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Abstract This paper presents applying gene expression programming (GEP) approach for predict-

ing the punching shear strength of normal and high strength reinforced concrete flat slabs. The GEP

model was developed and verified using 58 case histories that involve measured punching shear

strength. The modeling was carried out by dividing the data into two sets: a training set for model

calibration, and a validation set for verifying the generalization capability of the model. It is shown

that the model is able to learn with high accuracy the complex relationship between the punching

shear and the factors affecting it and produces this knowledge in the form of a function. The results

have demonstrated that the GEP model performs very well with coefficient of determination, mean,

standard deviation and probability density at 50% equivalent to 0.98, 0.99, 0.10 and 0.99,

respectively. Moreover, the GEP predicts punching shear strength more accurately than the

traditional methods.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Punching shear is considered to be one of the major criteria
that control the design of concrete members such as flat slabs,

spread footing or raft footings. This type of shear usually exists
in the vicinity of slab column connections due to the high con-
centration of stress. The brittle nature of punching shear fail-

ure in structures made it very dangerous; when shear failure
occurs, the resistance of the structure tremendously reduced
and consequently collapse takes place because of separation
of column and slab. Therefore, design methods and codes of

practice have paid great interest to account for such kind of
failure.

Determining the punching shear strength is a complex design
problem owing to the influence of numerous factors involved.

Because of the complexity of the problemmany researchers have
attempted to model the punching shear phenomenon using dif-
ferent assumptions (e.g. [1–3]). As a result, different methods

have been proposed to predict the punching shear strength of
concrete members. However, considering the results obtained
from applying these methods on same problem reveals different

results depending on the method employed. Moreover, in sev-
eral instances comparing these results with experimental data
shows over-prediction by 20–50%. Consequently, more
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accurate methods are needed for better prediction of punching
shear strength. Artificial intelligence techniques can represent
a potential option to be explored.

The main concept behind the use of these techniques is that
they learn adaptively from experience and extract various
functions each appropriate for its purpose. Artificial intelli-

gence systems have the ability to operate on large quantities
of data and learn complex model functions from examples
by training on set of input and corresponding output. The

greatest advantage of the artificial intelligence over the tradi-
tional modeling techniques is their ability to capture a nonlin-
ear and complex interaction between variables of a system
without having to assume the form of the relationship between

the input and the output variables. Artificial intelligence tech-
niques have been applied to solve many problems in the field of
engineering (e.g. [4–7]).

In this paper, the punching shear strength of flat slabs is
modelled using a developed form of artificial intelligence tech-
niques that is gene expression programming (GEP). Recently,

GEP has been applied with success in solving engineering
problems (e.g. [8–10]). The paper aimed to investigate feasibil-
ity of using GEP to determine a model relating punching shear

strength with its significant factors; evaluate the performance
of the model in training and validation sets and via sensitivity
analysis; compare the predictions of the model with predic-
tions of number of commonly adopted methods.
2. Overview of gene expression programming

GEP is an instance of an evolutionary algorithm from the field

of evolutionary computation, invented by Ferreira [11] as a
global optimization algorithm. It has similarities to other evo-
lutionary algorithms such as the genetic algorithms (GAs), as

well as other evolutionary automatic programming techniques
such as genetic programming (GP). Similar to the GAs, GEP
uses the evolution of computer programs (individuals or chro-

mosomes) that are encoded linearly in chromosomes of fixed
length, and likewise the GP the evolved programs are
expressed nonlinearly in the form of expression trees (ETs)

of different sizes and shapes. However, GEP implements dif-
ferent evolutionary computational method. The GEP distin-
guishes itself from GAs in that the evolved solutions are
expressed in the form of parse trees of different sizes and struc-

tures and unlike the GP, genetic variations are performed on
chromosomes before they are translated into ETs.

