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Abstract

By using an effective complex algorithm to calculate the Lyapunov constants of polynomial systems En:
ż = iz + Rn(z, z̄), where Rn is a homogeneous polynomial of degree n, in this note we construct two
concrete examples, E4 and E5, such that in both cases, the corresponding orders of fine focus can be as
high as 18. The systems are given, respectively, by the following ordinary differential equations:

E4: ż = iz + 2iz4 + izz̄3 +
√

52278

20723
eiθ z̄4,

where θ /∈ {kπ ± π
6 , kπ + π

2 , k ∈ Z}, and

E5: ż = iz + 3z5 +
√

20(c + 3)

9c2 − 15
z4z̄ + zz̄4 +

√
20(c + 3)c2

9c2 − 15
z̄5,

where c is the root between (−3,−√
5/3) of the equation

4155c6 − 10716c5 − 63285c4 − 18070c3 + 168075c2 + 205450c + 60375 = 0.
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1. Introduction

Consider the following planar polynomial system in which the origin is assumed to be a center
of the linearized system:{

ẋ = −y + P(x, y),

ẏ = x + Q(x,y),
(1)

where P , Q are polynomials with real coefficients. It is well known that the above system always
has either a center or a fine focus at the origin, and to distinguish between a center and a focus
of (1), conventionally known as center–focus problem, is one of the most classical problems in
the qualitative theory of ordinary differential equations. On the other hand, in the case of a focus,
the problem to determine its highest possible order is also one of the interesting challenges in
this field.

The center–focus problem, dating back to as early as the 19th century (see, for example,
[9,11,14,21,22]), asks for the necessary and sufficient conditions on the nonlinear terms of the
system (1), namely, on the coefficients of P and Q. Since the very beginning of the problem,
it has caught much interest and attention. Throughout the whole 20th century, various kinds of
methods and approaches have been attempted, different techniques and algorithms have been
developed, and an extensive literature has been consequently produced. For the related material,
we refer the reader to some valuable surveys and monographs, say, [7,8,13,16–18,23,28,29] and
a wide range of reference therein.

Recently this problem has been again stimulated considerably not only by mathematicians
in pure theory but also by experts in computation and applications, especially in the computer
algebra systems. For a recent account on these techniques we refer to, for example, [4–6,10,17–
20,29]. As a result, certain previously intractable systems can be treated now and, some piecewise
results or observation can be collected and compared, which in turn, make a further systematical
study accessible.

Strategically speaking, to solve the center–focus problem, one has to consider the following
three steps.

• To establish some theoretical criteria by which one can determine if the equilibrium point of
a given system is a center or a focus.

• To realize the criteria of the first step, which typically involves massive computation.
• To analyze the data obtained in the above step and to obtain the center–focus conditions in

a readable way.

In what follows, we shall present a little more detailed exposition about these steps. At the
same time, we shall also briefly recall the related background, theory and results, and introduce
some necessary definitions.

From the time of Poincaré [22], several theoretical methods have already been given. Some
widely applied techniques include, say, normal form method (focal values) (see, for exam-
ple, [15]), the successive derivatives of the return map method (see, for example, [10]), the
Lyapunov constant method (see, for example, [24,27]), etc. Certainly we can also mention
some classical criteria such as the symmetry condition and the divergence free condition. In
the former case it means that the system is invariant under either of the changes of coordinates
(x, y, t) �→ (x,−y,−t) or (x, y, t) �→ (−x, y,−t), whereas in the latter case, it means that the
system is Hamiltonian. In both cases it is clear that the equilibrium point is a center.
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To apply normal form method in the center–focus problem is one of the well-known ap-
proaches. More precisely, taking system (1), under a near identity change of coordinates, one can
always transform it into the following real standard normal form{

u̇ = −v − vR(r2) − uG(r2),

v̇ = u + uR(r2) − vG(r2),
(2)

where r2 = u2 + v2, and G(ξ) = g1ξ + g2ξ
2 + · · ·. If all the coefficients gk vanish, for k =

1,2, . . . , then it is easy to see that ṙ = 0. Consequently, the origin is a center. On the other hand,
however, if there is an integer N satisfying gk = 0 for all k < N but gN �= 0, then from the
relation ṙ = gNr2N+1 + · · · we know that the system is a fine focus. Notice that although the
normal form (2) is not unique, the first nonzero number N is an invariant of the system, i.e., the
number N is uniquely determined by the system.

