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Abstract

We estimate sums of Kloosterman sums for a real quadratic number field F of the type
S=_IN@I™Sp(ririze)

where ¢ runs through the integers of F that satisfy C<|N(c)|<2C, A<|c/c|<B, with A<B
fixed and C— oo. By x+— X’ we indicate the non-trivial automorphism of F. The Kloosterman
sums are given by

sk - .
SF(V, 3% C‘) — E eZmTr,.-/Q(ru+r|d)/c’
dlc

with ad = 1| (¢).
In the absence of exceptional eigenvalues for the corresponding Hilbert modular forms, our
estimate implies that

S = OF,s,r,rl ,A,B(C5/6+C)

for each ¢>0. An estimate not taking cancellation between Kloosterman sums into account
would yield O(C). The exponent 2 + ¢ is less sharp than occurs in the bound Op,,, ,(C¥4?),
obtained in our paper in J. reine angew. Math. 535 (2001) 103—164 for sums of Kloosterman
sums where ¢ runs over integers satisfying v/C<|c|<2v/C, vVC<|c'|<2v/C. The proof is
based on the Kloosterman-spectral sum formula for the corresponding Hilbert modular
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group. The Bessel transform in this formula has a product structure corresponding to the
infinite places of F. This does not fit well to the bounds depending on N(c) and ¢/c.
Nevertheless, we do obtain non-trivial bounds for S.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Sums of Kloosterman sums have been estimated in two ways: By consideration of
the Kloosterman—Selberg zeta functions, and with the use of sum formulas of
Kuznetsov type. An example of the former method is given by Goldfeld and Sarnak
[6]. For the latter, we refer to the example of Kuznetsov’s treatment of the classical
Kloosterman sums in [10]. The former method runs into serious trouble when one
tries to apply it to number fields with infinitely many units. The sum formula,
restricted to trivial K-types, has been extended to SL, over all number fields, see e.g.,
[3]. For estimates of sums of Kloosterman sums, the optimal version of the sum
formula takes into account all K-types of the Lie group in question. We have done
that in [4] for totally real number fields. In the real quadratic case, this leads to the
estimate

S . p
Z M<F’C’m’1 C3/4+£ (C—> OO), (1)
ce 0/ C<|cT|<2VC |N(C)|

where we assume for the moment that there are no exceptional eigenvalues. F is a
real quadratic number field, @ its ring of integers, N(-) denotes the norm of F over
@, and the numbers r and r; are non-zero elements of the different ('. The
Kloosterman sums over F are given by

Sp(r, " C) _ Z * eZniTrF/@((rzlJrrla)/(z), (2)
d mod(c)

where ad = 1 mod(c). The embeddings F—R are denoted by o¢;:c+>c, and
gy e

So ¢ runs through four rectangular regions in ¢’ = R?. This structure is imposed by
the product structure of the sum formula in [4]. Peter Sarnak pointed out to us that it
would be more natural to let ¢ run over a region bounded by conditions on the
multiplicative quantities |N(c)| and |¢/c/|. The purpose of this paper is to give
estimates for sums of Kloosterman sums of this type. This we shall do in Theorems 5
and 6. Under the assumption that there are no exceptional eigenvalues, Theorem 5
implies the estimate

Se(r,r;c
M < Ferri,AB C5/6+8 (3)

ce0,C<|N(0)|<2C, A<|e/c|<B IN(c)]
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as C— oo. We pay for the transition from rectangular to multiplicative bounds
on ¢ by a lesser quality of the estimate. Nevertheless, Theorem 6 shows some
cancellation among Kloosterman sums. It contains a parameter » bounding
exceptional eigenvalues. For instance, if we use béé [12], Theorem 6 gives an
estimate O(C'%/2°+¢) for the sum in (3). This is better than O(C'**) obtained in
Proposition 7 on the basis of an estimate of the absolute values of the Kloosterman
sums.

The sharp bounds in sum (3) can be smoothened by inserting a weight function. If
we assume that there are no exceptional eigenvalues (b = 0), then (79) gives an
estimate O(C'/? log® C) for sum (3) with smooth bounds. Thus, we obtain an smooth
analogue for the Linnik conjecture [11], which states va:l S(n,m;c) = Opm(N'¢)
for the classical Kloosterman sums S(n, m; ¢).

The test functions in the sum formula in [4] have a product structure
corresponding to the product R>>SF. The first step in the proof of our results
consists of an extension of the sum formula to a larger class of test functions. We
carry this out in Section 2. Here it is no problem to work over a general totally real
number field.

In the application in Section 3 of the sum formula to sums of Kloosterman sums
with multiplicative bounds, we restrict ourselves to the real quadratic case.

2. Sum formula
2.1. Statement of the sum formula in [4]

Let F be a totally real number field of degree d over Q, with embeddings
o;: F—>R, 1<j<d. By 0 we denote the ring of integers of . By I' we denote the
corresponding Hilbert modular group SL,(¢). The embeddings o; give an
identification of I" with a discrete subgroup of G = SL,(R)“.

