long-term health outcomes for patients with T2DM. Compared with exenatide, the cumulative incidence of acute kidney disease (AKD), retinopathy, and all-cause mortality in a cardiovascular event with liraglutide were reduced by 1.65%, 1.45%, 0.639% and 1.392% respectively. Liraglutide 1.2mg was associated with improvements in life expectancy of 0.109 years and 0.092 quality-adjusted life years (QALYs) versus exenatide. The costs of complications were reduced by 1.65% which also resulted in a total direct medical cost saving of 6,726 CNY. These results indicated that liraglutide 1.2 mg was cost saving approach in comparison with exenatide. Sensitivity analyses illustrated the robustness of the main results. The treatment of liraglutide 1.2 mg improved patient health and economic outcomes versus exenatide, and was a dominant treatment approach for T2DM patients in clinical practice.

PDB24
LONG-TERM COST-EFFECTIVENESS OF BIPHASIC HUMAN INSULIN 30 IN PEOPLE WITH T2DIABETES WITH INADEQUATE GLYCEMIC CONTROL ON ORAL ANTIDIABETIC DRUGS IN CHINA
Huayi Xu1, Deng Y1, Liu M2, Zhang SP1, Hu CY2
1Jianfeng Affiliated Hospital of Shandong University, Jinan, China, 2School of Nursing of Shandong University, Jinan, China, 3Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China, 4The Second Hospital of Shandong University, Jinan, China
OBJECTIVES: To evaluate long-term cost-effectiveness of switching to biphasic human insulin 30 [bovine Protamine Biosynthetic Human Insulin Injection (pre-mixed308%) in people with type 2 diabetes (T2DM) poorly controlled with oral anti-diabetic drugs (OAD) in China. METHODS: The validated IMS CORE Diabetes Model (V 5.8) was used to project long-term life years, quality-adjusted life years (QALYs) and corresponding direct medical costs for patients’ baseline treatment (metformin, sulfonylureas and/or alogliptin) as a reference. All the costs were obtained from the published 8-week observational study in China. Hba1c decreased from 10.18% to 7.57% after initiating biphasic human insulin 30 (metformin) for people uncontrolled with sulfonylureas and metformin, and hypoglycemic events was 0.80% per patient-year during the study period. Treatment costs were calculated by multiplying retail prices in China and dosage used in the trial. Management and consultation costs were calculated by multiplying retail prices in China with the recent National Health Insurance. Sensitivity analyses demonstrate robustness of result. CONCLUSIONS: In a 10% discount rate, the modified treatment cost of IGF-I values returned into normal range after 3 months of post-operation, and the direct medical costs including drug cost, medical consultation fees, and costs for diagnostic procedures, hospitalization, treatment costs for adverse drug reactions (ADR) and other costs arising from medical intervention among the sole surgical treatment group (35 cases), the group of preoperative treatment with lanreotide (36 cases), and the group of preoperative treatment with octreotide (18 cases).
RESUL:
T: Based on the good compatibility of tumor size, postoperative aver-
age hospital stay, mortality rate, postoperative acute kidney disease, postoperative severe infection rate, postoperative severe respiratory infection rate, postoperative severe gastrointestinal infection rate, and postoperative severe neurological complication rate, there was no statistical difference in the clinical effectiveness (k2 = 2.81, P = 0.250). As to the total medical costs per case, both octreotide group and lanreotide group were higher than the sole operation group with a statistical significant (F = 21.05, P = 0.000), and the lanreotide group (70521 ± 5677 Yuan) was lower than the octreotide group (80283 ± 21486 Yuan) with the Median non-parametric test (P = 0.057). The sensitivity analysis showed that the cost advantage of lanreotide relected in preoperative treatment group was not obvious in the case of lanreotide group had more cost advantage versus octreotide.
PDB27
COST MINIMIZATION ANALYSIS OF CLINICAL OPTION SCENARIOS FOR METFORMIN AND ACARBOSE IN TREATMENT OF TYPE 2 DIABETES: BASED ON Cost MINIMIZATION ANALYSIS IN INDIRECT TREATMENT RESUL:
Gu S1, Xu X1, Shi L1, Sawhney M2, Hu H1, Dong H1
1Zhijiang University School of Medicine, School of Public Health, Hangzhou, China, 2Bristol-Myers Squibb, Shanghai, China, 3Tulane University, New Orleans, LA, USA, 4Marshall University, Huntington, WV, USA
OBJECTIVES: Metformin is the first-line oral hypoglycemic agent for type 2 diabetes mellitus (T2DM) per international guideline with proven efficacy, safety and cost-effectiveness in patients. However, the efficacy and cost-effectiveness of acarbose for diabetes is still under debate. This study aims to ascertain both the effectiveness and cost-effectiveness of these two extensively-adopted agents in treatment of T2DM. METHODS: Randomised Controlled Clinical Trials comparing metformin and acarbose were searched from the Cochrane Library (2000–2012) and other medical literature databases. Meta-analysis and Bucher-method-based indirect comparisons were conducted and the results were evaluated by comparing difference of net health gain, cost, and net economic benefit and net health gain/1000 CNY/UKP€ (cost-effective, cost-saving, cost-ineffective) with various thresholds. RESULTS: The validated IMS CORE Diabetes Model (V 5.8) was used to project long-term life years, quality-adjusted life years (QALYs) and corresponding direct medical costs for patients’ baseline treatment (metformin, sulfonylureas and/or alogliptin) as a reference. All the costs were obtained from the published 8-week observational study in China. Hba1c deceased from 10.18% to 7.57% after initiating biphasic human insulin 30 (metformin) for people uncontrolled with sulfonylureas and metformin, and hypoglycemic events was 0.80% per patient-year during the study period. Treatment costs were calculated by multiplying retail prices in China and dosage used in the trial. Management and consultation costs were calculated by multiplying retail prices in China with the recent National Health Insurance. Sensitivity analyses demonstrate robustness of result. CONCLUSIONS: In a 10% discount rate, the modified treatment cost of IGF-I values returned into normal range after 3 months of post-operation, and the direct medical costs including drug cost, medical consultation fees, and costs for diagnostic procedures, hospitalization, treatment costs for adverse drug reactions (ADR) and other costs arising from medical intervention among the sole surgical treatment group (35 cases), the group of preoperative treatment with lanreotide (36 cases), and the group of preoperative treatment with octreotide (18 cases).