The GEPs chromosomes can be composed of single or mul-

tiple genes; each gene is encoded in a smaller sub-program.
Every gene has a constant length and includes a head that con-
tains functions (e.g. +, �) and terminals (e.g. d1, d2, which are

the symbolic representation of the input variables), and a tail
composed of terminals only. The genetic code represents a
one-to-one relationship between the symbols of the chromo-
some, the functions or terminals. The process of information
+ - / d1 d2 d4d3

Gene head Gene tail

Gene 1

Figure 1 GEP
decoding from chromosomes to ETs is called translation,
which is based on sets of rules that determine the spatial orga-
nization of the functions and terminals in the ETs and the type

of interaction (link) between the sub-ETs [12]. The principal
terms of the GEP are described in the following subsections.

2.1. Initial population

In GEP, the search for a solution begins when a number of
computer programs (individuals or chromosomes), referred

to as the initial population, are randomly created from the
set of functions and terminals defined by the user. Each pro-
gram is expressed, evaluated and assigned fitness according

to how well it performs towards the desired objective.

2.2. Chromosome gene and expression trees

The chromosome is a linear symbolic string of fixed length

composed of one or multiple genes of equal size. A typical
GEP chromosome is presented in Fig. 1.

The gene is a sub-program encoded in the chromosome and

it consists of a head and a tail. The length of the head is usually
predefined by the user during data setting, while the length of
the tail is determined by the following:

t ¼ h n� 1ð Þ þ 1 ð1Þ

where t is the tail length; h is the head length and n is the num-
ber of function’s arguments.

Although the genes of the GEP have all the same size, they

code for different expression trees of different sizes. The trees
represent a spatial illustration demonstrating the interactions
among the gene’s components on the map of solution. Fig. 2
shows expression trees of the genes of the chromosome in

Fig. 1.

2.3. Mutation

In GEP, mutation means randomly selecting any component
of the gene’s head or tail and replacing it with any other ran-
domly selected component from the function or terminal set.

In the heads, any component can change into another (func-
tion or terminal), whereas in the tails terminals can only
change into terminals. The mutation may take place at one

or two points within the chromosome and there are no con-
straints, neither in the kind of mutation nor in the number
of mutations. In all cases, the newly created individuals are
syntactically correct programs.

2.4. Recombination

The last significant step during each cycle of program evolu-

tion includes introducing genetic variation by recombination.
The variations take place when two chromosomes are paired
d1+ / d4d3d2d1

Gene 2

chromosome.
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Figure 2 Expression trees of chromosome in Fig. 1.
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and split exactly at the same point to exchange their compo-
nents downwards to the merging point. The following steps

explain how recombination is performed.

� Two chromosomes are selected randomly from the

population;
� one part of each chromosome is selected randomly;
� the two chromosomes pair and trade in the selected parts;

and
� two offspring belonging to the new population are
obtained.

2.5. Modeling process

As illustrated in Fig. 3, the process that the GEP implements

for developing the problem’s solution begins with creating an
initial population of computer programs chosen randomly
from the sets of functions and terminals. The functions can

contain basic mathematical operators (e.g. +, �, ·, /) or any
other user-defined functions, whereas the terminals can consist
of numerical constants, logical constants or variables. Each

program (chromosome) is executed and its fitness is evaluated
through the fitness function, which measures how good the
Create chromosomes of initial population

Express chromosomes & evaluate their fitness

Stopping criterion is satisfied

Select chromosomes & keep the 
fittest for next generation 

Perform genetic modifications via genetic 
operators and gene recombination

New generation of chromosomes

Designate results

End

Yes

No

Figure 3 Flow chart of gene expression algorithm.
chromosome is in competition with the rest of population.
Chromosomes are then selected for further development based

on their fitness. The ones that have higher fitness are given a
higher chance of being selected, whereas the low fitness chro-
mosomes are deleted or given a slim chance for selection.

