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We define and study the properties of a upper semi-continuity, a new continuity
property for set-valued mappings from a topological space into subsets of a
metric space, expressed in terms of Kuratowski's index of non-compactness. This «
upper semi-continuity is related closely to the usual upper semi-continuity but
significantly a upper semi-continuous minimal weak* cuscos from a Baire space
into subsets of the dual of any Banach space are generically single-valued.
Kuratowski’s index of non-compactness has been used to study the drop property
and x upper semi-continuity is dual to property x studied there. Uniform «
upper semi-continuity of the duality mapping is dual to nearly uniform rotundity
properties. Importantly, o upper semi-continuity has application in differentiability
theory, providing another characterisation for Asplund spaces. An examination of an
associated concept, a-denting point for sets, yields still further advances concerning
the differentiability of convex functions on a large class of Banach spaces.  © 1993

Academic Press, Inc.

1. INTRODUCTION

For a bounded set £ in a metric space X, the Kuratowski index of non-

compactness of E is

a(E)=inf{r : E is covered by a finite family of sets of diameter less than r}.

Recently, this index of non-compactness has been used to give characterisa-
tions of the drop and uniform version of the drop properties for a Banach

space.

Given a Banach space X over the real numbers, with dual X'*, we denote
the closed unit ball of X by B(X)= {xe X : x|l <1} and the unit sphere of
Xby S(X)={xeX:|x]|=1}. Given fe S(X*) and J > O, the slice of B(X)
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defined by f and 8 is the subset S(B(X), /,d)= {xe B(X): f(x)>1-4}.
X is said to have property o if given ¢>0 and fe S(X*) there exists a
o(e, £) >0 such that a(S(B(X), f, §)) <e. Rolewicz has shown, [15, p. 32},
that X has the drop property if and only if it has property a.

Given a Banach space X, for each xe S(X) we denote by D(x) the set
{feS(X*): f(x)=1}. The set-valued mapping x — D(x) from S(X) into
subsets of S(X*) is called the duality mapping on S(X). Recently it has
been shown [5, p. 505] that X has the drop property if and only if the
duality mapping f— D(f) on S(X*) is upper semi-continuous and com-
pact valued in S(X**). Now X is said to have property Ux if given ¢ >0
there exists a 0 < d(g) < 1 such that a(S(B(X), f, §))<e¢ for all feS(X*). It
1s natural to ask about the corresponding duality mapping characterisation
for this uniform case. The solution to this problem involves the definition
of a generalised continuity condition given in terms of the Kuratowski
index of non-compactness. But the significance of this generalised con-
tinuity condition is much more far-reaching than the solution of the
original problem.

We begin in Section 2 with a definition of this generalised continuity
condition called « upper semi-continuity for set-valued mappings from a
toplogical space into subsets of a metric space. We give a characterisation
in terms of upper semi-continuity and show that any minimal weak (or
weak *) usco (or cusco) from a Baire space into subsets of the dual of a
Banach space, which is « upper semi-continuous on a dense subset of its
domain, is single-valued and norm upper semi-continuous on a dense G
subset of its domain.

The drop property has been investigated for a bounded closed convex set
K with Oeint K in a Banach space X and has been characterised in terms
of the upper semi-continuity of the subdifferential mapping f — ép(f) from
X* into subsets of X** of the gauge p of the polar K° in X*, [6, p. 383].
In Section 3 we show that there is a satisfying duality between the « upper
semi-continuity of the subdifferential mapping x — dp(x) from X into sub-
sets of X'* of the gauge p of a bounded closed convex set K with Oeint K
and the property a of its polar K° in X*. We continue to explore this
duality and solve our initial problem by showing that a Banach space is
nearly uniformly rotund if and only if the duality mapping f — D(f) on X*
is uniformly o upper semi-continuous on S(X*). We observe that although
there is in general a close relation between upper semi-continuity and «
upper semi-continuity for set-valued mappings from a Baire subset of a
Banach space into subsets of its dual, the uniformisation of these two
continuity properties produces quite distinct conditions.

The single-valuedness property established in Section 2 suggests an
application in determining conditions under which continuous convex func-
tions on a Banach space are generically Fréchet differentiable. In Section 4
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we use the Kuratowski index of non-compactness to define x-denting
points of a set in a Banach space and we derive another characterisation
for Asplund spaces. We also extend a recent result, [8, Theorem 3.5], to
show that on a Banach space X which can be equivalently renormed
to have every point of S(X) an a-denting point of B(X), a continuous
convex function on an open convex subset of X* is generically Fréchet
differentiable provided that the set of points where the function has a
weak * continuous subgradient is residual in its domain.

We thank Denka Kutzarova who suggested the original problem and
Geroid de Barra for his discussion about possible solutions.

2. o UpPER SEMI-CONTINUITY

a. The Relation with USCO Mappings

Consider a set-valued mapping @ from a topological space A into
subsets of a topological space X. @ is said to be upper semi-continuous at
te A if, given an open set W containing @(¢) there exists an open
neighbourhood U of ¢ such that @(U) < W. For brevity we refer to @ being
upper semi-continuous at re 4 as an usco mapping at r if @(¢) is non-
empty and compact. If X is a linear topological space we refer to @ being
upper semi-continuous at re 4 as a cusco mapping at ¢ if @(r) is non-
empty, convex and compact. For a set-valued mapping @ from A4 into
subsets of a metric space X we introduce another upper semi-continuity
property defined by the Kuratowski index of non-compactness. We say
that @ is o upper semi-continuous at re A if, given £¢>0 there exists an
open neighbourhood U of ¢ such that a(®(U)) <e.

The characteristic function on the rational numbers is a simple example
of a single-valued mapping on the real line which is nowhere continuous
but everywhere x upper semi-continuous. Nevertheless, for a set-valued
mapping into subsets of a complete metric space there is a close relation
between these two continuity properties when the mapping satisfies a
particular intersection property for images of a local base. The following
property of usco mappings reveals the form of the intersection property
required.

2.1. PROPOSITION. An usco mapping & from a topological space A into
subsets of a Hausdorff space X satisfies the property that for each te A,
&)= {D(U): Ue B} where B is a local base for t and also for closure
with respect to any topology stronger than that given for X.

