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a b s t r a c t

In this paper, we study chaos for bounded operators on Banach spaces. First, it is proved
that, for a bounded operator T defined on a Banach space, Li–Yorke chaos, Li–Yorke
sensitivity, spatio-temporal chaos, and distributional chaos in a sequence are equivalent,
and they are all strictly stronger than sensitivity. Next, we show that T is sensitive
dependence iff sup{‖T n

‖ : n ∈ N} = ∞. Finally, the following results are obtained: (1)
T is chaotic iff T n is chaotic for each n ∈ N. (2) The product operator T ∗

n =
∏n

i=1 Ti is
chaotic iff Tk is chaotic for some k ∈ {1, 2, . . . , n}.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and basic definitions

The complexity of a topological dynamical system become a hot issue in science since the term chaos was introduced by
Li and Yorke [1] in 1975; it is known as Li–Yorke chaos today. In [2,3], Li–Yorke chaos was studied by Duan et al. for linear
operators. In 2010, Bermúdez et al. [4] gave some equivalent conditions for Li–Yorke chaotic operators and obtained a few
sufficient criteria for distributionally chaotic operators.

The central point of chaos is the impossibility of prediction of dynamics due to the divergence of close orbits. The
differences in definitions of chaos begin with different understanding of this divergence. The notion of Li–Yorke sensitivity
was mentioned for the first time by Akin and Kolyada [5] in 2003. At the same time, they also introduced the concept of
spatio-temporal chaos and provided a question:

Question 1. Are all Li–Yorke sensitive systems Li–Yorke chaotic?
In 2007, Wang et al. [6] introduced the concept of distributional chaos in a sequence, and proved that it is equivalent to

Li–Yorke chaos for continuous interval self-maps. So far, following question remains open:

Question 2. Are all Li–Yorke chaotic systems distributionally chaotic in a sequence?
In this paper, we mainly study chaos for operators on Banach spaces. First, it is proved that, for a bounded operator T ,

Li–Yorke chaos, Li–Yorke sensitivity, spatio-temporal chaos, and distributional chaos in a sequence are equivalent, and they
are all strictly stronger than sensitivity. This partly answers Questions 1 and 2. Next, we show that T is sensitive dependence
iff sup{‖T n

‖ : n ∈ N} = ∞. Finally, we study the chaoticity of compositional and product operators and prove that the
following conclusions hold.
(1) T is chaotic iff T n is chaotic for each n ∈ N.
(2) The product operator T ∗

n =
∏n

i=1 Ti is chaotic iff Tk is chaotic for some k ∈ {1, 2, . . . , n}.
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Definition 1 ([5]). Let f : X → X be a continuous map on a metric space (X, ρ). If x, y ∈ X and δ > 0, (x, y) is called a
Li–Yorke pair of modulus δ if

lim
n→∞

inf ρ(f n(x), f n(y)) = 0 and lim
n→∞

sup ρ(f n(x), f n(y)) ≥ δ.

(1-1) (x, y) is a Li–Yorke pair if it is a Li–Yorke pair of modulus δ for some δ > 0.
(1-2) The subset Γ ⊂ X is called a scrambled set if, for all points x, y ∈ Γ with x ≠ y, (x, y) is a Li–Yorke pair.
(1-3) f is Li–Yorke chaotic if X contains an uncountable scrambled set.

The set of Li–Yorke pairs of modulus δ is denoted by LY(f , δ), and the set of Li–Yorke pairs is denoted by LY(f ).

Definition 2 ([5]). Assume that (X, ρ) is a metric space and that map f : X → X continuous.

(2-1) f is sensitive dependence if there exists ϵ > 0 such that, for any x ∈ X and any δ > 0, there is some y which is within
a distance δ of x, and, for some n ∈ N, ρ(f n(x), f n(y)) > ϵ.

(2-2) f is spatio-temporally chaotic if, for any x ∈ X and any δ > 0, there is some ywhich is within a distance δ of x such that
(x, y) ∈ LY(f ).

(2-3) f is Li–Yorke sensitive if there exists ϵ > 0 that satisfies that, for any x ∈ X and any δ > 0, there is some y which is
within a distance δ of x such that (x, y) ∈ LY(f , ϵ).