The selected programs are then subjected to further develop-
ments, which are performed through genetic variations such
as mutation and recombination. New offspring of chromo-

somes with new traits are generated and used to replace the
existing population. The chromosomes of the new generation
are then subjected to the same developmental process, which
is repeated until the stopping criteria are satisfied.
3. Proposed GEP model development

The GEP model developed in this study is based on experimen-

tal results collected from the literature and comprises a total of
58 case histories: 6 cases reported by Hallgern and Kinnunen
[13], 16 cases reported by Marzouk and Hussein [14], 9 cases

reported by Tomaszewicz [15], 8 cases reported by Metwally
et al. [16], 6 cases reported by Ramdane [17] and 13 cases
reported by Abdel Hafez [18]. The tested slabs have different

thickness ranging between 100 and 300 mm and supported
by columns of circular or square cross section. The slabs were
made of normal and high strength concrete which its compres-

sive strength was determined from cylinder test. The tensile
reinforcement ratio of the slabs was ranging between 0.0049
and 0.0428. The slabs were tested by applying a compressive
load until failure. The failure load was determined as the

plunging load beyond which further increase in strain corre-
sponds to no increase in resistance. No further details were
available about the procedure of the tests.

3.1. Model input and output

Extensive search was carried out in the literature to identify the

factors that affect the punching shear strength of normal and
high strength reinforced concrete members. It was concluded
that the punching shear resistance is influenced by the perime-

ter of punching shear block, b0, which is calculated based on
ACI-318 [19], depth of concrete member, d, concrete cylindri-
cal compressive strength, fcu, and tension reinforcement ratio
of slab at the critical section, qt, [19–21]. Thus, the GEP model

was presented with these input variables. The single output
was the measured shear resistance, Fs, which is taken as the
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failure load measured from the compression test of the slabs.
The effect of column diameter or width is not considered in
this study because they are included in the calculations of

perimeter of the shear block.

3.2. Data division

Dividing the available data into subsets (a training set and a
validation set) is a necessary step in modeling with GEP. Usu-
ally GEP models involve a large number of programs, so they

have a high tendency towards over-fitting, particularly if the
training data are noisy. Thus, the main aim of this step is to
prevent the model from over-fitting which may take place dur-

ing the training phase. Over-fitting refers to the ability of the
model to memorize rather than generalize the form of the
relationship between input and output data.

In the literature, there is no definite ratio of the used data to

be assigned to each subset, but in general 10–20% of the avail-
able data is suggested to be used as a validation set, and 80–
90% as a training set [12].

In order to develop a robust model, researchers suggest that
all of the patterns contained in the available data should be
contained in the calibration set. Likewise, all of the patterns

in the available data should also be contained in the validation
data. This provides the toughest evaluation of the generaliza-
tion ability of the model [22]. To achieve this, several research-
ers [12,23] suggest that data subsets should be statistically

consistent; training and validation sets should possess similar
statistical properties including mean, standard deviation, max-
imum and minimum.

In this work, the data were randomly divided into two sta-
tistically consistent sets as recommended by Master [23] and
detailed by Shahin et al. [24]. In total, 48 case records (83%)

of the available 58 cases were used for training and 10 cases
(17%) for validation. The statistics of the data used for the
training and validation sets are presented in Table 1, which

include the mean, standard deviation, minimum, maximum
and range. It should be noted that, like all empirical models,
GEP performs best in interpolation rather than extrapolation,
thus the extreme values of the data used were included in the

training set.
Table 1 Statistics of parameters for the training and validation sub

Statistical parameters Subset Input and outpu

b0 (mm)

Mean Training 1117

Validation 1104

Standard deviation Training 385

Validation 456

Maximum Training 2080

Validation 2080

Minimum Training 640

Validation 640

Range Training 1440

Validation 1440
3.3. Modeling process and determination of GEP model

The success of the modeling process using GEP depends signif-
icantly on the design of the model structure. In this, the opti-
mal model parameters were determined to ensure that the best

performing model was achieved. In the search for a model
using the GEP, the number of chromosomes, chromosome
structure, functional set, fitness function, linking function
and rates of genetic operators play important roles during

the modeling process, and choosing suitable rates of these
parameters can considerably reduce modeling time and effort
and produce a robust solution.