Proof. Suppose there exists for some ted an x,e(){P(U):
Ue #}\®(1). Then since @(r) is compact and X is Hausdorff there exist
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disjoint open sets V and W in X such that @(z)< V and x,e W. Now &
is upper semi-continuous at ¢ so there exists some UeZ such that
@(U) < V. But this contradicts x,e N {@(U): Uec%#}. |

For a upper semi-continuous mappings we show that the intersection
property of the form given in this proposition implies a nested sequence
property which is more amenable for our purposes.

We will use the following elementary properties of the Kuratowski
index of non-compactness for bounded subsets of a metric space X (see
L1, pp. 4-81]),

(i) if E<F then a(E) < a(F),
(1) ofE)=a(E), where E denotes the closure of FE,
for X complete,
{iit) «(E)=0 if and only if E is compact,
for X a normed linear space,

(iv) a(kE)=|k| a(E) for all real k,
(v} o(co E)=a(E), where co E denotes the convex hull of E.

It is often more convenient to work with what is sometimes called the ball
index of non-compactness which we define as

x(E)=inf{r: E is covered by a finite family of open balls
of radius less than r}

where the centres of covering balls do not necessarily belong to E. Now x
has all the properties {i)-(v). Both indices are equivalent in the sense that
x(E) < a(E) < 2x(E). Because of this equivalence we will generally speak of
Kuratowski’s index of non-compactness but mostly work with covers by
open balls. Sometimes we will find it convenient for our argument to
consider a cover by closed balls rather than open balls but clearly the
ball index of non-compactness remains the same. For a metric space
(X, d), given x4,€ X and r>0 we will denote by B(x,;r) the open ball
{xeX:d(x, xq)<r} and by B[x,;r] the closed ball {xe X:d(x, xo)<r}.
For any set F in a topological space X we will denote by C(£) the comple-
ment of £ in X.

2.2. LemMa. Consider a set-valued mapping @ from a topological space
A into subsets of a complete metric space X which is a upper semi-continuous
atte A If ®(t1)={D(U): Ue B} where B is a local base for t, then there
exists a nested sequence {U,} of open neighbourhoods of t such that ®(1)=
N = B(T,) and lim, ., 2(P(U,)) = 0.
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Proof. Since @ is o upper semi-continuous at ¢ we can choose a nested
sequence {U,} of open neighbournoods of ¢ such that lim, _, . a(®(U,))

=0. Then (;* @(U,) is compact and we consider for ke N,

K= 6 tD(U,,)\U{B (x;/lc) :xedﬁ(t)}

which is also compact (and possibly empty). Suppose that for every Ue 4,
D(U)nK# . Then for all finite subfamilies {U,,.., U, } of 3,
F#e(N U, )N K= Dd(U,)n K So by the finite intersection property,
F#N{@(U): Ue B} nK=P(1)n K. But this contradicts the fact that
&(1) € C(K). So there is some V,e A such that &(V,)n K= 5. We now
define another nested sequence {U,} of open neighbourhoods of r by
U,=U,nNi., V. For ke N we have

i=1

DU, = F\ DU, NV,

, 1
&) V)< {B(x; Z) :xedi(t)}.

So &(t)=N*_, ®(U,). Clearly as U, c U,, lim, _, , a(®(U.))=0. |}

n=1

To establish the relation between o upper semi-continuity and upper
semi-continuity we will use the following generalisation of Cantor’s inter-
section theorem due to Kuratowski, [9, p. 303].

2.3. LEMMA. Given a complete metric space and a nested sequence of
non-empty closed sets {F,}, F\.2F,2 --- 2F,2 ... with the property that
lim,_, , o(F,)=0, then " F, is non-empty and compact.

2.4. THEOREM. A set-valued mapping @ from a topological space A into
subsets of a complete metric space X is an usco at te A if and only if @ is

% upper semi-continuous at t and ®(t) =\ {®(U): Ue B} where B is a local
base for t.

Proof. 1f ®(t) is compact, given & >0 there exists {x,, x,, .., x,} € X
such that @(t)<= |J] B(x;;¢). If @ is also upper semi-continuous at ¢ there
exists an open neighbourhood U of ¢ such that &(U)<c (] B(x,; ¢),
so a(®P(U))<2; that is, @ is a upper semi-continuous at r. From
Proposition 2.1 we have that &(¢1)={@(U): Ue #} where # is a local
base for 1.

Conversely, if @ is a upper semi-continuous at ¢ then a(P(7)}=0 and
so @(t) is compact. If &(t)= N {P(U); Ue B} where # is local base for
then from Lemma 2.2 we have that there exists a nested sequence {U,}
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of open neighbourhoods of ¢ such that &()=N ¢(U,) and
lim, _, , «(@(U,))=0. If there exists an open set W in X containing @(t)
such that &(UN\W # & for each ne N, then {®(U,)\W} is a nested
sequence of closed sets, and since &(U,)\W< @(U,) we have that
lim, , . «(&(U,)\W)=0. So from Lemma23 we conclude that
Ny {d(U,)\W} # . But this contradicts the fact that &(r) =7 @(U,).
So given an open set W in X containing @(¢) there exists an nge N such

that @(U)< W for all U< U, ; that is, @ is upper semi-continuous at ¢. |

We note that without upper semi-continuity or o upper semi-continuity
the intersection property for images of a local base does not necessarily
imply the nested sequence property. The identity mapping id from an
uncountable set X with the cofinite topology into X with the discrete metric
is nowhere continuous and nowhere o upper semi-continuous. But for
every re X, id(ry=N{id(U); Ue B} where # is a local base for ¢ in the
cofinite topology and for any sequence {U,} in the local base #,

id(r) # (7 1d(T,).

b. Single-Valued Implications

One of the great advantages of the generalised continuity condition we
have introduced is that significant classes of o upper semi-continuous set-
valued mappings from a Baire space into subsets of a metric space are
single-valued on a dense G, subset of their domain. This is a consequence
of the compactness type arguments which are entailed by Kuratowski's
index of non-compactness.

An usco (cusco) from a topological space A into subsets of a topological
space X (linear topological space X) is said to be minimal if its graph does
not contain the graph of any other usco (cusco) with the same domain. We
will use the property of minimal uscos (cuscos) given in the following
characterisation.

2.5. LeMMA. Consider an usco (cusco) @ from a topological space A into
subsets of a Hausdorff space (separated linear topological space) X. Then @
is a minimal usco (cusco) if and only if for any open set V in A and closed
(closed and convex) set K in X where ®(V) & K there exists a non-empty
open set V'V such that ®(V')n K= .