We formulate the sum formula in Theorem 2.7.1 of [4] for the situation of the
group I just fixed, and the cusp oo of I'. With Proposition 2.5.6 of [4], it is possible
to take the independent test function in the Kloosterman term. This leads to the
following data:

(i) Two non-zero elements r, r; of the different ¢'. These specify Fourier term
orders of automorphic forms on I'\G.

This determines a vector e {1, —1}* by e; = sign((rr1)”).
(ii) The test function f'e C((0, 0)?) is of the form

d
f(llvnwld):Hﬁ(tj) (4)
=1

with ;e C* (0, ).
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(iii) The Bessel transformation in (28) of [4] gives an even holomorphic function
h =B f on C“, described by

h(vy,ova) = [T (),

J=1

1 [*, J9 (4ny/1) — J3 (4nv/1) dt
h: —— (Y —2v 2v - 5
() 2/0 40 sin 7y t’ )
where J! = J,, J ! = I,, are Bessel functions, given by
T ])” P\ ut2n
Jt! - (+— 7 ) 6
o 0) nZ:On!F(u+n+l)(2) (6)
(iv) The Kloosterman term is a sum of Kloosterman sums as defined in (2):
B Sp(ryri;c) 1T oL 771 Od
k)= 3 = (@) 1)) 7)

cel,c#0

This sum converges absolutely for compactly supported test functions.
In [4, Theorem 2.7.1], the Kloosterman term is K™/, (-). We have specialized
the cusps k and k) to oo, and use Sp(—r, —r1;¢) = Sp(r,r1;¢).

(v) The spectral term is given by a measure do,,, on the set %:

W = (i[o, o0)u (0, 1/2)u{b%1: b=2, bezz})d, (8)

/@h(V) dory, (v) =Y h(vz)e (@) ()

+Y ey, [ i h(iy + ip) D" (iy, ip) D™ (iy, i) dy. 9)

leP He,

2 is a system of representatives of the I'-orbits of cusps. To each A2 is
associated a lattice ., contained in the hyperplane x; +x, + -+ + x4 =0 in
R?, and a positive constant ¢, >0. By D’ we denote a normalized Fourier
coefficient at the cusp oo of the Eisenstein series associated to the cusp 4. We
identify iyeiR with (iy, ...,iy)eC%.

The z run over an orthogonal family of closed irreducible subspaces of the
cuspidal subspace of L*(I'\G). The ¢’ (z) are normalized Fourier coefficients of
the automorphic forms in .

Each w is the tensor product | ® --- ® zwy of even irreducible representa-
tions of SL,(R). To each w;, we associate a spectral parameter v ; such that
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1 2

3 — Vo, s the eigenvalue of the Casimir operator in c;:
Vv, €i]0, 00), unitary principal series;
v,;€(0,1/2), complementary series;
Voj = %e% + Z>0, holomorphic or antiholomorphic
discrete series.
We denote v, = (Vo 1, ..., Vo a) €Y.

We call v ;€(0,1) an exceptional coordinate. Luo, Rudnick and Sarnak have
shown that all exceptional coordinates are contained in (0,%]7 see [12]. In the
papers [8,9], Kim and Shahidi bring this down to bgﬁ.

Theorem 1 (See Bruggeman et al. [4, Theorem 2.7.1, Proposition 2.5.6]). Let
r, 11, f and h be as above. Then the function h is integrable for the measure do, ,, on
%, and

/ hdo,,, = Ko (f). (10)
%

To prove Theorems 5 and 6 and estimate (3), we shall need to have the sum
formula (10) for all fe C((0, oo )d), not only for / with product structure as in (4).
That is the subject of this section. Theorem 4 states the result we need.

2.2. Continuity

Our approach is to consider a norm on C((0, ) for which all terms in (10)
are continuous.
Proposition 5.1.2 in [4] states that the Kloosterman term K., (f) converges

absolutely for any function f on (0, oo)d satisfying

d
S)<bgi(y) =[] min(y}, ;) (11)
=1

j=

with s,7eR, s+¢>0, s>} This implies that the linear form f+—>K,, (f) is
continuous for each norm

d .
Nu(h) = sup O] maxty = sup HVL )

ye(0,00)¢ j=1 ye(0,1)?

with s+ 7>0, s>1
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Let us turn to the Bessel transform B in (iii). We start by deriving a preliminary
estimate:

Lemma 2. Let s, t>%. For by, as in (11), we have
Be(_bs.t(v) <1+ |Im V|
uniformly for ve%.