Definition 1. The constant gk , k � 1, is said to be the kth focal value of system (1) at the origin.
The number N is called the order of a fine focus of system (1) if the first nonzero focal value
is gN .

From time to time, in bibliography, one also frequently encounters another way to define focal
values, i.e., by the Poincaré return map. More exactly, if we let d(h0) = P(h0) − h0, where P is
the Poincaré return map in a neighborhood of the origin, and if we denote by vk = d(k)(0)/k!,
then the first nonzero focal value v2l+1 corresponds to an odd number k = 2l + 1. See [1,10] for
more details.

Still another way to study the center–focus problem of system (1) is to calculate its Lyapunov
constant which is introduced in the following way. According to [21], for the polynomial sys-
tem (1), there exists a formal power series

F(x, y) = x2 + y2 + F3(x, y) + · · · + Fk(x, y) + · · · , (3)

where Fk(x, y) is a homogeneous degree k polynomial of its variables, such that along the orbits
of (1)

dF

dt

∣∣∣∣
(1)

= V1r
4 + V2r

6 + · · · + Vnr
2n+2 + · · · , (4)

where dF
dt

= ∂F
∂x

ẋ + ∂F
∂y

ẏ.

Definition 2. The coefficient Vk of the term r2k+2 in (4) is called the kth Lyapunov constant of
system (1) at the origin.

For polynomial system (1), all the Lyapunov constants are also polynomials in the coefficients
of the system, with rational coefficients. For each Lyapunov constant Vk , there is an infinite num-
ber of possibilities instead of being uniquely determined. On the other hand, however, all such
Vk’s are in the same coset modulo the ideal generated by V1, . . . , Vk−1 in the ring of polynomials
with rational coefficients in the coefficients of the system (1).

In terms of the Lyapunov constants Vk , following the work of Poincaré [30], it is known that
system (1) has a center at the origin if and only if all Vk are zero. Notice that this is equivalently
to say that all the focal values are zero. In fact, one can show that the number N such that VN is
the first nonzero Lyapunov constant coincides with the order of fine focus given in Definition 1.
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Moreover, VN differs from gN only by a positive number (see, for example, [12]). Therefore VN

and gN equivalently characterize the order as well as the stability of fine focus of system (1) and,
this gives the reason why in literature the two terms are used interchangeably.

In this paper we shall be interested in computing the Lyapunov constants instead of the focal
values. This is mainly because, in practice, to normalize system (1) and consequently to find the
focal values involve more tedious calculation than to evaluate the Lyapunov constant.

Although theoretically to prove a singular point to be a center we have to examine if all the
Lyapunov constants vanish, it suffices to show that the first few of them are zero. This observation
entirely relies on the Hilbert Basis Theorem, which says that the ideal of all Vk’s in the ring of
polynomials with rational coefficients in the coefficients of the system (1) is finitely generated.
In other words, if, up to certain number N , the first N Lyapunov constants Vk turn out to be zero,
then the equilibrium point of the system is already to be concluded to be a center.

The Hilbert Basis Theorem in fact equivalently says that given a polynomial system, the order
of fine focus cannot reach as high as one wants. For instance, one can never expect a quadratic
system of form (1) to have a fine focus of order 4. This is due to the result of Bautin [3]. It is
proved in [3] that for quadratic systems the above ideal is determined by the values of Vj , j � 3.
After Bautin, Sibirskii in [25] showed that cubic systems without quadratic terms cannot have
a fine focus of order greater than 5.