Proof. Given that @ is a minimal usco (cusco), suppose that there
exists a f, € 4 such that @(t;)n K= F. Then C(X) is open and contains
@(¢,). Since @ is upper semi-continuous at f, there exists an open
neighbourhood V' of ¢, contained in V such that @¢(V')< C(K). Suppose
that &(1) n K+ J for each 1€ V. Then the set-valued mapping @' from A
into subsets of X defined by
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S'(t)=P(1)n K for teV
= P(1) for 1¢V

is an usco (cusco) whose graph is strictly contained in that of @. But @ is
minimal so ¢(V)c K.

Conversely, given that @ satisfies the condition, suppose that it is not a
minimal usco {cusco). Then there exists an usco (cusco) &’ whose graph
is contained in that of @ but for some te 4, @'(¢)# ®@(t). Consider
Xoe P(1)\D'(t). Since @&'(¢) is compact and X is Hausdorfl there exist
disjoint open sets W, and W, such that @'(¢}< W, and x,e W,. If @' is
a cusco then @’(¢) is convex so we can choose W, to be an open half-space.
Now since @’ is upper semi-continuous at t there exists an open
neighbourhood ¥ of ¢ such that @'(V)< W,. But then for each seV,
D(s)n C(W,) # . Therefore, by the assumed condition @(V)< C(W,),
but this contradicts x,e @(1)n W,. |}

We present the next theorem in general form. Particular cases where we
will want to apply the result are when the range space is a Banach space
and the t-topology is the weak topology, or more significantly when the
range space is the dual of a Banach space and the t-topology is the weak
* topology.

2.6. THEOREM. Consider a Baire space A, a metric space (normed linear
space) X and X with a topology t where the metric closed balls are also
t-closed. Consider a minimal t-usco (t-cusco) @ from A into subsets of X.
If @ is o upper semi-continuous on a dense subset of A then there exists a
dense G subset of A on which @ is single-valued and metric (norm) upper
semi-continuous.

Proof. Given ¢>0, consider O,=(){open sets U in A:diam @(U)
<2e}. Now O, is open; we show that O, is also dense in 4. Consider W
a non-empty open set in 4. Now there exists a 1€ W where & is o upper
semi-continuous. So there exists an open neighbourhood U, of ¢ contained
in W such that «(®(U,)) <e. Therefore, there exists {x,, .., x,} € X such
that &(U,)<c )] Bl x;;¢]. Now if &(U,)< B[x,;¢] write ¥V=U,, but if
not we have by Lemma 2.5 that there exists a non-empty open set U, = U,
such that @(U,)n B{x,;e]=. Now if &(U,)< B[ x,;¢e] write V=U,,
but if not we have by Lemma 2.5 that there exists a non-empty open set
U, < U, such that &(U;)n B[ x,;¢] = . Continue in this way. We will
have defined V' by the nth step because if not, we define a non-empty open
set U,,, cU,c --- cU, such that &(U,, )nJ] Blx;;e]= and this
contradicts @(U,) <= |J] B[ x;;¢]. So W contains a non-empty open subset
V with diam @(V) < 2¢. So O, is dense in A. Then since A is a Baire space,
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N7 Oy, is a dense G subset of A on which @ is single-valued and metric
(norm) upper semi-continuous. |

An important application of our theory so far concerns the differen-
tiability of convex functions. A continuous convex function ¢ on an open
convex subset A of a Banach space X is said to be Fréchet differentiable at
xedif

im $(x + t.vt) — $(x)

t—0

exists and is approached uniformly for all y e S(X).

A subgradient of ¢ at x,€ 4 is a continuous linear functional f on X such
that f(x — xq) <é(x)— d(x,) for all x e 4. The subdifferential of ¢ at x; is
denoted by d¢(x,) and is the set of subgradients of ¢ at x,. The subdif-
ferential mapping x — d¢(x) is a minimal weak * cusco from A into subsets
of X* [13, p. 100]. Further, ¢ is Fréchet differentiable at x € 4 if and only
if the subdifferential mapping x — d¢(x) is single-valued and norm upper
semi-continuous at x [13, p. 18]. So from Proposition 2.1 and Theorem 2.6
we have the following result.

2.7. COROLLARY. A continuous conrvex function ¢ on an open convex sub-
set A of a Banach space X whose subdifferential mapping x — dp(x) is &
upper semi-continuous on a dense subset of A is Fréchet differentiable on a
dense Gz subset of A.

It is interesting to note that this corollary implies the well-known result
that every convex function on an open convex subset of a finite dimen-
sional normed linear space is Fréchet differentiable on a dense G subset of
its domain.

3. THE DuALITY OF o« UPPER SEMI-CONTINUITY AND PROPERTY o

a. Duality for Convex Sets and Gauges

A closed bounded convex set K in a Banach space X is said to have the
drop property if for every closed set C disjoint from K there exists an xe C
such that co{x, K} n C={x}. Given fe X*\{0} and 4> 0, the slice of K
defined by f and J is the subset S(KX, f, 6)= {xe K: f(x)>sup f(K)—3d}.
We say that K has property o for /e S(X*) if given ¢>0 there exists a
d(e, £} >0 such that a(S(KX, f, §)) <e. Kutzarova has shown [10, p. 284]
that K with int K# (& has the drop property if and only if it has property
o for each fe S(X*)

Consider a closed bounded convex set K with Oeint K in a Banach
space X. The gauge p of K is defined by p(x)=inf{A>0:xeiK} and is a
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continuous sublinear functional on X. We define the polar of K as the set
Ke={feX*: f(x)<1 for all xeK}. Then K° is weak * compact convex
and Oeint K°. We denote by K°° the polar of K° in X**.

In [6, p. 384] it was shown that a closed bounded convex set K with
Oeint K in a Banach space X has the drop property if and only if the sub-
differential mapping f — dp(f) for the gauge p of the polar K° is a norm
cusco from X*\{0} into subsets of X** This suggests that, in view of
Theorem 2.4, we explore the duality between o upper semi-continuity for
the subdifferential mapping x — dp(x) for the gauge p of K and property o
for the polar K°. We show that there is a local duality between the two
concepts. But to do so we need properties relating the Kuratowski index of
non-compactness for slices of the sets K and K°°. We use " to denote
natural embedding elements in X**,

3.1. LemMa. Consider a closed bounded convex set K with Oeint K in a
Banach space X. Then

(i) K is weak * dense in K°° and

(i) given fe X*\(0) and 0 <r <sup f(K)=sup f(K°°)
(a) S(K, f, r) is weak * dense in S(K°°, f, r) and
(b) «(S(K, £, r))=a(S(K*, f, 1))

Proof. (i) Now K°°={FeX**:F(f)<1 for all feK®} is weak *
closed so K*™ < K°. Suppose there exists an F, € K°°\K*". Then since K
is convex there exists an f € X* which strongly separates F, and K*”; that
is, there exists an x>0 and an &> 0 such that

f(F)Sa—e<a+£<f(Fo) forall FeR*"

Then f(x)<a for all xeK; that is (ffa)(x)<1 so f/lae K° But then
Fo(flx)<1; that is, Fy(f)<a But this contradicts the separation
inequality.

