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Abstract

We give a decomposition formula of the zeta function of a regular covering of a graph G
with respect to equivalence classes of prime, reduced cycles of G. Furthermore, we give a
decomposition formula of the zeta function of a g-cyclic I'-cover of a symmetric digraph D
with respect to equivalence classes of prime cycles of D, for any finite group I" and g€ T.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Graphs and digraphs treated here are finite and simple. Let G=(V(G),E(G)) be
a connected graph with vertex V(G) and arc set £(G), and D the symmetric di-
graph corresponding to G. Note that E£(G)=E(D). We also refer D as a graph G. For
e=(u,v)€D(G), set u=o(e) and v=t(e). Furthermore, let e~' =(v,u) be the inverse
of e=(u,v).

A path P of length n in D (or G) is a sequence P=(ey,...,e,) of n arcs such
that e; €E(G),t(e;)=0(e;1)(1<i<n — 1). Set |P|=n,0(P)=o0(e;) and #(P)=t(e,).
Also, P is called (o(P),t(P))-path. We say that a path P=(ey,...,e,) has a back-
tracking if e;llzei for some i(1<i<n—1). A (v,w)-path is called a v-cycle (or
v-closed path) if v=w. The inverse cycle of a cycle C=(ey,...,e,) is the cycle
Cl=(e,',....e 1)

We introduce an equivalence relation between cycles. Such two cycles C) =(ey,...,
en) and Cy=(f1,..., fn) are called equivalent if f;=e;  for all j. The inverse cycle
of C is not equivalent to C. Let [C] be the equivalence class which contains a cycle
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C. Let B" be the cycle obtained by going r times around a cycle B. Such a cycle is
called a multiple of B. A cycle C is reduced if both C and C? have no backtracking.
Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note
that each equivalence class of prime, reduced cycles of a graph G corresponds to a
unique conjugacy class of the fundamental group 7,(G,v) of G for a vertex v of G.

The (lhara) zeta function of a graph G is defined to be a function of u€C with u
sufficiently small, by

Z(Gu)=Zgw)= ] (1 —ulH7,

(€]

where [C] runs over all equivalence classes of prime, reduced cycles of G, and |C]| is
the length of C (see [1,11]).

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [6].
In [6], he showed that their reciprocals are explicit polynomials. Hashimoto [5] treated
multivariable zeta functions of bipartite graphs. Bass [1] generalized the Thara’s result
on the zeta function of a regular graph to an irregular graph, and showed that its
reciprocal is a polynomial. Various proofs of Bass’s Theorem were given by [3,7,11].
Mizuno and Sato [9] obtained a decomposition formula for the zeta function of a
regular covering of a graph.

Cycles, prime cycles and reduced cycles in a simple digraph which is not symmetric
are defined similarly to the case of a symmetric digraph. Let D be a connected digraph,
and N, the number of all cycles with length m in D (we do not require that cycles
are reduced). Then, the zeta function of a digraph D is defined to be a function of
ue C with u sufficiently small, by

Z(D,u) = Zo(u) = exp (Z % u) _

m=1

Let D have n vertices vy,...,v,. The adjacency matrix A=A(D)=(a;;) of D is
the square matrix of order n such that a;;=1 if there exists an arc starting at the
vertex v; and terminating at the vertex v;, and a;; =0 otherwise. Mizuno and Sato [10]
gave a determinant expression and an Euler product expression of the zeta function
of a digraph: Z(D,u)~" = det(I — A(D)u)= []o;(1—u/!), where [C] runs over all
equivalence classes of prime cycles of D.

Kotani and Sunada [7] treated zeta functions of strongly connected digraphs. In
[7], they stated a connection between zeta functions of graphs and that of strongly
connected digraphs, and gave a new proof of Bass’s Theorem by using the connec-
tion. Let G=(V,E) be a connected non-circuit graph. Then the oriented line graph
L(G)=(V.,E.) of G is defined as follows:

VL =E; Ep={(e1,e2) EEXE|é) #ext(e1)=0(er)}.

There exist no reduced cycles in the oriented line graph. Thus, there is a one-to-one
correspondence between prime cycles in L(G) and prime, reduced cycles in G, and so
Lo(u)= ZL((';)(”)-
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2. Zeta functions of regular coverings of graphs

Let G be a graph and I' a finite group. Let E(G) be the arc set of the sym-
metric digraph corresponding to G. Then a mapping o:E(G)— I is called an ordi-
nary voltage assignment if a(v,u)=o(u,v)~" for each (u,v)€E(G). The pair (G,a)
is called an ordinary voltage graph. The derived graph G* of the ordinary voltage
graph (G, ) is defined as follows: V(G*)=V(G)xI and ((u, h),(v,k))€ E(G*) if and
only if (u,v)€E(G) and k=ho(u,v). The natural projection n: G*— G is defined by
w(u,h)=u,(u,h) € V(G*). The graph G* is called a derived graph covering of G with
voltages in I' or a I'-covering of G. The natural projection m commutes with the
right multiplication action of the a(e),e€ E(G) and the left action of I' on the fibers:
g(u,h)=(u,gh),g €T, which is free and transitive. Thus, the I'-covering G* is a |I'|-
fold regular covering of G with covering transformation group I'. Furthermore, every
regular covering of a graph G is a I'-covering of G for some group I' (see [4]).

