adoption from the budget holders. However, if discounts approach 30%, physicians are likely to have less influence. CONCLUSIONS: Generally, budget holders and clinicians have differing views on the utility and placement of biosimilars in the clinical pathway. The uptake of which will ultimately depend on geographies, discounts offered and clinician experience. Biosimilars are not going away, however, there are strategies that budget holders can utilize and leverage to delay uptake and maintain strong market share.

PCN65 THE CLINICAL AND ECONOMIC BURDEN OF POST-THORACOTOMY PAIN SYNDROME (PTPS) AFTER LUNG RESECTION SURGERY: A RETROSPECTIVE ANALYSIS OF REAL-WORLD DATA

Ghosh SK 1, Roy S 1, Alkman P 1, Devetzie R 1, Yao A 1, Li C 1, Fogelman E 1

1Johnson & Johnson (Ethicon), Cincinnati, OH, USA, 2Ethicon, Somerville, NJ, USA, 3Johnson & Johnson, New Brunswick, NJ, USA

OBJECTIVES: Post-thoracotomy pain syndrome (PTPS) is widely reported as one of the primary comorbidities following lung resection surgery. The objective of this retrospective study was to quantify the clinical and economic burden of post-thoracotomy pain syndrome (PTPS) following lung resection surgery in the United States using a large real-world database. METHODS: This study utilized claims data from the Truven MarketScan databases. Adult patients undergoing a lobectomy or a segmentectomy as the primary surgical procedure were categorized by the surgery type (video-assisted thoracoscopic surgery (VATS) versus open) and primary diagnosis (lung cancer vs. non-lung cancer). The PTPS cohort was identified based on a diagnosis of non-neurogenic and neurogenic pain lasting more than two months post-operatively. Data were collected for: patient demographics, index hospitalization costs, post-discharge costs. Mean, standard deviation, and t-tests are reported for observed differences between the groups. RESULTS: A total of 5,502 patients (4,889 lung cancer and 604 non-lung cancer) met the study criteria. The incidence of PTPS was 5% (n=42) in the non-thoracotomy cohort and 7% (n=44) in the non-cancer group. PTPS was more common following open procedures vs VATS (6.1% vs. 4.6%). The one year observed post-discharge costs were consistently higher in the PTPS cohort ($31,728±$15,176; non-cancer: $16,497±$9,822). PTPS patients diagnosed in the first two months post-operatively cost more to manage than those diagnosed after two months (PTPS cohort (n=39): $22,136±$13,366 vs. non-cancer: $16,584±$14,233 vs. $11,005±$9,371). CONCLUSIONS: Real-world data shows a lower rate of PTPS in the US when compared to data published in the peer-reviewed literature, suggesting an under-reporting of PTPS in claims databases. PTPS is more common following open procedures and the post-discharge cost of managing PTPS patients is higher than non-PTPS patients.

PCN66 COST OF CARE FOR GASTRIC CANCER IN PATIENTS WITH AND WITHOUT METASTASES

Shermock KM 1, Asche CV 2, Seal B 3, Kreilich C 1, Chang J 7, Zagadaiov EA 7, Kisil J 7

1Johnson & Johnson Medical Institutions, Baltimore, MD, USA, 2University of Illinois College of Medicine at Peoria, Peoria, IL, USA, 3Bayer Healthcare Pharmaceuticals, Whippany, NJ, USA, 4Catalyst, Palm Harbor, FL, USA

OBJECTIVES: Due to the paucity of data with respect to real-world costs of care among individuals with gastric cancer (GaCa), the objective of this analysis is to evaluate the costs associated with GaCa in the US. METHODS: Two large integrated claims databases spanning July 2008 to September 2012 were used to identify patients ≥18 years old diagnosed and treated for GaCa. Patients were required to be chemotherapy-naïve, continuously enrolled ≥6 months pre- and post-diagnosis, and have no other cancer diagnosis at baseline. Eligible patients were stratified into cohorts based on the presence and timing of metastasis (M) diagnosis: no metastasis (NM), ≤120 days (M1), and >120 days (M2). All costs were adjusted to 2013 dollars. RESULTS: Of a total of 5,303 patients (10,733 claims) with GaCa, 6,293 (60%) were NM, 2,030 (19%) M1 and 2,403 (24%) M2. The total annual medical costs for NM, M1, and M2 patients were $765 for sipuleucel-T, $5,123 for radium 223, $8,074 for cabazitaxel, and $11,223 for docetaxel. AE cost followed by radium 223, cabazitaxel, and docetaxel, respectively. The total annual cost of therapy was lowest for docetaxel ($7,025), followed by radium 223 ($5,975), cabazitaxel ($5,924), and sipuleucel-T ($5,101). The treatment cost per visit was multiplied by the annual number of expected treatment cycles to calculate annual treatment costs. Hospital-specific adverse event (AE) costs were applied to published grade 3 and 4 AE rates for each comparator and added to the total cost per treatment. RESULTS: The total annual cost of therapy was lowest for docetaxel ($7,025), followed by radium 223 ($5,975), cabazitaxel ($5,924), and sipuleucel-T ($5,101). The treatment cost per visit was highest for sipuleucel-T ($3,936), followed by radium 223 ($2,946), cabazitaxel ($2,909), and docetaxel ($1,887). AE cost was $765 for sipuleucel-T, $5,123 for radium 223, $8,074 for cabazitaxel, and $11,223 for docetaxel. CONCLUSIONS: Total annual costs for CRPC treatments ranged from $972 to $11,223 per patient per year. Docetaxel had the lowest total annual costs, followed by radium 223, cabazitaxel, then sipuleucel-T, then radium-223, and had the lowest AE costs followed by radium 223, cabazitaxel, and docetaxel.

PCN70 COST – EFFICACY STUDY FOR IPILIMUNAB IN THE CHILEAN MARKET

Rovegno M 1, Llanos C 2, Galleguillos S 2, Gaitan Lecca S 3

1Departamento de Medicina Interna, Universidad Católica de Chile, Santiago, Chile, 2IAS, Facultad de Economía y Negocios, Universidad de Chile, Santiago, Chile, 3Bristol-Myers Squibb, Lima, Peru

OBJECTIVES: To establish the cost per month of mean overall survival improvement, in Chilean patients treated with ipilimumab, from a third payer perspec-