(ii) (a) For any Fe S(K°°, f, r) consider a weak * neighbourhood
N of F. Then W=Nn{FeX**. F(f)>sup f(K®)—r} is a weak *
neighbourhood of F. But since by (i), K is weak * dense in K°° then W
contains an element of K necessarily of S(K, f, r).

(b) Our result follows from (a) using the fact that for any bounded
set £ in X, diam ¢6*" E =diam E.

3.2. THEOREM. Consider a closed bounded convex set K with Oeint K in
a Banach space X.
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(i) For p the gauge of K on X, the subdifferential mapping x — dp(x)
is o upper semi-continuous at x€ X\{0} if and only if K° has property o
for x.

(ii) For p the gauge of K° on X*, the subdifferential mapping
S = ép(f) is o upper semi-continuous at fe X*\{0} if and only if K has
property o for f.

Proof. (i) Given xeX\{0} and 0<é’><sup(K°), consider
feS(K®, %, 6%). Then we have f(x)> sup £(K°)— 6> = p(x)— &° and since
feKe f(y)<p(y) for all yeX so f(y—x)<p(y)— p(x)+6° for all
ve X. By the Brondsted—Rockafellar Theorem [13, p.51], there exists
an x,eX and f,edp(x,) such that Jx—xgl <d and || f— foll <d. So
foep(B(x; 8)) and S(K®, 2, 62) < Op(B(x; 8))+ SB(X*). If x — dp(x) is «
upper semi-continuous at x, given £>0 there exists a 0 <d<e and
{fi+0 fu} S X* such that dp(B(x; 8)) = U f; + eB(X*). Then S(K°, %, 67)
c {7 fi+ 2eB(X*); that is, K° has property « for %.

Conversely, if K¢ has property « for X, given £>0 there exists
an O<r<supX(K°) and {f,,..f,}SX* such that S(K° %,r)c
U7 fi+eB(X*). Consider the weak * open half space W= {fe X*: f(x)>
sup £(K°)—r}. Now dp(x)<= W. As x—dp(x) is weak * upper semi-
continuous at x there exists a >0 such that dp(B(x;d))c W. So
op(B(x;8)) S W K°=S(K° %,r). Then p(B(x;8))<S " f+eB(X*);
that is, x — dp(x) is « upper semi-continuous at x.

(i) If f—3p(f) on X* is o upper semi-continuous at f then
by (i), K° has property « for f. That is, given &>0 there exists
an O<r<sup f(K)=sup f(K*°) and {F,, ., F,}SX** such that
S(K, f,r)c U Fi+eB(X**). So S(K, f, r)s (U" F,e BLXX**)) n X which
is a finite family of open sets in X of diameter less than 2e. So K has
property « for f.

Conversely, if K has property a for f, given ¢>0 there exists an
O<r<supf(K)=supf(K°°) such that a(S(X, f,r})<e But by Lemma
3.13i)(b), a(S(K°° f,r))<e So K°° has property « for f. Then by (i),
f—0p(f) is a upper semi-continuous at f.

Using the characterisation of the drop property given in [ 10, p. 284 ], we
derive directly from Theorem 3.2(ii) the following characterisation which
compares with that of [6, p. 384].

3.3. COROLLARY. A bounded closed convex set K with mt K# & in a
Banach space X has the drop property if and only if the subdifferential map-
ping [ — 0p(f) for the gauge p of the polar K° is o upper semi-continuous
on X*\{0}.
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Consider a bounded closed convex set K with int K# & in a Banach
space X. It is known that if K has the drop property then X is reflexive
[10, p. 284]. It follows from Corollary 3.3, but it can be proved directly,
that if the subdifferential mapping f — dp(f) for the gauge p of the polar
K° is « upper semi-continuous on X*\{0} then X is reflexive.

For the Banach space c¢,, the duality mapping x — D(x) on S(c,) is a
norm cusco [4, p. 105], so from Theorem 2.4 it is « upper semi-continuous
on S{c,). From Theorem 3.2(i) we deduce that the Banach space /, has
property « for all £e S(cg ). So given a closed bounded convex set K with
Oeint K in a Banach space X, when the conditions of Theorem 3.2(ii)
hold for all fe X*\{0} then X is reflexive, but it is clear that when the
conditions of Theorem 3.2(i) hold for all xeX\{0} then X is not
necessarily reflexive.

b. Uniform a Upper Semi-continuity and Geometry

Knowing that a Banach space X has property « if and only if the duality
mapping f — D(f) on S(X*) is norm upper semi-continuous and compact
valued [5, p. 5047, it is tempting to conjecture that property Uax on X can
be characterised by the duality mapping f— D(f) on S(X*) being
uniformly norm upper semi-continuous and compact valued. That this is
false is a consequence of the following examination of the implications of
uniform norm upper semi-continuity.

We say that an usco mapping @ from a metric space (4, d) into subsets
of a Banach space X is uniformly norm upper semi-continuous on A if
given &> 0 there exists a d(¢) >0 such that @(y)< d(x)+eB(X) for all
d(x, y)<é.

3.4. PROPOSITION. Consider a metric space A, a normed linear space X
and X with a linear topology t where the norm closed balls are also t-closed.
Consider a minimal t-usco (t-cusco) mapping @ from A into subsets of X.
If @ is uniformly norm upper semi-continuous on A then @ is single-valued
on A.

Proof. Suppose @& is not single-valued at t,e A. Then there exist
X, X,€®D(ty) and x;#x,. Consider O0<e<i|x;—x,/. Since @ is
uniformly norm upper semi-continuous on A4 there exists a d(¢) >0 such
that @(B(ty; ) € ®(1,) + eB(X). But &(B(t,;d))n C(B[x,,2¢])# & and
since @ is a minimal t-usco (z-cusco) on 4 it follows from Lemma 2.5 that
there exists an open subset V| of B(¢y; 8) such that &(V,) < C(B[x,, 2¢]).
For any r,eV, we have x,¢®(s,)+eB(X). But t,e B(t,;d) which
contradicts the uniform norm upper semi-continuity of @ on 4. |

This proposition has interesting geometrical consequences for a Banach
space X when we consider the duality mapping on S(X). To demonstrate

409.178:1-18
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this we need to establish appropriate properties of the duality mapping
on S(X).