Let G be a connected graph, I' a finite group and o : E(G)— I' an ordinary voltage
assignment. Then we define the net voltage a(P) of each path P=(vy,...,v;) of G by
a(P)=o(vy,v3) - a(v;—1,v7). We denote the order of geI' by ord(g).

Theorem 1. Let G be a connected graph, I' a finite group with n elements, and
o:E(G)—T an ordinary voltage assignment. Suppose that the I'-covering G* of G
is connected. Then the reciprocal of the zeta function of G* is

Z(G“,u)_l _ H (1 _ u\C|ord(a(C)))n/ord(x(C))’
€]

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Proof. Let C be any prime, reduced cycle of G* and n(C)=CF, where Cy is a prime,
reduced cycle of G and n: G* — G is the natural projection. Let m=ord(a(Cy)). By
[4, Theorem 2.1.3], the preimage of Cy in G* is the union of n/m disjoint cycles with
length m|Cy|, and so k =m. Therefore, it follows that

Z(G“,u)fl — H (1— u\Co\Ord(a(Co)))n/ord(x(Co)),
[Co]

where [Cy] runs over all equivalence classes of prime, reduced cycles of G. [J

3. Zeta functions of cyclic I'-covers

Let D be a symmetric digraph and I" a finite group. A function o:E(D)— I is
called alternating if o(y,x)=o(x, y)~" for each (x,y)€E(D). For g T, a g-cyclic I'-
cover Dy(o) of D is the digraph defined as follows (see [8]): V(Dy(a))=V(D)xI", and
((v,h), (W, k))EE(Dy(2)) if and only if (v,w)€E(D) and k=ha(v,w)g~"'. The natural
projection m:Dg(o) — D is a function from V(Dy(«)) onto V(D) which erases the
second coordinates. A digraph D’ is called a cyclic I'-cover of D if D’ is a g-cyclic
I'-cover of D for some gel'.
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The pair (D, o) of D and o can be considered as the ordinary voltage graph (D, o)
of the underlying graph D of D. Thus the 1-cyclic I'-cover D;(a) corresponds to the
I'-covering D*, where 1 is the unit of I'.

Let D be a connected symmetric digraph, I' a finite group and «:E(D)— I an
alternating function. Furthermore, let g€ I'. Then we define the function o, : E(D) — I’
as follows: o,(v,w)=0(v,w)g~ "', (v,w)€EE(D). For each path P=(vy,...,v;) of D, let
ocy(P):oc(ul,vz)g’1 - -o(v;_1,0;)g”". Note that, if g27é1, then o, is not alternating,
and so Dy(a) is not a I'-covering of the underlying graph of D.

For heI', the permutation matrix P, =(p;;) of h in I' is the square matrix of order n
such that p;;=1 if g;h=g;, and p;;=0 otherwise, where n=|I'| and I'={g,=1,9,,...,
gn}. A cyclic permutation (% h;...hy,) is the permutation such that iy —hy — -+ —
hm — /’ll .

Theorem 2. Let D be a connected symmetric digraph, I' a finite group with n el-
ements, geI' and o.: E(D)— I an alternating function. Then the reciprocal of the
zeta function of Dy(a) is

Z(DQ(OC),M)71 _ H(l o u|C|0rd(zxy(C)))n/ord(otg(C))’
[l

where [C] runs over all equivalence classes of prime cycles of D.

Proof. By Theorem 3 and Corollary 3 in [10], we have
Z(Dy().u)™" = T [T det@ = p(ag(Cul Ny,
[c1 »p

where p runs over all irreducible representations of I' and f'= degp. The property of
the right regular representation of a finite group implies that

[ det@ — p(og(C)ul Ny = det(T, — 0(ety(C))ulVy = det(T, — Py cyulD),
P

where P, is the permutation matrix of 4 in I', and ¢ is the right regular representation
of I' (see [2]).

Let y=04(C), H={y) the subgroup of I' generated by y, m=ord(y) and k=n/m.
Furthermore, Let {h;=1,h,...,h} be a set of all representatives of I'/H. Then the
disjoint cycle decomposition of a(y) is

a(0) =1 79" Yo hay---hay" ™) g gy ay™ ).
Thus,
det(l, — Pull) = det(l,, — PlulDf = (1 — /"y,

where Pv/ is the permutation matrix of y in H. Therefore, the result follows. [
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