RESUL:
T: Based on the good compatibility of tumor size, postoperative aver-
age hospital stay, mortality rate, postoperative acute kidney disease, postoperative severe infection rate, postoperative severe respiratory infection rate, postoperative severe gastrointestinal infection rate, and postoperative severe neurological complication rate, there was no statistical difference in the clinical effectiveness (k2 = 2.81, P = 0.250). As to the total medical costs per case, both octreotide group and lanreotide group were higher than the sole operation group with a statistical significant (F = 21.05, P = 0.000), and the lanreotide group (70521 ± 5677 Yuan) was lower than the octreotide group (80283 ± 21486 Yuan) with the Median non-parametric test (P = 0.057). The sensitivity analysis showed that the cost advantage of lanreotide relected in preoperative treatment group was not obvious in the case of lanreotide group had more cost advantage versus octreotide.
PDB27
COST MINIMIZATION ANALYSIS OF CLINICAL OPTION SCENARIOS FOR METFORMIN AND ACARBOSE IN TREATMENT OF TYPE 2 DIABETES: BASED ON Cost MINIMIZATION ANALYSIS IN INDIRECT TREATMENT RESUL:
Gu S1, Xu X1, Shi L1, Sawhney M2, Hu H1, Dong H1
1Zhijiang University School of Medicine, School of Public Health, Hangzhou, China, 2Bristol-Myers Squibb, Shanghai, China, 3Tulane University, New Orleans, LA, USA, 4Marshall University, Huntington, WV, USA
OBJECTIVES: Metformin is the first-line oral hypoglycemic agent for type 2 diabetes mellitus (T2DM) per international guideline with proven efficacy, safety and cost-effectiveness in patients. However, the efficacy and cost-effectiveness of acarbose for diabetes is still under debate. This study aims to ascertain both the effectiveness and cost-effectiveness of these two extensively-adopted agents in treatment of T2DM. METHODS: Randomised Controlled Clinical Trials comparing metformin and acarbose were searched from the Cochrane Library (2000–2012) and other medical literature databases. Meta-analysis and Bucher-method-based indirect comparisons were conducted and the results were evaluated by comparing difference of net health gain, cost, and net economic benefit and net health gain/1000 CNY/UKP€ (cost-effective, cost-saving, cost-ineffective) with various thresholds. RESULTS: The validated IMS CORE Diabetes Model (V 5.8) was used to project long-term life years, quality-adjusted life years (QALYs) and corresponding direct medical costs for patients’ baseline treatment (metformin, sulfonylureas and/or alogliptin) as a reference. All the costs were obtained from the published 8-week observational study in China. Hba1c deceased from 10.18% to 7.57% after initiating biphasic human insulin 30 (metformin) for people uncontrolled with sulfonylureas and metformin, and hypoglycemic events was 0.80% per patient-year during the study period. Treatment costs were calculated by multiplying retail prices in China and dosage used in the trial. Management and consultation costs were calculated by multiplying retail prices in China with the recent National Health Insurance. Sensitivity analyses demonstrate robustness of result. CONCLUSIONS: In a 10% discount rate, the modified treatment cost of IGF-I values returned into normal range after 3 months of post-operation, and the direct medical costs including drug cost, medical consultation fees, and costs for diagnostic procedures, hospitalization, treatment costs for adverse drug reactions (ADR) and other costs arising from medical intervention among the sole surgical treatment group (35 cases), the group of preoperative treatment with lanreotide (36 cases), and the group of preoperative treatment with octreotide (18 cases).
RESUL:
T: Based on the good compatibility of tumor size, postoperative aver-
age hospital stay, mortality rate, postoperative acute kidney disease, postoperative severe infection rate, postoperative severe respiratory infection rate, postoperative severe gastrointestinal infection rate, and postoperative severe neurological complication rate, there was no statistical difference in the clinical effectiveness (k2 = 2.81, P = 0.250). As to the total medical costs per case, both octreotide group and lanreotide group were higher than the sole operation group with a statistical significant (F = 21.05, P = 0.000), and the lanreotide group (70521 ± 5677 Yuan) was lower than the octreotide group (80283 ± 21486 Yuan) with the Median non-parametric test (P = 0.057). The sensitivity analysis showed that the cost advantage of lanreotide relected in preoperative treatment group was not obvious in the case of lanreotide group had more cost advantage versus octreotide.