3.5. LEMMA. For a Banach space X, the duality mapping x — D(x) on
S(X) is a minimal weak * cusco.

Proof. We need only prove minimality. Suppose there exists another
weak * cusco D’ whose graph is contained in the graph of D and there
exists an x, € S(X) such that f, € D(x,) but f, ¢ D'(x,). Then D'(x,) and f,
can be strongly separated by a weak * closed hyperplane generated by
some x,€ S(X). So there exists a 0 <d <1 such that f(xy)>1-—0 and
flxg)<1—0 for all fe D'(x,). Since D' is weak * upper semi-continuous
at x,, there exists an open neighbourhood ¥ of x, in S(X) such that
D'(Vyc{feX*: f(xo)<1—0}. Consider any >0 such that x(1)=
(x; 4+ tx6)/|x, + tx,|| € V. Since the duality mapping x — D(x) is monotone,
for any feD(x(1)), (f—fi)xo)=(/t)0f— fi)x,+1xo—x)20. So
Sf(xo) = fi(xg) > 1= for all fe D(x(t)). But this contradicts the fact that
the graph of D’ is contained in the graph of D. ||

A Banach space X is said to have uniformy Fréchet differentiable norm
if

I X+ oyl = x|l
im ———————

10 t

exists and is approached uniformly for all x, y € S(X). It is known that the

norm of X is uniformly Fréchet differentiable if and only if there exists a

selection x — f, € D(x) which is uniformly continuous on S(X) [3, p. 36].
So we have the following corollary from Proposition 3.4.

3.6. COROLLARY. A Banach space X has uniformly Fréchet differentiable
norm if and only if the duality mapping x — D(x) is uniformly norm upper
semi-continuous on S(X).

A Banach space X is said to be uniformly rotund if given ¢>0 there
exists a d(¢) >0 such that |[x— y|f <¢ for all ||x+ y||>2—4. A Banach
space X has uniformly Fréchet differentiable norm if and only if its dual X*
is uniformly rotund. Furthermore, a uniformly rotund Banach space is
reflexive, [3, pp. 36, 37].

So then the proposed dual to property U« for a Banach space X implies
that the dual space X* has uniformly Fréchet differentiable norm on
S(X*) and that X is uniformly rotund. However, a Banach space X is said
to be nearly uniformly rotund if given ¢>0 there exists a 0 <Jd <1 such
that for every closed convex set E in B(X) with a(E)>¢ we have
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En(1—94)B(X)# . Rolewicz has shown [16, p. 185] that a Banach
space X has property Ux if and only if X is nearly uniformly rotund. But
a Banach space which is nearly uniformly rotund is not necessarily
uniformly rotund. In fact a Banach space which is nearly uniformly rotund
cannot necessarily be equivalent renormed to be uniformly rotund
[7,p. 7471

The required dual to property Ua for a Banach space X is a uniformisa-
tion of a upper semi-continuity for the duality mapping f— D(f) on
S(X*). It is interesting to see that two properties such as a« upper semi-
continuity and upper semi-continuity with compact values, which are
equivalent for duality mappings, should be so different when they are given
the obvious uniform definitions. Given a Banach space X, the duality
mapping x — D(x) on 5(X) is said to be uniformly « upper semi-continuous
if given ¢ >0 there exists a 0 < d(e) < 1 such that a(D(B(x;d))) <e for all
xe S(X).

The following theorem is the uniform analogue of Theorem 3.2 for B(X)
of a Banach space X. We say that the dual space X* has property weak *
Ua if given &> 0 there exists a 0 < d(e) < | such that a(S(B(X*), £, d))<¢
for all x e S(X).

3.7. THEOREM. For a Banach space X,

(i)} the duality mapping x — D(x) on S(X) is uniformly a upper semi-
continuous if and only if the dual space X* has property weak * U,

(i1) the duality mapping f — D(f) on S(X*) is uniformly o upper semi-
continuous if and only if X has property Ux.

Proof. (i) Given xe S(X) and 0<d< 1, consider feD(y) where
y€B(x;4). Then flx)=f(y)+f(x)—f(y)=1+f(x-y)>1-9, so
D(B(x;6)) = S(B(X*), £, 0). If, given £>0 there exists a 0<d <1 such
that a(S(B(X*), x,8))<¢ for all xe S(X) then a(D(B(x;d)))<e for all
x€S(X).

Conversely, given xe S(X) and 0<é <1, consider fe S(B(X*), %, 62).
Then as in Theorem 3.2(i) we have S(B(X*), %, 62) < D(B(x; 6))+ 6B(X*).
So if given ¢>0 there exists a 0 <d(c) <e and a(D(B(x;d)))<¢ for all
xe S(X) then a(S(B(X*), %, 6?)) < 2& for all xe S(X).

(1) If X has property « then X is reflexive [11, p.95], so if X has
property Ux then by (i) the duality mapping f— D(f) on S(X*) is
uniformly « upper semi-continuous.

Conversely, if the duality mapping /— D(f) on S(X*) is uniformly «
upper semi-continuous then by (i) the second dual X** has property weak
* Ua; that is, given ¢ > 0 there exists a 0 < d(e) < 1 such that a(S(B(X**),
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f", d))<eforall feS(X*). So a(S(B(X), f,)) <e for all fe S(X*); that is,
X has property Ua. |

As with Theorem 3.2 we notice that a Banach space satisfying the condi-
tions of Theorem 3.7(ii} is reflexive. But a Banach space satisfying the
conditions of Theorem 3.7(i) is not necessarily reflexive and it is interesting
to see that again the Banach space ¢, illustrates this. Given
X= {41, Agy ey Ay . } €S(cy), the set E= {neN: |4,] > 1} is finite. For any
Y= {lis oy or s -} € B(x3 3), supp(y)= {neN:|u,|=1} < E Now

D(y)=co{{0, .., 0,sgn u,, 0, ..} : kesupp(y)}
cco0{{0,..,0, £1,0,..}:ke E}

kth place

which is compact since E is finite. So a(D(B(x;1)))=0 and we conclude
that the duality mapping x — D(x) on S(c,) is uniformly a upper semi-
continuous.