Proof. We use

0 e dy
bz,il(V):/l y l‘%il(y»v)77 (13)
J5 (4ny7) — T3 (4n/7)
Bii(y,v) =2 fsinnvz vI) (14)
A <yb;1> =2(=1)"2JL (4nyy) (be2Z, b=2). (15)

We show that #°

s,+1
considering the following cases:

(v) and b;%, | (v) are O(1 + [Im v|) for the relevant values of v, by

+ v b3 11 (v) | b3 (v)
+| {5 be2z,b>2} | b) b)
+ | i0,1/2)u(0,1/2) f) 9)
+ i[1/2,00) a) €)
- i[0,1/2)U (0,1/2) f) c)
- i[1/2,00) a) d)

(a) Lemma 11.1 of [3] contains several estimates of Bessel functions that we can use
here. In (38), [3], we find

LA ) <RI (u+ 1), (16)
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uniformly for Reu>0, and O<y<y);,. We use this to obtain for
Rev=0, Imv>1/2:
By <L+ )7 (<), (17)

From s>1>0, we obtain b?H( )= 0(]v|""?) = 0(1) for vei[l/2, «0).
(b) In [3], Lemma 11.1, (40), we find
1
R0 (0>0,>0) (18)

This covers the case v = Tl, be2Z, b=2.
(c) We have

B_1(y,v) = %cos v K>, (47\/Y). (19)

Estimate (42) in [3] gives for Rev> — %:
B_1(y,v) <|cos v (2 +3)|y~Rev=1/2, (20)
Consider |[v|<1. Then the factors cos mv and I'(2v + 3/2) are O(1). We obtain

bram< [y e 1)
' 1

(d) For Rev=0, Imv>. estimate (20) gives Z_i(y,v)<(l+ v])y~/?, and
b (v) = O(1 + [Im v).
(¢) Let us use (4.1.4) in [1] for v = iueiR, |u|>1, y=1:

1 W T'(v+s/2) (y/2)2v
Ta(y) _@/Res—l/z(§> r(i+v-s/2) ds+r(2v+ D

e /2D (u=1/2|~|u+</2]) 4

<y1/2/ 34 : 3/4"'371“1”“‘71/2
(T+2u+))"" (1 + 2u —1|)

< y1/2 n|u\. (22)

Hence 4 (y,v) = O(y'/*) and b/ (iu) <1.
(f) A refinement of (16) is

2)14 yReu+2
JE () =/ 0 23
O = Ty 23)
for |u| = 1, and y<y,. This implies for |v| _% y<1:

Bii(y,v) <y (24)

By holomorphy, this estimate extends to |v |\27 and yields bA ()< for vl <%.
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(g) From 3.61, (1), (2), in [13]:

B1(v,v) = e Hy) (4n\/3) — ie” ™ Hy, (4m/5). (25)

We use this for the remaining case |v|<3. The factors e=™ are O(1). In 6.21,
(2), (3) of [13], we find:

1 /% nhwowe
Hé\l, or 2)( ) ;71/ eysmh w—2vw dw
)

L (™ i sinwT2iw
4+ eizy sin wF 2ivw dw
0

i
eizm o0 )
+ : / eV sinh w—2vw dw
Tt 0
© .
< 2/ e sinh x+x/2 dx+1<1 (26)
0
for y=yy. This gives first %,(y,v) <1 for |v| —% y=1, and hence for all v such

that |[v|<}. Hence b5 (v) <1 for |v|<). O

We conclude that for fe C*((0, c0)?) and s, >4,

$m>/ ﬁ<@m)@%@ @)

=1 1 Yd

defines a continuous function on %, and

d
Be/(v) JT(1 + [tm ;)™

J=1

sup
vew

<5 N (f)- (28)

We need to do better than (28) to obtain continuity in L!-sense for the measure
doy,,.

Lemma 3. Let /; be the differential operator 4yf6}2,] +4y;0,, + 167%€;y; on (0, w)<.
For all f € C*((0, )", we have:

B (f = 4B . (29)

Proof. By partial integration, this is a direct consequence of the Bessel differential
equation. [
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This leads to the following norm on C((0, 0)%):

My (f) =, max N < (H /2> ) (30)

d )
sup B S (v)| <o Mu(f) H<w> (31)
j=1

So if s,7>1, then

vew 1+ |Vj|4

for all C((0, ).
Let te(1/2,1), and put

’7 Vi, - H nej vj

(1—v3)~¥* for |[Rev|<t,
b= for v="51 be2z, b>2,

nov o= (1 =) 2(1/4 = ).

This defines a test function # as in Definition 2.5.1 of [4], for which Theorem 2.7.1 in
[4] holds. In particular, it is an integrable function for do,, and for do,, ,,. Moreover,
this function is positive on %, and

d
I+ |Imv
H( | /|><7](V17...,Vd)

j=1 1+ |Vj|

on %. Hence B, f is integrable for these measures for each f'e C* ((0, oo )). Lemma
3.1.1 in [4] and (31) imply that B f is integrable for do,, , and that

’/ B, fdo,,,
/{y

<m,r,r] Ms,t(f)- (32)

2.3. Extension

The continuity results allow us to extend the sum formula to the completion
with respect to M., (s,t>%) of the space spanned by the functions f in (ii)
of Section 2.1. Here we are content to extend the sum formula to
C((0,00)").
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The fact that |K,,, (f)| <N, (f) for fe CZ((0, 0)?) implies that f— K, , (f)isa
distribution of order zero on (0, oo)d. From (32) and (30), we conclude that
f— [, B fda,,, isa distribution of order at most 4d. These distributions coincide

on the test functions of product type, hence they are equal (see, e.g., [7, Theorem
5.2.1, p. 128]). Thus, we have proved:

