communicate th
ple essence of complicated mathematical issues, and to discover elegant new resu
seemingly well-understood problems. He taught and inspired a long sequence of y
mathematicians including the two surviving authors. His interest in cyclic polygons b
at age 13 when he derived a version of Heron’s formula. In the early 1990s he disc
the area formulas for cyclic pentagons and hexagons. When diagnosed with a term
ness in the spring of 2003, he chose to work on this topic once again. Sadly, he did n
to see the discovery of the main identity or the heptagon formula. We dedicate this
to the memory of our friend and colleague, whose loss is keenly felt.
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