Since Hilbert’s existential result says nothing about how to decide and how to seek the order of
fine focus of a given system, therefore to determine the number N aforementioned is completely
a different story. Indeed, the progress of further study along the direction from lower degree
systems to higher degree ones is slow and frustrating. After a study on quadratic-like cubic
systems, only piecewise results dealing with some particular systems, say, Kukles system, are
given. We refer to, say, [5,6,27]. Worthy to mention is a general result given by Bai and Liu [2].
In [2] it is proved that for even order of system (1), the order of fine focus can be as high as
n2 − n. As far as the authors know, this is the strongest results for general even n.

At this point, we can put forward the setting of our objectives. In this paper, we shall primarily
consider systems of form (1) where the nonlinear part contains homogeneous degree 4 or degree 5
terms. For convenience, in this paper, we shall call them, respectively, quadratic-like quartic
systems and quadratic-like quintic systems.

In recent years, these two kinds of systems have caught much interests [5,6,27]. However,
a complete set of integrability conditions is far from being established. Actually, even the max-
imal possible order of fine focus is still open. According to [2], we only know that the order of
fine focus can be greater than 12. In [27], an example of quartic system with order 15 is given.
In this paper, we shall construct a particular example of quadratic-like quartic system of form (1)
with the order of fine focus as high as 18 as well as an example of quadratic-like quintic system
with the same order of fine focus.

Theorem 1. There are quadratic-like quartic systems which have a fine focus of order 18 at the
equilibrium point.

There are quadratic-like quintic systems which have a fine focus of order 18 at the equilibrium
point.

On the other hand, we have the following conjecture: The maximally possible order of fine
focus of quadratic-like quartic systems is 21. The maximally possible order of fine focus of full
quartic systems (i.e. with quadratic and cubic terms) is 21, too. The maximally possible order of
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fine focus of quadratic-like quartic systems is 18. The maximally possible order of fine focus of
full quintic systems is 33.

Once we fix a theoretic criteria to determine the center–focus problem, it remains to take the
second and the third steps. In our case, this means to compute the Lyapunov constants. To this
end, we have to look for an effective algorithm and to realize it with the help of computer, for
any attempt to take this step by hand requires considerable courage, patience and ingenuity.

Like the bibliography related to the first step, there is also a very rich reference in algo-
rithms like we cited above. In this paper we shall essentially follow the algorithm developed
in [27] where the authors, by putting the system into a complex form, give a method to calculate
the Lyapunov constants for general planar polynomial systems. When restricting the algorithm
in [27] to our quartic and quintic systems, we obtain an expression with less recursions so that
the algorithm is more effectively applicable. A detailed technical explanation will be given in
Section 2.

To analyze the data obtained in the second step and express the center–focus conditions in
a readable way is far less trivial than it sounds. For example, we can compute the Lyapunov con-
stants of, say, quartic systems up to quite high order. However, this means that we only obtain
a series of necessary conditions for a given system to have a center at the singular point. These
necessary conditions are, however, just some long and messy codes which, without further es-
sential simplification, are typically useless. Moreover, the most difficult part is that we have no
information till which order further necessary conditions in the series can be generated by the
previous ones.

2. Preliminaries, the complex algorithm

Consider the planar polynomial system (1). By introducing complex variable z = x + iy, we
can rewrite the system in the form

ż = iz + R(z, z̄), z ∈ C, (5)

where

R(z, z̄) = P

(
z + z̄

2
,
z − z̄

2i

)
+ iQ

(
z + z̄

2
,
z − z̄

2i

)
.