Theorem 4. Let r,r € 0\{0}. For each f € C*((0, c0)") the Bessel transform

d
87 =2 [ ] Ao ) 5

.. 33
(0,00 ) =1 L 1l (33)

converges absolutely, it defines an integrable function on % for the measure do,,, , and

Kon(f) = / BL f doy. (34)

3. Sums of Kloosterman sums for real quadratic number fields

Now we assume that F is a real quadratic number field, so d = 2, and we revert to
the notations of the Introduction. We shall apply Theorem 4, and will arrive at the
estimates in Theorems 5 and 6, from which (3) will follow.

3.1. Sums of Kloosterman sums

Instead of the sum of Kloosterman sums in (3), we consider

SF(V,V];C)

NG (35)

Arp (4,B; C) =
ce0,C<|N(c)|<2C,A<|c/c|<B

Any bound Z(4, B; C) for this sum gives a bound C'/?Z(4, B; C) for the sum in (3).
We view C>1 as the main parameter. We keep track of the influence of the other
parameters 0< A< B, r,r; € 0"\{0}. In doing so, it is convenient to put:

R = |N(rr)|, (36)
1/4 n1/4
U — max I - 1471/27 m Bl/2 R (37)
(rry) 7
L :=1log(B/A). (38)

We note that L>0, U=>1, and that R is bounded from below by a positive constant
depending only on F.
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The sum formula gives good results when both |c| and |¢/| are not too small. This is
arranged by the following condition:

C=max(R'?U% R'V?U). (39)

To formulate our result, we define bounds for the singly and doubly exceptional
coordinates. With the notations in v), Section 2.1, we define:

B(1) = sup{ve i v €(0,1/2),v2 5 ¢(0,1/2)}, (40)

B(2) =sup{vy;: vz;€(0,1/2),v-3-;€(0,1/2)}. (41)

Here, we take the supremum equal to 0 in case the set is empty. From [12], it follows
that (1), B(2)<i.

Theorem 5. Take r, r|, A, B as above and let ¢>0. With the notations in (36)—(38),
for each C satisfying condition (39) and C'®>max(2, L"), we have:

A,y (4, B; C) < RV (L 4 1)CY3+¢ + RV* max(4~Y/2, BY?)C*
+ RVAPO/24e 2B ) (L 4 1) C1/4+B)

4 RVABRI Q) (4 1)CV/HBO),

This result is optimal in the C-aspect only if (1)<i5 and B(2)<. If there
are no exceptional coordinates, (1) = f(2) =0, then the last two terms can be
omitted.

The statement in the theorem becomes more transparent, if we leave implicit the
influence or r, r, and the sector |¢/c’| €[4, B):

AV-Vl (A> B; C) <r,rl,A,B,s Cl/3+8 + C1/4+I}(l) + C1/6+2ﬁ(2). (42)

If we knew that B(j) <5, then we would find the bound O(C'/3*#), which leads to
3).

The following result is optimal under the present knowledge concerning (1) and
B(2) (take b =1).

Theorem 6. Take r, ry, A, B as above. Assume that f(1)<b, B(2)<b for some
be (ﬁ, %) With the notations in (36)—(38), we have for each C satisfying condition (39)
and

Cl/4b> g0y max(2, L™, log® C),
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and for each ¢>0:
Apy (A, B; C) < RV (L 4 1)1 /4+b+e
4 RVATD/A+e b (L 4 1) 380/
4 RVAbreg=(p 4 1) C1/A-2

+ RY* max (4712, B'/?)C".

If we leave out the explicit dependence on the parameters, we find for %<b<%:

/1,",] (A, B, C) < A,B,Re C1/4+b+8. (43)

Let us compare this estimate with what can be said on the basis of the Weil-Salié
estimate

Sk (r,r1; )| <.min(v/ [N VIN (] [N ()] (6> 0); (44)

see, e.g., Theorem 10 in [2]. We shall show, in Section 3.6, that this estimate
implies:

Proposition 7. Let r,r; € 0"\{0}, 0<A<B. For all C>1:

Arr (A4, B; C) <.min(y/[N(r)], V/IN(r1)])

x (LCY* L max(4~'2 B'*)C*)  (£>0).

This gives A, ,,(4, B; C) < 4p.r.C"/***. The sum formula gives an improvement of
C'/4=b in the C-aspect. Thus, Theorem 6 implies cancellation among Kloosterman

sums for any b<1.
The remainder of this section gives the proofs of Theorems 5 and 6 and
Proposition 7.