In this work, the search to determine the values of setting
parameters was carried out in steps. During each step, runs
were carried out and the value of one of the above parameters

was varied, whereas the values of the other parameters were set
constant (i.e. number of chromosomes = 30, number of
genes = 3, gene’s head size = 8, functions set = +, �, ·,
and /, fitness function = mean squared error (MSE), linking
function = +, mutation rate = 0.04, and gene recombination
rate = 0.1). The runs were stopped after 25,000 generations,
which were found sufficient to evaluate the fitness of the out-

put. At the end of each run, the MSE for both training and val-
idation sets was determined. The optimal value of each
parameter was obtained from the plot of variations of MES

in training and validation sets with each setting parameter as
presented in Fig. 4.

After finding the optimal values of setting parameters, the

GEP model was determined by conducting new runs using
these parameters. The outputs of the runs involved chromo-
somes (models) which represent potential solutions to the
problem. The best model was determined by analysing these

solutions to determine an expression that conformed as closely
as possible to the engineering understanding of the punching
shear strength. Moreover, selection criteria were adopted for

screening the best model; the model has to achieve the best
possible correlation between predicted and experimental values
(coefficient of determination R2 P 0.80), for both of the train-

ing and validation sets; and it has to have average error of
measured to predicted values within 10%. A desirable criterion
of the model is also to be a short and simple expression.
sets used in the development of the GEP model.

t variables

D (mm) qt fcu (MPa) Fs (kN)

154 1 70 527

149 2 73 565

48 1 27 531

47 1 24 659

300 4.24 128 2450

250 2.81 99.7 2250

100 0.58 29.89 70

100 0.49 29.89 92.5

200 3.66 98.11 2380

150 2.32 69.11 2157.5



Table 2 Input parameters used for the GEP models.

Parameter Used input

Number of chromosomes 27

Number of genes 3

Head size 10

Functions set +, �, ·, =
ffiffiffi
x2
p

;
ffiffiffi
x3
p

; x2; x3

Fitness function Mean squared error

Linking function +

Mutation rate 0.05

Recombination rate 0.3
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Figure 4 Effect of setting parameters on the performance of the GEP model: (a) number of chromosomes; (b) gene head size; (c)

mutation rate; and (d) gene recombination rate.
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The model that satisfied the selection criteria was further devel-
oped with the optimization and simplification procedures
available in the program. Table 2 presents the optimum setting

parameters used during the search for the GEP model.

4. Results and model evaluation

4.1. Expression trees and model formulation

The output of the modeling process was dispatched in a form
of expression trees as shown in Fig. 5. The figure illustrates
mathematical operations and the interaction among the input

variables. This can give an insight into the nature of the rela-
tionship between the input and the output.
The ETs can be easily translated into a mathematical
expression which can be simplified and rearranged to be as
follows:

Fs ¼
b0 � dþ d2

45:29� 0:86qt

þ 9:70qt � fcu
8:49� qt

� �2

þ 2d2

ðb0 � dÞð�0:27qtÞ
þ 3:63 ð2Þ

where Fs = predicted punching shear, b0 = perimeter of shear

block, d = depth of concrete member, qt = ratio of tension
reinforcement multiplied by 100, fcu = cylinder compressive
strength in 28 day.

4.2. Evaluation the performance of the model in training and

validation sets

The performance of the GEP model is shown numerically in

Table 3 and depicted graphically in Fig. 6. Table 3 indicates
that the model performs well with high coefficient of determina-
tion, R2, of 0.98 and 0.99 for the training and validation sets,

respectively. The propinquity of R2 for both data sets also indi-
cates that the model has a good ability to generalize. The table
also shows that the mean values are very close to unity. Fig. 6

illustrates that the model has minimum scatter around the line
equality between the measured and the predicted shear strength
for the training and validation sets. This is an additional con-
formation to robust performance of the model. The results

demonstrate that the developed GEP model performs well.



