
Discrete Mathematics 263 (2003) 305–309
www.elsevier.com/locate/disc

Note

Decomposition formulas of zeta functions of
graphs and digraphs

Iwao Sato
Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan

Received 14 May 2001; accepted 30 September 2002

Abstract

We give a decomposition formula of the zeta function of a regular covering of a graph G
with respect to equivalence classes of prime, reduced cycles of G. Furthermore, we give a
decomposition formula of the zeta function of a g-cyclic �-cover of a symmetric digraph D
with respect to equivalence classes of prime cycles of D, for any 0nite group � and g∈�.
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1. Introduction

Graphs and digraphs treated here are 0nite and simple. Let G=(V (G); E(G)) be
a connected graph with vertex V (G) and arc set E(G), and D the symmetric di-
graph corresponding to G. Note that E(G)=E(D). We also refer D as a graph G. For
e=(u; v)∈D(G), set u=o(e) and v= t(e). Furthermore, let e−1=(v; u) be the inverse
of e=(u; v).
A path P of length n in D (or G) is a sequence P=(e1; : : : ; en) of n arcs such

that ei∈E(G); t(ei)=o(ei+1)(16i6n − 1). Set |P|=n; o(P)=o(e1) and t(P)= t(en).
Also, P is called (o(P); t(P))-path. We say that a path P=(e1; : : : ; en) has a back-
tracking if e−1

i+1=ei for some i(16i6n−1). A (v; w)-path is called a v-cycle (or
v-closed path) if v=w. The inverse cycle of a cycle C=(e1; : : : ; en) is the cycle
C−1=(e−1

n ; : : : ; e−1
1 ).

We introduce an equivalence relation between cycles. Such two cycles C1=(e1; : : : ;
em) and C2=(f1; : : : ; fm) are called equivalent if fj=ej+k for all j. The inverse cycle
of C is not equivalent to C. Let [C] be the equivalence class which contains a cycle
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C. Let Br be the cycle obtained by going r times around a cycle B. Such a cycle is
called a multiple of B. A cycle C is reduced if both C and C2 have no backtracking.
Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note
that each equivalence class of prime, reduced cycles of a graph G corresponds to a
unique conjugacy class of the fundamental group �1(G; v) of G for a vertex v of G.
The (Ihara) zeta function of a graph G is de0ned to be a function of u∈C with u

suFciently small, by

Z(G; u)=ZG(u)=
∏
[C]

(1− u|C|)−1;

where [C] runs over all equivalence classes of prime, reduced cycles of G, and |C| is
the length of C (see [1,11]).
Zeta functions of graphs started from zeta functions of regular graphs by Ihara [6].

In [6], he showed that their reciprocals are explicit polynomials. Hashimoto [5] treated
multivariable zeta functions of bipartite graphs. Bass [1] generalized the Ihara’s result
on the zeta function of a regular graph to an irregular graph, and showed that its
reciprocal is a polynomial. Various proofs of Bass’s Theorem were given by [3,7,11].
Mizuno and Sato [9] obtained a decomposition formula for the zeta function of a
regular covering of a graph.
Cycles, prime cycles and reduced cycles in a simple digraph which is not symmetric

are de0ned similarly to the case of a symmetric digraph. Let D be a connected digraph,
and Nm the number of all cycles with length m in D (we do not require that cycles
are reduced). Then, the zeta function of a digraph D is de0ned to be a function of
u∈C with u suFciently small, by

Z(D; u)=ZD(u)= exp

(∑
m¿1

Nm

m
um

)
:

Let D have n vertices v1; : : : ; vn. The adjacency matrix A=A(D)=(aij) of D is
the square matrix of order n such that aij=1 if there exists an arc starting at the
vertex vi and terminating at the vertex vj, and aij=0 otherwise. Mizuno and Sato [10]
gave a determinant expression and an Euler product expression of the zeta function
of a digraph: Z(D; u)−1= det(I − A(D)u)=

∏
[C](1−u|C|), where [C] runs over all

equivalence classes of prime cycles of D.
Kotani and Sunada [7] treated zeta functions of strongly connected digraphs. In

[7], they stated a connection between zeta functions of graphs and that of strongly
connected digraphs, and gave a new proof of Bass’s Theorem by using the connec-
tion. Let G=(V; E) be a connected non-circuit graph. Then the oriented line graph
L(G̃)=(VL; EL) of G is de0ned as follows:

VL =E; EL = {(e1; e2)∈E×E| Ke1 �= e2; t(e1)= o(e2)}:
There exist no reduced cycles in the oriented line graph. Thus, there is a one-to-one
correspondence between prime cycles in L(G̃) and prime, reduced cycles in G, and so
ZG(u)=ZL( KG)(u).
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2. Zeta functions of regular coverings of graphs