3.2. Kloosterman term

Let g4, respectively og,, be the characteristic function of the interval (2,4],
respectively («, ff], where

rrq

(rr)'|

rrq

oy (45)

, p= —logAJr%log

o= —log B+ %log
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We have
Ay (A, B; C) = Ky (fon), (46)
Jsn S Tsh (y1_yz)o h (108 ﬂ) (47)
\@n)? (4n)?) " T\ x )7 y2)’
2pl/2
y =2 g . (48)

Note that condition (39) implies that X <4n>U—2<4n’.

This test function fy, with “‘sharp bounds” allows us to write the sum of
Kloosterman sums as a Kloosterman term in the sum formula. We apply the sum
formula to a smooth approximation f of fi,. The proofs of Theorems 5 and 6 consist
of finding good bounds for K., (f — fu) and for K, (f) = [, BS f doy,,.

We take te C* (0, o0 ) such that 0<t<1, Supp(t)=[2,4+%], t=1o0n[2++,4],
and oce C*(R) such that 0<o<1, Supp(s)<=[o, f+4], o(g) =1 if o+ $<g<p.
The parameter Y governs the steepness of t and 0. We take Y>max(2,ﬁ). We
arrange the choice of 7 and ¢ in such a way that

fo yldy = 7 1) dy =2,
Jo© 1K)l dy </Yf L(r>2), (49)
ffll W)dy <Y (£=2).

Theorem 4 can be applied to the following test function:

f<(:j)2,(;j)2> = o(222)0 (10e2). (50

3.3. Bessel transform

The hardest part of the proof is a good estimation of the Bessel transform (see (33)
and (14)):

h(V],Vg) = B:f(vl,vz)
dt; dt
/ / S (t1,)Be, (11,91) Bey (12, v2) — —

nh n

/ / ylyz (1 og ) el(JmVl)@ (v2, 2)?}1@2, (51)

1 V2

. TE0) = J5'(»)
RBe1(y,v) = #
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We follow the approach of Deshouillers and Iwaniec, [5], expanded a bit in [1].
There the spectral set % has dimension one. It is split into various pieces. For each
piece an integral representation of Bessel functions is chosen that gives a good
estimate of the Bessel transform. Here the set % has dimension two, and the number
of cases gets too large to be considered piece by piece.

We systematize our approach by noting the following form of the integral
representations in [1,5]

Brv) = /W DO YEO) gy () (53)

Here dyu is some measure on some set W. The functions D and E on W satisfy
Re D=0, Re E>0, and either £ =0, D(w)#0 for all we W, or D =0, E(w)#0 for
all we W. The dependence of du on v is not visible in the notation. (See the proof of
Lemma 9 for the actual choices we shall use.) All integral representations that we use
converge absolutely, and allow the following reformulation for suitable values of n;:

h(v1,v2) = / : / : / / ¢ D10) B0 3D ) )
0 0 Wy J Wy

dy, dJ/2

T(ylyZ/X)U(log(yl/yZ)) d,uz(WQ) d‘ul (Wl) f— (54)
/ / / / M, wi,m)ny(y2, wa, na)
wy J W,
x OO (t(y1y2/ X)a(log(y1/y2))y v, *)
x dyy dyy digy? (w2) dyt! (1), (55)
n(y, w, i’l) — yE(w)anfl’
a = 0,
if D=0: (_1>n (56)
dp*(w = du(w
R O
_ 1y
= EwEen-- e U0,
n(y,w,n) = e P,
if £=0: a:l) (57)
du'(w) = D(w) " du(w).

The integral in (55) has product structure, except for the factor involving partial
derivatives. We try to find a bound for this factor that has as much product structure
as possible.
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3.3.1. General estimation scheme
By induction, we see that

8}”11 6;17 (‘C(ylyz/X)Z(l((l)zg(yl /yz)))
i Y1V
- Z CS;CM inv”Z (b, C), (58)

b,c=0,b+c<n+n

) (y1y2/ X)) (log(y1/y2))
yllll +ny 7bygz+n27b ?

Oum(bc) = X5 (59)

where the coefficients C2¢, are not important, as we will restrict ourselves to nj +
ny < 4

/ / M wim)n (va, wa, 12) Ony oy (b, €) dyy dyr
0 0

b o D D Ey(wi)—ai—ni+b
=X / / e D)=y 2(W2)y11 )=
o Jo
y Yl Dy =0 [y i Dy =0
1 if £,=0 1 if £,=0
x e b0 (33 X0 log (1 /92)) v dyz.
We substitute y; = \/pg and y» = \/p/q. The factors e 22(") are bounded by 1.

The variable p runs effectively over an interval contained in [2X,8X], and the
variable g over [e*,e#*!/Y]. With (49), we find:

<A/—IJ/OO /oopRe(El(w1)+Ez(wz)—n1al—n202+2b—2)/2
0 0

, : d
% qRe<El (Wl)—Ez(wz)—nlllﬁ-nzaz)/z|T(b) (p/X)| |O-(C) (log q)| ?6] dp

< XRE(EN 0B (2) —may —nza) /2 (60)
X I’Il.":lX(eR‘:(E1 (w1)=Ex(w2)—ma Jri’lzuz)at/Z7
Re(E1 () =Ea(v2) —martman) (B+1/Y) /2 (61)

1 if b=0 p+1/Y —o if c=0,
X o - . (62)
Yol if b1 Ye© if ¢>1.
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Let us put
U= Ue'/" = max(e %/2e/Y ef2e!/ V) >1, (63)

V=L+1/Y =log(B/4A)+1/Y. (64)

The maximum over b,c¢=>0, b+ c<n; + ny, of factor (62) is

< |4 if ny+n, =0,
<
(V+ I)Y”H'"E_] if ny +ny>=1.