Figure 5 Expression trees of the developed model.

Table 3 Performance of the GEP model in training and

validation sets.

Performance measure Data set

Training Validation

Mean 1.01 0.96

Coefficient of determination, R2 0.98 0.99
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Figure 6 Performance of the GEP model in training and

validation sets.
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4.3. Comparing GEP model with number of commonly used
methods

To evaluate the performance of the GEP model further, the

predictions of the model were compared with those obtained
from three of currently adopted methods including ACI-318
[19], BS-8110 [20] and CEP-FIP MC [21]. A brief description

of the compared methods is provided in Table 4. The coeffi-
cient of determination, R2, the mean and the cumulative prob-
ability at 50% (P50) from the GEP model and the compared
methods, in relation to the available case records, were carried

out and the results are presented numerically in Table 5 and
graphically in Fig. 7. The cumulative probability, P50, is



Table 4 A brief description of the common methods used for predicting punching shear.

Method Description

The American

Building Code [19]

The critical perimeter is assumed at 0.5d from the perimeter of the loaded area, and mC is the smallest of the

following:

vc ¼ 0:17 1þ 2
b

� �
k
ffiffiffiffi
f 0c

q
b0d ðN=mm2Þ (4)

mc ¼ 0:083ðasdb0 þ 2Þk
ffiffiffiffi
f 0c

q
b0d ðN=mm2Þ (5)

vc ¼ 0:33k
ffiffiffiffi
f 0c

q
b0d ðN=mm2Þ (6)

where:

vc = concrete shear resistance; b = long side/short side of the column and should be taken greater than or equal

to2 ðb � 2Þ; k =modification factor for lightweight concrete; f 0c = concrete cylinder compressive

strength = 0.85 fcu for cube strength; as 40, 30, and 20 for interior, exterior, corner columns respectively. The

requirement of the ACI code that f 0c does not exceed 68 MPa was disregarded in computations

The British

Standard [20]

The critical section adopted by the British Standard is at 1.5d from the column face, and mc is calculated as

follows:

vc ¼ 0:79
cm

100As

bvd

n o1
3 400

d

� �1
4 ðN=mm2Þ (7)

for strength >25 MPa the value in the table may be multiplied by fcu
25

� �1
3

where: fcu = concrete compressive strength; d= effective depth; bv = breadth of section; As = area of tension

reinforcement; cm = 1.25 for shear strength without reinforcement fcu � 40 MPa, As

bvd
� 3% and .400=d � 1

CEP-FIP [21] In MC-90 the punching shear resistance, Fsd, is expressed as:

Fsd ¼ 0:12nð100qfckÞ
1
3u1d (8)

where

fck = the characteristic compressive strength of concrete

n = size-effect coefficient calculated from

n ¼ 1þ
ffiffiffiffiffiffi
200
d

q
(9)

CEP-FIP [21] u1 = the length of the control perimeter at 2d from the column face; and

q = reinforcement ratio calculated as

q ¼ ffiffiffiffiffiffiffiffiffiffiqxqy
p

(10)

qx; qy = reinforcement ratios in x and y directions

In the ultimate limit state the partial safety factor is 1.5. For the calculation of punching load capacity, Fsd is

multiplied by 1.5, which gives the following equation

Fsd ¼ 0:18nð100qfckÞ
1
3u1d (11)

The highest concrete grade considered in MC90 is C80, which corresponds to fck = 80 MPa. Influences of

reinforcement and slab depth are also considered in this design code

Table 5 Statistical evaluation of the predictions of the GEP model in comparison with commonly used methods.