Let F(x, y) be the formal series given in (3). Then it is easy to check that the corresponding
complex power series G(z, z̄) = F(z+z̄

2 , z−z̄
2i

) satisfies G(z, z̄) = G(z, z̄) and

dG

dt

∣∣∣∣
(5)

= L1|z|4 + L2|z|6 + · · · + Lm|z|2(m+1) + · · · . (6)

On the other hand, if the formal power series G(z, z̄) = |z|2 + O(|z|3) satisfies G(z, z̄) = G(z, z̄)

and (6) where all Lk are real, then F(x, y) = G(x + iy, x − iy) and Lk must satisfy (3). Therefore
the numbers Lk in (6) in fact are Lyapunov constants of (1).

Lemma 1. (See [26,27].) If R(z, z̄) in (5) is a homogeneous polynomial of degree m, then Lk = 0
if 2k

m−1 is not an integer.

For quadratic-like quartic systems, we have the following immediate corollary.

Corollary 1. If R(z, z̄) in (5) is a homogeneous polynomial of degree 4, then L3k+1 = 0 and
L3k+2 = 0 for all k = 0,1, . . . .
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In a similar way, when we study quadratic-like quintic systems, the following corollary is
applicable.

Corollary 2. If R(z, z̄) in (5) is a homogeneous polynomial of degree 5, then L2k+1 = 0 for all
k = 0,1, . . . .

The following notation is primarily from [27].
Let rk be the (k + 1)-dimensional vector with rk(j + 1) being the coefficient of term zj z̄k−j ,

0 � j � k, in the function R(z, z̄). Similarly, let gk be the (k + 1)-dimensional vector with
gk(j + 1) being the coefficient of term zj z̄k−j , 0 � j � k, in the series G(z, z̄).

We define a (k + n) × (n + 1) matrix Rk,n = (Rk,n(i, j)) (k � 2, n � 2), as follows:

Rk,n(i, j) = (j − 1)rk(i − j + 2) + (n − j + 1)rk(k − i + j + 1), (7)

where 1 � i � k + n,1 � j � n + 1, and where rk(j) is defined to be zero if j < 1 or j > k + 1.
Moreover, we introduce the following (k + 1) × (k + 1) matrix Dk = (Dk(i, j)):

Dk(i, j) =
{

− 1
k−2i+2 if i = j and k − 2i + 2 �= 0,

0 otherwise.
(8)

Lemma 2. (See [27].) The kth Lyapunov value of (5) at the origin can be calculated by

Lk =
2k+1∑
n=2

n+1∑
j=1

R2k+3−n,n(k + 2, j)gn(j), (9)

where

g2 = (0,1,0)T ,

and

gn = iDn

n−1∑
m=2

Rn+1−m,mgm, n � 3.

Since in this paper we shall be primarily interested in the case that R(z, z̄) in (5) is a homo-
geneous polynomial of degree s. Therefore in what follows, we shall first of all apply Lemma 1
and simplify the algorithm given in Lemma 9. It turns out that we can eliminate one summation
recursion in the above formula and obtain a more effective algorithm.

Lemma 3. If R(z, z̄) in (5) is a homogeneous polynomial of degree s, then the Lyapunov values
at the origin can be computed by the following recursive formula:

Lk =
2k+4−s∑

j=1

Rs,2k+3−s(k + 2, j)g2k+3−s(j), (10)

where

g2 = (0,1,0)T ,

gn = iDn

n−1∑
m=2

Rn+1−m,mgm, n � 3.
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Proof. If R(z, z̄) in (5) is a homogeneous polynomial of degree s, then rk(j) = 0 and
Rk,n(i, j) = 0 if k �= s. Therefore g2 = (0,1,0)T , gn = 0, for 3 � n � s + 1, and

gn = iDnRs,n+1−sgn+1−s , n � s + 1. (11)

Thus relation (10) follows. �
Corollary 3. If s = 4 and, respectively, s = 5, then the Lyapunov values of the system at the
origin can be obtained, by the following formulas:

Lk =
2k∑

j=1

R4,2k−1(k + 2, j)g2k−1(j), s = 4, (12)

and, respectively,

Lk =
2k−1∑
j=1

R5,2k−2(k + 2, j)g2k−2(j), s = 5. (13)