It seems that we might weaken the estimate, if we would try to bring this factor into
product form.
For factor (61), we use the following bound:

U{Re E\(wi)—nai|+|Re Ey(w2)—mas|
Thus, we have obtained:

Lemma 8. We put:

XRe E(w)/2 U‘Re E(w)
_ if D=0,
F(w,n) = |E(w),| (65)
X220\ D(w)|™" if E=0,

v if N=0,
aNy_{Uq4ﬂm4 N> (66)

Then for ni,nyeNsq, ny +n<4:
h(v1,v2) € Gm + o) / Fi(wi,m) [dp; ()
4

« j/ Fa(ws, m) [dpty (w2)]. (67)
W>

In some cases, we shall need to use different orders of integration in different parts
of W. Then we divide up W =\J,.y W(n), and use the slightly more general
estimate:

h(vl,\)z) < Z Z G(”l +”2)

ny EN1 I’leNz

X / Fi(wi,m) |dM1(W1)|/ Fa(wa,n2) [d iy (w2)]- (68)
Wi(n) Wa(n2)



106 R W. Bruggeman et al. | Journal of Number Theory 99 (2003) 90-119

3.3.2. Local estimates

The spectral set % in (8) is the Cartesian product %, x %,. We split up % into
four regions, depending on a parameter 7'>2, and fe(0,1/4) such that all relevant
exceptional coordinates are in (0, ]:

[ =1 +1=-1
= i0,2)u {1, 3} i[0, 2]
2, U{vel+z:2<v<T} i2,7) (69)
iT,o)u{vet+Z:v>T} i[T, c0)

= (Ovﬂ] (07/3]

9 Q W »
Il

We shall use ff = (2) when considering E x Ec%, and = (1) for X x E and
E x X with Xe {A,B, C}. We have already remarked that ﬁg% is known.

Lemma 9. (a) For each veA, there is a choice W = W(0)u W(1) such that

log(UX"V2) if n=0
/ F(w,n>du<w><{°g( ) Fn=0,
W (n)

if n=1.
(b) For each veB, there is a choice of W such that
/ Fw, 1) dp(w) < o[>,
w
(c) For each veC, there is a choice of W such that
/ F(w,2) du(w) <|v|™>.
w
(d) For each veE, there is a choice W = W(0)u W (1) such that
X PUlog(UX"'?) if n=0,

F(w,n)d <
/W(n) (w,n) du(w) < { xX-PU2s if n=1.

Proof. We consider six different cases. Our aim is to establish estimates, not explicit
formulas. So if the integrand in (53) is the sum of two complex conjugate quantities,
we can work with an estimate of one of the resulting terms. By (cst.) we denote an
explicit constant.

We note that U>1, X =4n*R'2C'<4n?, UX'?>1, and XU?<4n><1; see
(39). We shall also use U= Ue!/Y < U.
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(i) Equal sign, veil0,2]<A, or veE. As in (25), (26), we have

o)
E] (y7 V) = Z (CSt.)eimv / e sinh 7+2vt dt
0

+

+ t)
zi: . /n/2

+3 (est)eF / ¢ 2T g (70)
i 0

w2 .
e+zy cos 0 F2iv0 4o

The factors e=™ are O(1) for the values of v under consideration. We take W =
w(0)uw(l), W(0)=(0,Z|ui(—n/2,n/2), W(l)=[Z, «) for some Z>0 still to
be determined. On (0, co) we take

du(w) = cosh(2vw) dw, D(w) = sinh w;
and on i(—n/2,7/2):

du(w) = e 2" dTW, D(w) = —icos(w/i).

We have

1/cos(w/i) if wei]-n/2,7/2],

F(w,0)<1, F(w,1)<x 20
(w,0) < (w, 1) < {l/sinhw if we(0, ).

It seems sensible to choose Z such that both bounds are equal at w = Z:
Z =1og(UX~'2 +VOPX-1 4+ 1) <log(UX'/?).
We obtain:

/2 z
/ F(w,0)du(w) </ omim | d9+/ QURe VT 7o
W) —n/2 0
<14 ZERNZ <1 4 log(Ux~/2)(Ox1/2)HRe

log(UX /%) if veA,
<
log(UX- 12 x-PU* if veE,
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~€2|Re v|t
/ F(w,1)du(w) / X PU——dr
w(1) sinh 1

<X 1/2 / (2|Rev\ 1)t T dt
z

1 if veA,
< .
X PU? if veE.