Statistical measure Data set Prediction method

GEP (proposed) ACI-318 BS-8110 ECP-FIP

R2 All data 0.98 0.90 0.98 0.88

Validation 0.99 0.88 0.98 0.86

Mean, l All data 0.99 1.44 1.09 1.36

Validation 0.96 0.74 0.89 0.89

Standard deviation, r All data 0.10 0.40 0.10 0.40

Validation 0.10 0.30 0.20 0.40

Probability density, P50 All data 0.99 0.74 0.93 0.81

Validation 1.01 0.70 0.85 0.80
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calculated from Eq. (3) by sorting the values of predicted
capacity by measured capacity (Qp/Qm) in an ascending order

for each method. The smallest Qp/Qm is given number i = 1
and the largest is given i= n. The value of Qp/Qm that corre-
sponds to P= 50 is considered as P50.

P ¼ 1

nþ 1
ð3Þ
Visual inspection of Fig. 7 may conclude that the model has
minimum scatter around the line of equality between measured
and predicted shear strength. The figure also illustrates that the
majority of the points lay below the line of equality. Table 5

shows that the model performs well in comparison with the
other methods. The consistency of the results for all the data
set and validations sets indicates to strong capability to
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Figure 7 Comparison the accuracy of GEP model with traditional methods: (a) GEP model; (b) ECP-203; (c) BS-8110; and (d) ACI-318-
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generalize and high accuracy. The overall results in Table 5
and Fig. 7 may suggest that the GEP model tends to under-
predict the measured shear strength. Comparing the results
obtained by the GEP model with results of the other methods

shows that the model performs better.

4.4. Parametric study

A parametric study was carried out to assess the performance
of the proposed model further and determine the effects of
varying the input variables on the output. The effect of using

different ratios of tension reinforcement on the output was
also investigated. A set of hypothetical input that lies within
the range of the training data was used to verify the response

of the GEP model to the variations of the input variables. The
effect of each input variable was investigated by allowing it to
change within its minimum and maximum values whereas all
other input variables remained constant to their mean values.

For example, the effect of slab depth, d, on shear strength was
determined by allowing d to change but all other input vari-
ables were set constant. This procedure was repeated consecu-

tively for all input variables and the results are shown in Fig. 8.
A visual inspection of the figure may conclude as follows:

i. Shear strength increases with increasing values of input
variables.

ii. Slab depth and concrete strength are the major factors
that effect the shear strength.
iii. Using different ratios of tension reinforcement lead to
significant increase in the shear strength. The largest
increase in shear strength exists when tension reinforce-
ment ratio is between 0.01 and 0.02. Afterwards, the

increase in strength with increase of tension reinforce-
ment continues in decreasing rate.

iv. A ratio of tension reinforcement of 0.02 may be

suggested for design.
v. The results are consistent with published experimental

results in sense that the shear strength increases with

increase of shear block perimeter, depth of slab, ratio
of tension reinforcement and concrete compressive
strength.

5. Conclusion

The results of this study have shown that the gene expression
programming technique is successful in correlating between
the punching shear strength and the significant factors affect-
ing it. The GEP model has achieved high coefficient of deter-

mination and low mean values in training and validation sets
indicating high accuracy and great capability for generaliza-
tion. Parametric study has revealed that the punching shear

strength increases with increase of shear block perimeter,
depth of slab, ratio of tension reinforcement and concrete com-
pressive strength. The analysis also shows that slab depth is the

most influencing factor on the punching shear strength. The
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Figure 8 Parametric analyses to verify performance of the GEP

model: (a) concrete compressive strength versus shear strength; (b)

shear block perimeter versus shear strength; and (c) effective depth

versus shear strength.
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ratio of tension reinforcement has significant influence on
punching shear; a ratio of 0.02 appears to be appropriate for
design. The results also demonstrate that the GEP model per-

forms well in comparison with the commonly used traditional
methods. Over all, the output of this study indicates that the
developed GEP model can be used as alternative for predicting
the punching shear strength of normal and high strength

concrete.
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