3. An example of quartic system having a fine focus of degree 18

In this section, we shall mainly work on system (5) where R(z, z̄) is homogeneous polynomial
of degree 4. Rewrite the system into the following form:

ż = iz + (α1 + iα2)z
4 + (α3 + iα4)z

3z̄ + (α5 + iα6)z
2z̄2

+ (α7 + iα8)zz̄
3 + (α9 + iα10)z̄

4, (14)

where all coefficients αi are real. By computing the Lyapunov constants of the system, we shall
look for systems within such a form which can have as high as possible order of fine focus.

First of all, according to Corollary 1, we know that Lk must be zero if k is not a natural number
dividable by 3. On the other hand, by the algorithm (12) in Corollary 13, we can compute L3
straightforwardly:

L3 = −2(α5α4 + α3α6 + α1α8 + α2α7). (15)

Certainly, we have various kinds of possibilities to choose these parameters to let (15) hold.
Yet for the moment we want to concentrate on some particular examples under study in this note.
We present the following well-chosen set of parameters such that the order of fine focus can
reach as high as 18. We tested quite a few other possibilities to produce a higher order of fine
focus. On the other hand, we conjecture that the highest possible order of fine focus for quartic
system is 21, one step away from 18.

Now in (15) we set α1 = α7 = α5 = α6 = 0. Then it follows that L3 = 0. Under these condi-
tions, we can proceed the calculation one step further to L6. That is,

L6 = −2

5
(α2 + 2α8)

(
2α3α10α8 + 4α3α10α2 + 3α2

3α9

− 4α9α4α2 − 3α9α
2
4 − 2α9α4α8 − 6α3α4α10

)
.

In order to let the relation L6 = 0 stand, we can set α3 = α4 = 0. In fact, with such an assump-
tion, automatically, we shall have L9 = 0. Furthermore, we can find
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L12 = − 4

525
α9(α2 + 2α8)(α2 − 2α8)(4α2 − α8)

× (
α2

9 − 3α2
10

)
(59α8 + 30α2)(4α8 + α2).

Clearly, the relation L12 = 0 holds under the sufficiency condition α2 = 2α8. Thus we can
easily move one step further to obtain L15 as follows:

L15 = − 7

320
α9α

5
8

(
α2

9 − 3α2
10

)(
52278α2

8 − 20723α2
9 − 20723α2

10

)
.

At this stage, if we put α9 = 0, then the origin of the system is a center because in this case the
system is reversible. Below we assume that α9 �= 0. Therefore, under a scale of the parameters
if necessary, we can naturally impose an extra relation α2

9 + α2
10 = 1. Equivalently, we take

α9 = cos θ , α10 = sin θ . Now in order to make L15 vanish, one can ask a sufficient condition

α8 =
√

20723
52278 .

Finally we can obtain the following Lyapunov constant L18:

L18 = −189333165503483774277911

381799174273650079066137600

√
1083356994α9

(
α2

9 − 3α2
10

)
.

Therefore if α9 �= 0 and if α2
9 − 3α2

10 �= 0, then L18 �= 0. This means that indeed there are
quartic systems with homogeneous linear terms having a fine focus of degree 18.

If we move some steps further, we see that L21 is already proportional to L18. More exactly,
we have

L21 = 189231441601580144758357543795895753

20550504270765144046888759879802880000

√
1083356994α9

(
α2

9 − 3α2
10

)
,

which means that

L21 = −152876554203535967575188481

8233069502645188206033600
L18.

In conclusion, if α9 �= 0 and if α2
9 − 3α2

10 �= 0, then the system

ż = iz + 2i

√
20723

52278
z4 + i

√
20723

52278
zz̄3 + (α9 + iα10)z̄

4

has the fine focus of order 18. We can put this system into the following form under a linear scale
of z and z̄:

ż = iz + 2iz4 + izz̄3 +
√

52278

20723
eiθ z̄4.