In the case veE, the implicit constant of the estimate contains = 23 As ﬁ\s, this

causes no harm.

(ii) Equal sign case, v =13 or 3 A. In [13], 6.2, (7), we find for Re u>0:

/2
Ju(») :l/ cos(uf — ysin 0) do
0

1

+ E/ e sin(y cosh t — nu/2) dx. (71)
0

With (15), we see that a good choice is W = i[—n/2,0) wi(0,7/2] U [0, c0), with, for
w=i0ei[-n/2,n/2], 0£0:

du(w) = " do, D(if) = isin0;
and for w =1€]0, 00):
du(w) = e **dt, D(t) = —icosht.

We have F(w,0) <1, F(t,1)<X~'/2U/cosht for =0, and F(i0,1) <X~ /2U/sin 0
for Oe[—n/2,7/2]. We take

Z =log(UX "2 + V2X-1 — 1) <log(UX1/?),

and W(0) = i[-n/2,n/2]U[0,Z], W(1) =[Z, «0). We obtain

z
/ F(w,0)du(w) <1 —|—/ e Tdi<l,
w(0) 0

w0 ,—2vT

F(w,1)d X‘I/ZU/ ¢
/W(l) O, 1) dulw) < 7 cosht

This is better than required in the lemma.

de<U ' X2,
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(i) Unequal sign, veil0,2]< A or veE. From (19) and [13], 6.22, (7):

o0
A_1(y,v) = (cst.) cos nv/ eV coshw=2mw gy,

o0
We consider this for v in a bounded set, so cos v = O(1).

We take W =10,0), du(w)=cosh(2vw)dw, D(w) =coshw, and
F(w,0)<1, F(w,1)<X 2U/cosh w. We take

Z =log(UX™ "2+ VPX-1 — 1) <log(UX'/?),

and split up W into W(0) = [0,Z), W (1) =[Z, «0).

VA
/ F(W, 0) d,u(w) < / eZ\Rev\w dw«log(UX’l/z)Uz Re vaRev7
w(0) 0

eZ\Re v

%) [w
F(w,1)d X VPU——— adw< UMReVI y —Rev,
/W(l) (v, 1) duw) </Z cosh w W<

This satisfies the requirements in parts (a) and (e) of the lemma.
(iv) Equal sign, v>§, cases B and C. As in (4.1.3) of [1], we use for u>1:

o W T((u+5)/2)
Ju) =7 /RH30<§) mds‘

109

have

(73)

Take o =ne{l,2}, and u=b—1=2v, be2Z, b=4. Take W =R, du(w)=

277 (v (T v 4—"*7"”')_l dw, and E(w) = n — iw. We have

X2gn
Fwn)<—
00 < )
and
/F(w,n)dw
W
0 n/2 17 T(v—=2 w
<) a4
o (L W) (v =5 =), [T (v =5 =5)

<X”/2L7”/‘ | dx 1
o (I+x)"(v—1+x)""
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X'20v2logv if n=1,
< ~
XU0?3 if n=2;

< vi32 if n=1,
<
vI2if n=2.

(v) Equal sign, vei[2, o), cases B and C. From (73) we obtain, with Reu = 0:

L W TE )
W0 =5 [ O TrE TG 74

For Rev=0, Imv>=2, v=1ir

B](y,V) <e—ﬂt

/ - (Z)wa(iw%) P/
_ N2/ I(it 4 5) I(1+2it)|

o0

Weuse W=Ru{i}, D=0, E(w)=1—iwfor weR, E(i) = 2it, and the measure

It + 251
( 2 )dw on R,

__—TtAiw
d,u(m/) =e 2M I—‘(ZT?’_T’W)

plus e ™I'(1 + 2ir)"" times a delta measure at i. With ne {1,2}:

/F(w,n)d,u(w)
w
e} X1/2U
</ e
oo (1= iw),|
L p
+ —— !
|(2ir),|

< X1/2 U / 0 e ™=l w/2| /24| t—=w/2|/2 gy t7n71/2.
—o (LD (T + [+ w/2)) (1 + |1 = w/2])

F(Zit—‘—gv—‘—l)

F(Zitfé'wﬂ)

dw
EE=rERE
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We have

/ - dw <t og1t
<
0w —t—w/2)(A+1—w/2) gt

0 e aw/2 dw
/21 L—w)"(1+t+w/2)(1+1—w/2)
—t 0
: dy
<tfnflefnr/ o™ dW+€7m/2/ w <Z n— 1
-2t (1 - W)

o0 e w/2 dw .
_ - 0(1),
/0 T atrw s i—wap < oW

|—n—l/2 |—n—l/2

All contributions have the bound X2U|v|™ " log|v| + |v
agreement with parts (b) and (c) in the lemma.