Let G be a graph and � a 0nite group. Let E(G) be the arc set of the sym-
metric digraph corresponding to G. Then a mapping � :E(G)→� is called an ordi-
nary voltage assignment if �(v; u)=�(u; v)−1 for each (u; v)∈E(G). The pair (G; �)
is called an ordinary voltage graph. The derived graph G� of the ordinary voltage
graph (G; �) is de0ned as follows: V (G�)=V (G)×� and ((u; h); (v; k))∈E(G�) if and
only if (u; v)∈E(G) and k=h�(u; v). The natural projection � :G� →G is de0ned by
�(u; h)=u; (u; h)∈V (G�). The graph G� is called a derived graph covering of G with
voltages in � or a �-covering of G. The natural projection � commutes with the
right multiplication action of the �(e); e∈E(G) and the left action of � on the 0bers:
g(u; h)=(u; gh); g∈�, which is free and transitive. Thus, the �-covering G� is a |�|-
fold regular covering of G with covering transformation group �. Furthermore, every
regular covering of a graph G is a �-covering of G for some group � (see [4]).
Let G be a connected graph, � a 0nite group and � :E(G)→� an ordinary voltage

assignment. Then we de0ne the net voltage �(P) of each path P=(v1; : : : ; vl) of G by
�(P)=�(v1; v2) · · · �(vl−1; vl). We denote the order of g∈� by ord(g).

Theorem 1. Let G be a connected graph, � a 6nite group with n elements, and
� :E(G)→� an ordinary voltage assignment. Suppose that the �-covering G� of G
is connected. Then the reciprocal of the zeta function of G� is

Z(G�; u)−1 =
∏
[C]

(1− u|C|ord(�(C)))n=ord(�(C));

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Proof. Let C be any prime, reduced cycle of G� and �(C)=Ck
0 , where C0 is a prime,

reduced cycle of G and � :G� →G is the natural projection. Let m=ord(�(C0)). By
[4, Theorem 2.1.3], the preimage of C0 in G� is the union of n=m disjoint cycles with
length m|C0|, and so k=m. Therefore, it follows that

Z(G�; u)−1 =
∏
[C0]

(1− u|C0|ord(�(C0)))n=ord(�(C0));

where [C0] runs over all equivalence classes of prime, reduced cycles of G.

3. Zeta functions of cyclic �-covers

Let D be a symmetric digraph and � a 0nite group. A function � :E(D)→� is
called alternating if �(y; x)=�(x; y)−1 for each (x; y)∈E(D). For g∈�, a g-cyclic �-
cover Dg(�) of D is the digraph de0ned as follows (see [8]): V (Dg(�))=V (D)×�, and
((v; h); (w; k))∈E(Dg(�)) if and only if (v; w)∈E(D) and k=h�(v; w)g−1. The natural
projection � :Dg(�)→D is a function from V (Dg(�)) onto V (D) which erases the
second coordinates. A digraph D′ is called a cyclic �-cover of D if D′ is a g-cyclic
�-cover of D for some g∈�.
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The pair (D; �) of D and � can be considered as the ordinary voltage graph (D̃; �)
of the underlying graph D̃ of D. Thus the 1-cyclic �-cover D1(�) corresponds to the
�-covering D̃�, where 1 is the unit of �.
Let D be a connected symmetric digraph, � a 0nite group and � :E(D)→� an

alternating function. Furthermore, let g∈�. Then we de0ne the function �g :E(D)→�
as follows: �g(v; w)=�(v; w)g−1; (v; w)∈E(D). For each path P=(v1; : : : ; vl) of D, let
�g(P)=�(v1; v2)g−1 · · · �(vl−1; vl)g−1. Note that, if g2 �=1, then �g is not alternating,
and so Dg(�) is not a �-covering of the underlying graph of D.
For h∈�, the permutation matrix Ph=(pij) of h in � is the square matrix of order n

such that pij=1 if gih=gj, and pij=0 otherwise, where n= |�| and �={g1=1; g2; : : : ;
gn}. A cyclic permutation (h1 h2 : : : hm) is the permutation such that h1 → h2 → · · · →
hm → h1.

Theorem 2. Let D be a connected symmetric digraph, � a 6nite group with n el-
ements, g∈� and � :E(D)→� an alternating function. Then the reciprocal of the
zeta function of Dg(�) is

Z(Dg(�); u)−1 =
∏
[C]

(1− u|C|ord(�g(C)))n=ord(�g(C));

where [C] runs over all equivalence classes of prime cycles of D.

Proof. By Theorem 3 and Corollary 3 in [10], we have

Z(Dg(�); u)−1 =
∏
[C]

∏
&

det(I − &(�g(C))u|C|)f;

where & runs over all irreducible representations of � and f= deg &. The property of
the right regular representation of a 0nite group implies that∏

&

det(I − &(�g(C))u|C|)f = det(In − '(�g(C))u|C|)= det(In − P�g(C)u|C|);

where Ph is the permutation matrix of h in �, and ' is the right regular representation
of � (see [2]).
Let (=�g(C), H =〈(〉 the subgroup of � generated by (, m=ord(() and k=n=m.

Furthermore, Let {h1=1; h2; : : : ; hk} be a set of all representatives of �=H . Then the
disjoint cycle decomposition of '(() is

'(()= (1 ( · · · (m−1)(h2 h2( · · · h2(m−1) · · · (hk hk( · · · hk(m−1):

Thus,

det(In − P(u|C|)= det(Im − P′
(u

|C|)k =(1− u|C|m)k ;

where P′
( is the permutation matrix of ( in H . Therefore, the result follows.
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