Suppose that {pk}k∈N is a strictly increasing sequence of positive integers. For any pair x, y ∈ X and any real number
t > 0, let us put

F∗

xy(t, {pk}k∈N, f ) = lim
n→∞

sup
1
n

n−
k=1

χ[0,t)(ρ(f pk(x), f pk(y))),

and

Fxy(t, {pk}k∈N, f ) = lim
n→∞

inf
1
n

n−
k=1

χ[0,t)(ρ(f pk(x), f pk(y)))

where χ[0,t)(x) is the characteristic function of the set [0, t).

Definition 3 ([6]). Suppose that {pk}k∈N is a strictly increasing sequence of positive integers, and that f a continuous
self-map on a metric space X .

(3-1) The subset D0 of X is a distributionally chaotic set in {pk}k∈N if, for each pair x, y ∈ D0 with x ≠ y, the following two
conditions are satisfied: F∗

xy(t, {pk}k∈N, f ) = 1 for all t > 0, and Fxy(δ, {pk}k∈N, f ) = 0 for some δ > 0.
(3-2) f is distributionally chaotic in a sequence if it has a distributionally chaotic set which is uncountable in a sequence.

From now on, X denotes a Banach space over C (or R), and T : X → X denotes a bounded operator. In this case, the
associated metric is ρ(x, y) = ‖x − y‖ for any pair x, y ∈ X , where ‖ · ‖ is the norm of X . Θ denotes the zero-vector of X .
Let B(x, ϵ) denote ϵ-neighborhoods of a point x ∈ X , i.e., B(x, ϵ) = {y ∈ X : ρ(x, y) < ϵ}. Write N = {1, 2, 3, . . .} and
Z+

= {0, 1, 2, . . .}.

Definition 4 ([7,8]). A vector x ∈ X is said to be irregular for T if limn→∞ inf ‖T n(x)‖ = 0 and limn→∞ sup ‖T n(x)‖ = ∞.

Lemma 1 ([4]). Let T : X → X be a bounded operator. The following assertions are equivalent.

(1) T is Li–Yorke chaotic.
(2) T admits a Li–Yorke pair.
(3) T admits an irregular vector.

2. Equivalent conditions of Li–Yorke chaos and sensitivity

First, we discuss Li–Yorke’s chaoticity of operators with the following result.

Theorem 1. Assume that T is a bounded operator defined on a Banach space X over C (or R). Then the following are equivalent.

(1) T is Li–Yorke chaotic.
(2) T is Li–Yorke sensitive.
(3) T is spatio-temporally chaotic.
(4) T is distributionally chaotic in a sequence.
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Proof. (1) ⇒ (2) By Lemma 1, let us suppose that z is an irregular vector of T . For any x ∈ X and any r > 0, put
zr = x +

z
‖z‖ ·

r
2 ∈ B(x, r). Then

lim
n→∞

sup ‖T n(x) − T n(zr)‖ = lim
n→∞

sup
T n


z

‖z‖
·
r
2

 =

 r
2 · ‖z‖

 ·


lim
n→∞

sup ‖T n(z)‖


= ∞

and

lim
n→∞

inf ‖T n(x) − T n(zr)‖ = lim
n→∞

inf
T n


z

‖z‖
·
r
2

 =

 r
2 · ‖z‖

 ·


lim
n→∞

inf
T n(z)


= 0.

This implies that T is Li–Yorke sensitive.
(2) ⇒ (3) This holds trivially.
(3) ⇒ (4) LY(T ) ≠ ∅ holds as T is spatio-temporally chaotic. We know from Lemma 1 that there exists z ∈ X such

that it is irregular for T . Then there exist strictly increasing sequences of positive integers {nk}k∈N and {mk}n∈N such that
limk→∞ ‖T nk(z)‖ = limn→∞ sup ‖T n(z)‖ = ∞ and limk→∞ ‖Tmk(z)‖ = limn→∞ inf ‖T n(z)‖ = 0. Let b1 = l1 = 2, bi =

2b1+···+bi−1 and li =
∑i

h=1 bh for any i > 1; then we get an increasing sequence of positive integers {bi}i∈N. And put
{n′

k}k∈N and {m′

k}k∈N, respectively, as subsequences of {nk}k∈N and {mk}k∈N such that m′

i < n′

i when i ≤ b1, m′

i < n′

i when
l2k < i ≤ l2k+1, and n′

i < m′

i when l2k−1 < i ≤ l2k for any k ∈ N. Let

pi =


n′

i, if i ≤ b1 or l2k < i ≤ l2k+1, k ∈ N,
m′

i, if l2k−1 < i ≤ l2k, k ∈ N.