Notice that the conditions α9 �= 0 and α2
9 − 3α2

10 �= 0 can be expressed as follows:

θ �= kπ + π

2
, kπ ± π

6
, k ∈ Z.

If we go on to find more Lyapunov values, as we have calculated up to L30, all the constants
are proportional to L18. In fact, when θ = kπ ± π

6 , the system is reversible and indeed it has
a center at the origin.2

2 We thank J. Giné for pointing out the reversibility of the system in this case.
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4. An example of quintic system having a fine focus of degree 18

This section is devoted to finding an example of quintic system having a fine focus of de-
gree 18. That is, we consider system (5), where R(z, z̄) is a homogeneous polynomial of degree 5,
with the following explicit form:

ż = iz + (α1 + iα2)z
5 + (α3 + iα4)z

4z̄ + (α5 + iα6)z
3z̄2

+ (α7 + iα8)z
2z̄3 + (α9 + iα10)zz̄

4 + (α11 + iα12)z̄
5, (16)

where all αi are real constants.
We shall use the same algorithm as adopted in the last section for quartic system. Although

the example we shall present has the same degree of fine focus like in the quartic case, we feel
that this order is the maximally possible one for quadratic-like quintic systems.

To calculate the Lyapunov constants of system (16), it suffices only to consider L2l , for l =
1,2, . . . . This is because, by Corollary 1, one always has L2l+1 = 0.

By the formula (13), some straightforward computation gives

L2 = 2α5.

Thus we have only one possibility to take α5, i.e., α5 = 0.
Now by putting α5 = 0, we can proceed the calculation to L4. Namely, we have

L4 = −2(α9α2 + α1α10 + α7α4 + α3α8).

To let this relation hold, we have different ways to fix the parameters. Again, like in the quartic
case, after certain attempts, we take the following particular set of parameters:

α7 = α8 = α2 = α10 = 0.

Consequently, we arrive at the following stage:

L6 = 2

3
(α3α11 − α4α12)(−α1 + 3α9).

There are two factors in the expression of L6. Here we can simply assume that α1 = 3α9 to move
one step further:

L8 = 8α12α9α6α4 + 1

3
α11α

3
4 + α12α3α

2
4 + 4α12α3α

2
9

− 4α11α4α
2
9 − α11α

2
3α4 − 1

3
α12α

3
3 − 8α11α6α3α9. (17)

In expression (17), we can put α12 = α6 = α4 = 0 to make the relation L8 = 0 hold. Conse-
quently, we obtain the following relations:

L10 = −16α3α
2
9 − 16

3
α2

9α11 + 12

5
α3α

2
11 − 4α3

3, (18)

L12 = 0,

and

L14 = 134α5
3 + 9856

9
α3

3α2
9 − 128

35
α2

3α3
11 + 6464

3
α3α

4
9 − 478

105
α3α

4
11

− 11968

45
α2

9α3α2
11 − 4

15
α4

3α11 + 3776

15
α2

3α11α
2
9 − 24292

315
α3

3α2
11

+ 416
α2

9α3
11 + 11456

α4
9α11. (19)
135 15
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Without imposing any further restrictions, we can compute another two Lyapunov constants,
L16 and L18. They are given by

L16 = 0,

and

L18 = 1087

54
α3α

6
11 + 368357

756
α4

3α3
11 + 4439

1260
α2

3α5
11 − 204790

3
α5

3α2
9

+ 21643673

14175
α2

9α3α
4
11 + 8471860

189
α2

11α3α
4
9 − 12581

2
α7

3

− 1311328

9
α6

9α11 − 134963

315
α11α

6
3 − 4075753

315
α11α

4
3α2

9

− 66195484

945
α11α

2
3α4

9 − 820984

3
α3

3α4
9 + 4488437

1260
α5

3α2
11

+ 54464521

2835
α2

11α
3
3α2

9 − 430048

189
α4

9α3
11 − 67904

8505
α2

9α5
11

+ 413419

1620
α3

3α4
11 − 405024α6

9α3 − 371723

945
α2

3α3
11α

2
9 . (20)

Below it suffices to prove the existence of solutions, in terms of the parameters α’s, of the
system of algebraic equations

L10 = 0, L14 = 0, L18 �= 0.