We noted that a Banach space X has property Ux if and only if X is
nearly uniformly rotund. Theorem 3.7(ii) gives us the following dual
characterisation of nearly uniform rotundity.

3.8. CorROLLARY. A Banach space X is nearly uniformly rotund if and
only if the duality mapping f— D(f) on S(X*) is uniformly o upper semi-
continuous.

However, Theorem 3.7(i) prompts us to consider a weakened form of
nearly uniform rotundity for a dual, which would be equivalent to property
weak * Un. We say that the dual X* of a Banach space X is weak * nearly
uniformly rotund if, given £¢>0 there exists 0<d(¢) <1 such that for
every weak * closed convex set E in B(X*) with a(E)>¢ we have
En(1-8)B(X*)# .

3.9. COROLLARY. The dual X* of a Banach space X is weak * nearly
uniformly rotund if and only if the duality mapping x — D(x) on S(X) is
uniformly o upper semi-continuous.

Proof. From Theorem 3.7(i) it is sufficient to show that X'* is weak *
nearly uniformly rotund if and only if it is weak * Ua.

Suppose that X'* is weak * nearly uniformly rotund. Then since for each
xeS(X), S(B(X*), x,08/2) is weak * closed and S(B(X*), x,0/2)n
(1-0)B(X*)= we have a(S(B(X*), X,0/2))<e so X* has property
weak * Ua.

Conversely, suppose that X* has property weak * Ux and consider a
weak * closed convex set E in B(X*) such that En (1 —6) B(X*)= (.
Then since E is weak * closed and convex there exists a weak * continuous
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linear functional on X* separating E and (1 — &) B(X*). That is, there
exists an x € S(X) such that S(B(X*), £, 6) =2 E. Since «(S(B(X*), %, d))<¢
then x(F) <e¢ and X* is weak * nearly uniformly rotund. |J

4. o UPPER SEMI-CONTINUITY AND DIFFERENTIABILITY PROPERTIES
oF CONVEX FUNCTIONS

a. The Characterisation of Asplund Spaces

A Banach space X is called an Asplund space if every continuous convex
function on an open convex domain in X is Fréchet differentiable on a
dense G, subset of its domain. In Theorem 2.6 we showed that minimal
weak * uscos (or weak * cuscos) from a Baire space into subsets of the
dual of a Banach space which are « upper semi-continuous on a dense sub-
set of their domain are single-valued and norm upper semi-continuous on
a dense G, subset of their domain. In Corollary 2.7 we showed that this
has differentiability implications for convex functions on open convex
subsets of a Banach space whose subdifferential mapping is « upper semi-
continuous on a dense subset of their domain. This suggests that we explore
further o upper semi-continuity and related properties in detemining condi-
tions under which a Banach space is an Asplund space or has similar
differentiability properties.

Part of the study of Asplund spaces is to determine norm properties
which imply that a Banach space is an Asplund space. In particular, a
Banach space X with weak cusco duality mapping x — D(x) on S(X) is an
Asplund space [4, p. 106]. So we can make the following deduction from
Theorem 2.4 and Proposition 2.1.

4.1. THEOREM. A Banach space X with duality mapping x — D(x) «
upper semi-continuous on S(X) is an Asplund space.

The classical characterisation theorem for Asplund spaces was given by
Namioka and Phelps [12, p. 737]. We present an extended characterisa-
tion using Theorem 2.6.

4.2. THEOREM. For a Banach space X the following are equivalent,
(i) every continuous convex function ¢ on an open convex subset A of
X is Fréchet differentiable on a dense G; subset of A,
(ii) every non-empty bounded set in X* has weak * slices of
arbitrarily small diameter,
(ili) every non-empty bounded set in X* has weak * slices whose
Kuratowski index of non-compactness is arbitrarily small.
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Proof. In view of the classical characterisation and because it is obvious
that (ii) = (ii1), it will be sufficient to prove (ii1)=>(i). Consider a con-
tinuous convex function ¢ on an open convex subset 4 in X and given
£>0, O,={open sets V in A:a(d¢(V))<e}. Now O, is open; we show
that O, is dense in 4. Consider a non-empty open set W in A4. Since the
subdifferential mapping x — d¢(x) is locally bounded [13, p.29], there
exists a non-empty open subset U of W for which d¢(U) is bounded. Now
by the hypothesis in (iii) there exists a ze X\{0} and a § >0 such that
a(S(0P(U), z,8))<e. Now dg(U) & {feX*: f(z)<sup Z(dp(U))— 6} so
from Lemma 2.5 there exists a non-empty open subset V of U and so of W
such that d¢(V) <= S(é¢(U), z, 8). Then a(d¢(V)) <e. We conclude that the
subdifferential mapping x — é¢(x) is o upper semi-continuous on the dense
G; subset (\* O,, of A. It follows again from Corollary 2.7 that ¢ is
Fréchet differentiable on a dense G, subset of 4. ||

The dual theorem which corresponds to the classical Asplund space
characterisation was given by Collier in [2, p. 103]. A similar characterisa-
tion results from an extension of Theorem 4.2.

4.3. THEOREM. For a Banach space X the following are equivalent,

(1) every continuous weak * lower semi-continuous convex function ¢
on an open convex subset A of X* is Fréchet differentiable on a dense G
subset of A,

(i1) every non-empty bounded set in X has slices of arbitrarily small
diameter,

(iii) every non-empty bounded set in X has slices whose Kuratowski
index of non-compactness is arbitrarily small.