Then {pi}i∈N is an increasing sequence of positive integers.
Now, we assert that Γ = span{z} is a distributionally chaotic set of T in {pi}i∈N.
In fact, for any pair x, y ∈ Γ with x ≠ y, it is clear that there exists λ ∈ C such that x − y = λz.
Since limk→∞

Tm′
k(z)

 = 0, it follows that, for any t > 0, there exists N ∈ N such that ‖Tm′
i (λz)‖ < t for each i ≥ N .

Thus

F∗

xy(t, {pi}i∈N, T ) = lim
n→∞

sup
1
n

n−
i=1

χ[0,t)‖T pi(x) − T pi(y)‖

≥ lim
k→∞

sup
1
l2k

l2k−
i=1

χ[0,t)‖T pi(λz)‖

≥ lim
k→∞

sup
b2k
l2k

= lim
k→∞

sup
2b1+···+b2k−1

b1 + · · · + b2k−1 + 2b1+···+b2k−1

= 1.

Let δ = 1. Since limi→∞ ‖T n′
i (λz)‖ = ∞, there existsM ∈ N such that ‖T n′

i (λz)‖ > δ for each i ≥ M . Thus

Fxy(δ, {pi}i∈N, T ) = lim
n→∞

inf
1
n

n−
i=1

χ[0,δ)‖T pi(x) − T pi(y)‖

≤ lim
k→∞

inf
1

l2k+1

l2k+1−
i=1

χ[0,δ)‖T pi(λz)‖

≤ lim
k→∞

inf
b1 + · · · + b2k

l2k+1

= lim
k→∞

inf
b1 + · · · + b2k

b1 + · · · + b2k + 2b1+···+b2k

= 0.

Hence T is distributionally chaotic in {pi}i∈N as Γ is uncountable.
(4) ⇒ (1) This is obvious, since distributional chaos in a sequence is stronger than Li–Yorke chaos for continuous

self-maps. �

Theorem 2. Assume that T is a bounded operator defined on a Banach space X. If T is Li–Yorke chaotic, then it is sensitive
dependence. Conversely, it is not true.
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Proof. Applying Lemma 1, it follows that there exists z ∈ X such that it is irregular for T . For any x ∈ X and any δ > 0, let
xδ = x +

z
‖z‖ ·

δ
2 ∈ B(x, δ). We have

lim
n→∞

sup ‖T n(x) − T n(xδ)‖ = lim
n→∞

sup
T n


z

‖z‖
·
δ

2

 = ∞.

So

‖Tm(x) − Tm(xδ)‖ > 1

for somem ∈ N. This implies that T is sensitive dependence.
Conversely, let T : R → R be an operator given by T (x) = 2x for each x ∈ R. It is not difficult to check that T is a bound

operator which is sensitive dependence on R. For any pair x, y ∈ R with x ≠ y,

lim
n→∞

‖T n(x) − T n(y)‖ = lim
n→∞

|2n(x − y)| = ∞.

So T is not a Li–Yorke chaotic operator. �

Theorem 3. Assume T is a bounded operator defined on a Banach space X. Then T is sensitive dependence iff sup{‖T n
‖ : n ∈

N} = ∞.

Proof (⇒). There exists ϵ > 0 that satisfies that, for any r > 0, there exist zr ∈ B(Θ, r) (where Θ is the zero-vector of X)
and nr ∈ N such that ‖T nr (zr)‖ > ϵ holds as T is sensitive dependence. So ‖T nr ‖ ≥

‖Tnr (zr )‖
‖zr‖

≥
ϵ
r for each r > 0. Thus

sup{‖T n
‖ : n ∈ N} ≥ sup{‖T nr ‖ : r > 0} ≥ sup

ϵ

r
: r > 0


= ∞.

(⇐) Since sup{‖T n
‖ : n ∈ N} = ∞, for any k ∈ N, there exist nk ∈ N and xk ∈ X with ‖xk‖ = 1 such that

‖T nk(xk)‖ ≥ k. For any x ∈ X and any δ > 0, put nδ =
 2

δ


+ 1 and xδ = x +

δ
2 · xnδ

. Clearly, ‖xδ − x‖ < δ. And,
‖T nnδ (x) − T nnδ (xδ)‖ =

T nnδ


δ
2 · xnδ

 ≥
δ
2 · nδ ≥ 1. So T is sensitive dependence. �

For a bounded operator T , it is not difficult to check that, for anym ∈ N,

sup{‖(Tm)n‖ : n ∈ N} ≤ sup{‖T n
‖ : n ∈ N}

and

sup{‖T n
‖ : n ∈ N} ≤ sup{‖(Tm)n‖ · (‖T‖ + 1)m : n ∈ Z+

}.