To this end, we assume that α9 = β1α3, α11 = β2α3, and substitute them into the above expres-
sions (18), (19) and (20). We have

L10 = 4

15

(
9β2

2 − 60β2
1 − 20β2β

2
1 − 15

)
α5

3β1β2,

L14 =
(

134 − 4

15
β2 − 24292

315
β2

2 − 128

35
β3

2 − 478

105
β4

2

+ 9856

9
β2

1 + 3776

15
β2

1β2 − 11968

45
β2

1β2
2 + 416

135
β2

1β3
2

+ 6464

3
β4

1 + 11456

15
β4

1β2

)
α7

3β1β2,

and

L18 =
(

−12581

2
− 134963

315
β2 + 4488437

1260
β2

2 + 368357

756
β3

2 + 413419

1620
β4

2

+ 4439

1260
β5

2 + 1087

54
β6

2 − 204790

3
β2

1 − 4075753

315
β2

1β2

+ 54464521

2835
β2

1β2
2 − 371723

945
β2

1β3
2 + 21643673

14175
β2

1β4
2

− 67904

8505
β2

1β5
2 − 820984

3
β4

1 − 66195484

945
β4

1β2 + 8471860

189
β4

1β2
2

− 430048
β4

1β3
2 − 405024β6

1 − 1311328
β6

1β2

)
α9

3β1β2.

189 9
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If we take β2 ∈ (−3,−√
5/3) and

β2
1 = 3

20

(3β2
2 − 5)

(β2 + 3)
, (21)

then it follows that

9β2
2 − 60β2

1 − 20β2β
2
1 − 15 = 0.

Consequently, L10 = 0. Moreover, by substituting the relation (21) into L14 and L18, we have

L14 = − 2α7
3β1β2

2625(β2 + 3)2
F(β2),

L18 = α7
3β1β

2
2

47250(β2 + 3)3
G(β2),

where

F(β2) = 4155β6
2 − 10716β5

2 − 63285β4
2 − 18070β3

2

+ 168075β2
2 + 205450β2 + 60375,

and

G(β2) = 781365β8
2 + 18402357β7

2 − 39352164β6
2

− 295090087β5
2 − 206364414β4

2 + 680783545β3
2

+ 1213555470β2
2 + 666947025β2 + 115223175.

The possibility to take β2 ∈ (−3,−√
5/3) can be verified from the observation that F(−3) =

1951488 > 0, and F(−3/2) < −322 < 0. This means that indeed there exists β0 ∈ (−3,−√
5/3)

such that F(β0) = 0. Since F(x) and G(x) have no common factors, therefore G(β0) �= 0 and
consequently L18 �= 0. Moreover, because

3

20

(3β2
0 − 5)

(β0 + 3)
> 0,

it follows that if we take

α2 = α4 = α5 = α6 = α7 = α8 = α10 = α12 = 0,

and

α3 = ∓
√

20

3

(β0 + 3)

(3β2
0 − 5)

, α1 = 3, α9 = 1, α11 = β0α3,

where β0 is the root of F(β) = 0 in (−3,−√
5/3), then

Lk = 0, k = 1, . . . ,17, L18 �= 0.

That means that the following system has the fine focus of degree 18.

E5: ż = iz + 3z5 +
√

20(β0 + 3)

9β2
0 − 15

z4z̄ + zz̄4 +
√

20(β0 + 3)β2
0

9β2
0 − 15

z̄5. (22)

Notice that system (22) contains no parameter.
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