Proof. Again in view of the classical characterisation and because it is
obvious that (ii) => (ii1), it will be sufficient to prove (iii) = (i). Consider a
continuous weak * lower semi-continuous function ¢ on an open convex
subset 4 in X* and given ¢>0, O,=J {open sets ¥ in A:a(dg(V)) <2¢}.
Now O, is open; we show that O, is dense in 4. Consider a non-empty
open set W in A. Since the subdifferential mapping f — ¢@(f) is locally
bounded there exists a non-empty open subset U of W for which ¢¢(U) is
bounded. It follows from the form of the Bishop—Phelps theorem given in
[14, p. 180] that d¢(U)n X # &&. By the hypothesis in (iii) there exists an
feX*\{0} and a 6> 0 such that a(S(¢(U) n X, f, 3)) <&. Again since the
subdifferential mapping f— d¢(f) i1s a minimal weak * cusco, as in
the proof of Theorem 4.2 there exists a non-empty open subset V of U
such that (V)< {FeX**:. F(f)> supf(@gb(U)mX’)—é}. Now there
exists {x,,..,x,} €X such that S(@$(U)nX,f,8)c ) %, +eB(X)<=
Ui X, +eB(X**). If 0¢(V) & co(J] %, +eB(X**)) then by Lemma 2.5
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there exists a non-empty open subset V' of V such that d¢(V')n
co({J] X, +eB(X**))=¢J. Again from the form of the Bishop-Phelps
theorem given in [14, p. 1807, d¢(V')n X # . But then we have con-
tradicted the fact that ég(V')n S(0¢(U)n X, f, 3)# 5. So we conclude
that dg( V)<= co(U] £;+eB(X**)) and by the Kuratowski index property
(v), 2(0¢(V)) < 2¢e. We conclude that the subdifferential mapping x — d¢(x)
is a upper semi-continuous on the dense G; subset (\{° O, of 4. It follows
again from Corollary 2.7 that ¢ is Fréchet differentiable on a dense G,
subset of A. |

b. A More General Class of Differentiability Spaces

Although there are separable Banach spaces which do not have the
differentiability properties of Theorem 4.3, it has recently been shown [8,
Theorem 3.5] that there is a large class of Banach spaces, including the
separable spaces, where every continuous convex function on an open
convex subset of the dual is Fréchet differentiable on a dense G, subset
of its domain provided that the set of points where the function has a
weak * continuous subgradient is residual in its domain. Such spaces are
those which can be equivalently renormed to have every point of the unit
sphere a denting point of the closed unit ball. We generalise this result
using Kuratowski’s index of non-compactness and Theorem 2.6.

Given a Banach space X and r>0 we say that xerS(X) is a denting
point of rB(X) if given £ >0, x is contained in a slice of »B(.X) of diameter
less than & Generalising we say that xerS(X) is an x-denting point of
rB(X) if given ¢>0, x is contained in a slice of rB(X) with Kuratowski
index less than e Similarly, we say that ferS(X*) is a weak * denting
point of rB(X*) if given £>0, f is contained in a weak * slice of rB(X*)
of diameter less than ¢, and ferB(X*) is a weak * a-denting point of
rB(X*) if given ¢>0, f is contained in a weak * slice of rB(X*) with
Kuratowski index less than ¢. It is known that the denting points of »B(X)
map to weak * denting points of rB(X**) under the natural embedding [8,
Lemma 3.37], and the generalisation follows from Lemma 3.1(ii)(b) and the
Kuratowski index property (iv), that the a-denting points of »B(X) map to
weak * a-denting points of rB(X**) under the natural embedding.

We will need the following property of minimal weak * cuscos [8,
Lemma 3.4(ii1)].

4.4. LEMMA. Given a minimal weak * cusco @ from a Baire space A into
subsets of the dual X* of a Banach space X, there exists a dense G subset
D of A such that ar each t € D the real valued mapping defined on A by

p(t)=inf{{If[: fe ®(r)}

is continuous and ®(t) lies in the face of a sphere of X* of radius p(t).
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4.5. THEOREM. Consider a Banach space X which can be equivalently
renormed to have every point of S(X) an a-denting point of B(X). Then every
minimal weak * cusco @ from a Baire space A into subsets of X** for which
the set G={ted: (1) X # &) is residual in A, is single-valued and norm
upper semi-continuous on a dense G, subset of A. In particular, every
continuous convex function ¢ on an open convex set A in X* for which the
set G={feA:08(f)n X+ )} is residual in A, is Fréchet differentiable on
a dense G5 subset of A.

Proof. Consider X so renormed. Given ¢> 0, consider O, =) {open sets
Vin A:a(®(V))<e}. Now O, is open; we show that O, is dense in A.
From Lemma 4.4 there exists a dense G, subset G, of A such that at every
point te G, the mapping p where p(¢) =inf{|f| : fe ®(¢)}, is continuous
and &(¢) lies in the face of a sphere of X** of radius p(7). Now GG,
is residual in 4. Consider a non-empty open subset W of 4 and
to€ G G, N W. There exists some %,€ @(15) N X. If x,=0, then since p is
continuous at #, there exists an open neighbourhood U of 1, such that
D(t)neB(X**)# F for all reU. Then by Lemma 2.5, ¢(U)ceB(X**)
so UcO,nW. If xu#0 then x, is an x-denting point of p(t;) B(X)
so X, is a weak * a-denting point of p(#,) B(X**). Then there exists
a geS(X*) and a 6>0 such that xX,eS(p(t,) B(X**), ¢,6) and
a(S(p(ty) B(X**), §,6)<e/2. We can choose 1<A<2 such that
Xo € S(Ap(ty) B(X**), g, A0)=AS(p(ty) B(X**), §,8) and then by the
Kuratowski index property (iv), a{AS(p{ty) B(X**), g,6))<e. Since p is
continuous at #, there exists an open subset V' of W containing 7, such
that @(1)nip(te) B(X**)# ¢ for all teV’. So by Lemma?2.5,
D(V'y< lp(ty) B(X**). Since &(V') & {Fe X**: F(g)<ip(ty)— Ad} then
again by Lemma 2.5, there exists a non-empty open subset ¥ of V' and so
of W such that &(V)< S(Ap(1,) B(X**), £, 10) and so a{P(V))<e We
conclude that @ is a upper semi-continuous on the dense G, subset
N 0y, of A and our result follows from Theorem 2.6.

We noted previously that the subdifferential mapping f — d¢(f) of a
continuous convex function ¢ on an open convex subset 4 of X* is a
minimal weak * cusco from A into subsets of X**, so from Corollary 2.7,
¢ is Fréchet differentiable on a dense G subset of 4. ]

The question now arises whether the class of Banach spaces we have
been considering in this theorem is larger than the class in the original
theorem we have generalised. It is an open question whether spaces of our
class can be equivalently renormed to have this more restricted condition.

We do have a differentiability property for the dual norm of a Banach
space X where every point of S(X) is an «-denting point of B(X). This
result generalises [8, Theorem 3.2]. We need the following elementary
property for slices.
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4.6. LeMMA. For a Banach space X and x € S(X) and any slice of B(X)
determined by f € S(X*) and containing x, there exists an ¢ > 0 such that for
all ge S(X*) where ||g— f|| <& there exists a slice of B(X) determined by
g which contains x and is contained in the slice determined by f.