So, we know from Theorem 3 that next corollary is obvious.

Corollary 1. For a bounded operator T , the following statements are equivalent.

(1) T is sensitive dependence.
(2) T n is sensitive dependence for any n ∈ N.
(3) Tm is sensitive dependence for some m ∈ N.

3. Chaos in compositional and product operators

First, we deduce from Lemma 1, Theorem 1, and [8, Proposition 2.4] that Li–Yorke chaos is preserved under composition.
i.e., for a bounded operator T defined on a Banach space X , T is Li–Yorke chaotic iff T n is Li–Yorke chaotic for any n ∈ N.

Assume that {(Xi, ‖·‖i)}
n
i=1 are n Banach spaces and thatΘi the zero-vector of Xi for each i ∈ {1, 2, . . . , n}. We can define

their Cartesian product X (n)
=

∏n
i=1 Xi together with the norm ‖(x1, . . . , xn)‖∗

n = ‖x1‖1 + · · · + ‖xn‖n. It is easy to see that
(X (n), ‖ · ‖

∗
n) is a Banach space.

For each i ∈ {1, 2, . . . , n}, let Ti be a bounded operator on Xi. We can also define their product operator T ∗
n =

∏n
i=1 Ti :

X (n)
→ Xn by T ∗

n (x) = (T1(x1), . . . , Tn(xn)) for any x = (x1, . . . , xn) ∈ X (n). Then T ∗
n is a bounded operator on X (n) and

‖T ∗
n ‖ = max{‖T1‖, . . . , ‖Tn‖}. Each Ti is called a factor operator of T ∗

n .
Now, we shall discuss how chaotic conditions on operators carry over to their products.

Theorem 4. Let Ti be a bounded operator defined on a Banach space Xi for each i ∈ {1, 2, . . . , n}. Then T ∗
n is Li–Yorke chaotic iff

Tk is Li–Yorke chaotic for some k ∈ {1, 2, . . . , n}.

Proof (⇒). Since T ∗
n is Li–Yorke chaotic, applying Lemma 1, it follows that there exists z = (z1, . . . , zn) ∈ X (n) such that z is

irregular for T ∗
n . For any i ∈ {1, 2, . . . , n} and anym ∈ N, since ‖(Ti)m(zi)‖i ≤ ‖(T ∗

n )m(z)‖∗
n and limm→∞ inf ‖(T ∗

n )m(z)‖∗
n = 0,

limm→∞ inf ‖(Ti)m(zi)‖i = 0 for any i ∈ {1, 2, . . . , n}.
Now we assert that limm→∞ sup ‖(Tk)m(zk)‖k = ∞ for some k ∈ {1, 2, . . . , n}.
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In fact, if limm→∞ sup ‖(Ti)m(zi)‖i < ∞ for any i ∈ {1, 2, . . . , n}, then there existsM > 0 such that ‖(Ti)m(zi)‖i ≤ M for
any i ∈ {1, 2, . . . , n} and anym ∈ N. Thus, for anym ∈ N,

‖(T ∗

n )m(z)‖ = ‖(T1)m(z1)‖1 + · · · + ‖(Tn)m(zn)‖n ≤ n · M.

This contradicts limm→∞ ‖(T ∗
n )m(z)‖∗

n = ∞.
Hence, there exists k ∈ {1, 2, . . . , n} such that zk is irregular for Tk. This, together with Lemma 1, leads to Tk being

Li–Yorke chaotic.
(⇐) Let the vector νk be irregular for Tk, and put ν = (ν∗

1 , . . . , ν
∗
n ), where ν∗

k = νk and ν∗

i = Θi when i ≠ k. Then

lim
m→∞

sup ‖(T ∗

n )m(ν)‖∗

n = lim
m→∞

sup ‖(Tk)m(νk)‖k = ∞

and

lim
m→∞

inf ‖(T ∗

n )m(ν)‖∗

n = lim
m→∞

inf ‖(Tk)m(νk)‖k = 0.

That is, v is irregular for T ∗
n . By Lemma 1, we have that T ∗

n is Li–Yorke chaotic.
We know from Theorem 1 that this also holds for Li–Yorke sensitivity, spatio-temporal chaos, and distributional chaos

in a sequence. �
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