Proof. There exists some 0< <1 such that xe S(B(X), f, 6). Choose
e<i(f(x)—(1—46)). Then for ||f—g|<e we have g(x)>f(x)—e>
1—(6—¢). So xeS(B(X), g, 6—¢). But also for ye S(B(X), g,5—¢) we
have f(y)= g(y)—e>1-46. So ye S(B(X), £,9). 1

Given ¢>0, we denote by a,(S(X*)) the set of points of S(X*) which
determine slices of B(X) with Kuratowski index less than & From
Lemma 4.6 we see that o (S(X*)) is open in S(X*). Further B(X) has
property « for all fe [ a,,(S(X*)).

4.7. THEOREM. A Banach space X where every point of S(X) is an
a-denting point of B(X) has dual norm Fréchet differentiable on a dense G ;
subset of X*.

Proof. Consider fe S(X*) which attains its norm on S(X) say at
x€ S(X). Then x is an o«-denting point of B(X), so given O<e<1
there exists a geS(X*) and 0<d<1 such that xeS(B(X), g, 9)
and «(S(B(X), g, 8))<e. For 0<n<e consider h=ng+ (1—7)f Then
|A—fl <2n. Writing K=B(X)\S(B(X), g,8) we have suph(K)<
nsup g(K)+ (1 —n)sup f(K)<ng(x)+ (1 —n) f(x)=~h(x). So h separates
x from K and defines a slice of B(X) containing x but contained in
S(B(X), f, 8). Then hea,(S(X*)). From the Bishop-Phelps Theorem we
conclude that o (S(X*)) is dense in S(X*) and since «,(S(X*)) is open
in S(X*), N 2,(S(X*)) is a dense G; subset of S(X*). Then B(X)
has property « for all fe(\° «;,(S(X*)) and from Theorem 3.2(ii), the
duality mapping f— D(f) on S(X*) is a upper semi-continuous on
N7 2y,,(S(X*)). We deduce from Theorem 2.6 that the norm of X* is
Fréchet differentiable on a dense G, subset of S(X*). ||

We should note that if a Banach space X has every point of S(X) an
a-denting point of B(X) this does not even imply that the denting points
of B(X) are dense in S(X). Every finite dimensional Banach space X, has
every point of S(X,) an a-denting point of B{X,) but if its unit sphere
contains faces of dimension (n—1) then the denting points of B(X,)
are not dense in S(X,). So Theorem 4.7 is a genuine advance on [8,
Theorem 3.2]. Nevertheless, Theorem 4.7 implies that the closed unit ball
of a space of our class is the closed convex hull of its strongly exposed
points [13, p. 87].
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c. A Generalisation of Strongly Exposed Point Structure

Given a closed bounded convex set K in a Banach space X, xe K is
a strongly exposed point of K if there exists an fe S(X*) such that for
every ¢>0 there exists a 0<d <sup f(K) such that xe S(K, f, d) and
diam S(X, f, d) <¢; we say that f strongly exposes K at x. For a closed
bounded convex set K in the dual X* of a Banach space X, f e K is a weak
* strongly exposed point of K if there exists an %e S(X) which strongly
exposes K at /. We now give the appropriate generalisation of this concept
using the Kuratowski index of non-compactness. For a closed bounded
convex set K in a Banach space X we say that a subset E of K is a-strongly
exposed if there exists an f e S(X*) such that K has property a for f/ and
E=;.,S(K, £, 8); we say that f a-strongly exposes K at E. For a closed
bounded convex set K in the dual X* of a Banach space X, we say that a
subset E of K is weak * a-strongly exposed if there exists an % € S(X) which
a strongly exposes K at E.

It is important to recognise that the two concepts coincide for singleton
sets.

4.8. PROPOSITION. Given a closed bounded convex set K in a Banach
space X, a singleton subset {x} of K is a-strongly exposed if and only if x
is a strongly exposed point of K.

Proof. If xe K is a strongly exposed point of K then clearly {x} is
a-strongly exposed.

Conversely, consider {x} o-strongly exposed by feS(X*). Given
e>0 consider B(x;e) and the nested sequence of closed sets
{C(B(x;e))n S(K, f, 1/n)}. If all the sets in this sequence are non-empty
then by Lemma 2.3, C(B(x;e))n(); S(K, f, 1/n) is non-empty. Then
C(B(x;e))nNS(K, f,2/n) is non-empty, but this contradicts {x}=
Ns>0 S(K, f, 8). So we conclude that one of the closed sets in our nested
sequence is empty; that is, there exists a § > 0 such that S(X, f, d) = B(x;¢)
and this implies that x is a strongly exposed point of K. |

Namioka and Phelps, [12, p. 735], also characterised an Asplund space
by the weak * strongly exposed point structure of the weak * compact
convex subsets of its dual. The corresponding characterisation is in terms
of weak * a-strongly exposed subsets of such sets.

4.9. THEOREM. For a Banach space X the following are equivalent,

(i) every continuous convex function ¢ on an open convex subset A of
X is Fréchet differentiable on a dense G5 subset of A,

(i) every weak * compact convex subset of X* is the weak * closed
convex hull of its weak * strongly exposed points,
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(iii) every weak * compact convex subset of X* is the weak * closed
convex hull of its weak * a-strongly exposed subsets.

Proof. In view of the classical characterisation and because it is obvious
that (ii) = (ii1), it will be sufficient to prove (iii)=> (i). But if (iii) holds
then every weak * compact convex set in X* has weak * slices whose
Kuratowski index is arbitrarily small. But this implies that every non-
empty bounded subset of X* has weak * slices whose Kuratowski index
is arbitrarily small. Then our conclusion follows from Theorem
423y =(i). 1

The dual theorem follows from Theorem 4.3(iii)=>(i) by a similar
argument.

4.10. THEOREM. For a Banach space X the following are equivalent,

(1) every continuous weak * lower semi-continuous convex function ¢
on an open convex subset A of X* is Fréchet differentiable on a dense G
subset of A,

(i) every closed bounded convex set in X is the closed convex hull of
its strongly exposed points,

(1i1) every closed bounded convex set in X is the closed convex hull of
its a-strongly exposed subsets.

Note added in proof. Troyanski [17] has recently answered the question we raised con-
cerning Theorem 4.5 by showing that a Banach space X where every point of S(X) is an
a-denting point of B(X) can be equivalently renormed to be locally uniformly rotund.
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