(vi) Unequal sign, veil2, o), cases B and C. Let v=it, t=2, and n=1,
respectively 2. As in pp. 308-309 of [1]:

<|v , in

B_1(y,v) = (cst.)e’”‘/R (g) 7sl"(it+s/2)1"(—it +5/2) ds

e s=—2n+1

(est)er 3 Z(y)z”z” (=14 2ir). (75)

Take W =Ru{l+i:0<I<n-1}, D=0, E(w)=2n—1—iw for weR,
E(I4+i)=2/F2it. On R the measure is

21N (it — 4 B P (—it — n + 15) g

at I+i we have delta measures with the factors ™22+ ['(—+2it).
The points /+i give the following contribution to [, F(w,n) dw:

Xl UZ!

7112—21121‘[1—- —]+2it XI U2lt—l—l/2—n
@iF2m), (H32ir) <

< |v|73/2 if n=1,
<
|v|75/2 if n=2.

Finally, we estimate the contribution of Rc W:

w  yn-1/22n-1 emt—mlttw/2|/2=nlt=w/2|/2 1,
/_m |20 — 1 —iw),| (142t 4+w])"(1 + ]2t — w])"
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<X 1/2U2n l/oc e n(t+w/2)/2—n|t—w/2|/2 daw
o (1+ 1+ 24+ w)"(1+ |2 — w|)"
o nt—mw/2 dw
< xn-1/2 gn-1 / €
< o (T4+w)" (142t +w)"(1=2t+w)"

+/ dw
o (T4+w)"(142t4+w)"(1 +2t—w)"

; ) .
< X2yt /3O T2 t~logt if n=1,
—4 oo
2 t if n=2;

<t7nfl/2. 0

Lemma 8 shows that going from B to C causes an additional factor Y in the
estimate of 4. In Lemma 9, the step from B to C amounts to an additional factor |v|.
It seems appropriate to take the boundary T between B and C equal to Y.

3.4. Integration

The sum formula in Theorem 4 shows that K, ., (f) = [,, hda,,,. Corollary 3.3.2 in
[4] implies for x;,x; >4, and &>0:

VEY,|vi| <X

Let p1,p»>0, and consider intervals [a,b], [a2,b2] =(0, 00). Partial integration
leads to the following estimate:

2 2-pj

/ ol 7 [, ()| <R
ved a;<|vj| <b; P

=g if pj>2.

if pj<27

Indeed, we have the following:

/ 1 [P sl oy (01,92
ved ai<|v|<b;

b by
= / x ' d, (/ yr dyS(an’)>
X=d| y=az
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bl b2
=/ xdy ( S )%, +p2 y71S(x,p) dy)

X=a =d)

bz bl
_xply st(xy)‘} azra1+p2x Pl/ Y- P2— xy)dy
y=az x=a
by by
+p1/ x Py S (x, y) dx
x=a y=az
by by
+ P1P2/ / x 7Py s (x, y) dy dx
x=ar Jy=a
<b"'by7S(by,b2) + ay" ay” S(ay, a2)
bz bl
+ szl_pl/ yP1S(by,y) dy +p1b2_m/ x P 71S(x, by) dx
y=az x=a

by by

+P1P2/ / x Py IS (x, ) dy dx
x=a, Jy=a;

< p2R1/4+é(b2 P|b2 —p2 +a2 Iy, 2 —p2 b%*leaX(bg 172 g Pz)

2—py 2—-by  2-pi
+ b5 Pmax(by ", a ")

+ max(b% R ag pz)max(bffp‘,a%ﬁ”))

2 [ pZ P if o,
<R b12 / if pr<2,
=1 ajfp’ if p;>2.

If p;>2, then the same estimate holds for integration over a; <|v;|< o0.
With Lemma 8, its extension (68), and Lemma 9, we apply this to estimate the
contribution

10X = [ [hllda,
X xXo

for X;,X,e{A,B,C,E}. If exactly one of X; and X, is equal to E, we take f§ in
Lemma 9 equal to (1), and if X; = X, = E, then we take § = (2). The estimate for
I(Xy,X;) is symmetric in X; and Xj.

I(C,C) < RV*#(y +1)Y?
I(B,C) <RV***(V +1)Y?

I(B,B) < RV**(V +1)Y?
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I(A,C) <RV 4+ 1) (log(UX ) Y2 4 Y1),
I(A,B) < RV*#(V 4 1)(log(UX ) Y'/? + Y3/?),

I(A,A) <R1/4+S

x (V1og(UX~2) + (V + Dlog(UX ™2+ (V +1)Y),

I(A,E) < R4+ x—F(1) y26(1)

x (V1og*(UXY2) + (V + Dlog(UX~'2) + (V +1)Y),
I(B,E) < RV**xPOUPD (1 4 1)(Y 2 log(UX™V?) + Y3/?),
I(C,E) < RV x PO 2B (4 1) (Y2 log(UX V) + ¥3/2),

I(E,E) < R4+ x=26Q2) (j46(2)

x (V1og*(UXV2) + (V 4 Dlog(UX V) + (V +1)Y).

We take together all contributions, and use (39) to find log(UX ~'/?) = —log(27) +
L1og(R2U?) +2log(R™'2U) + Llog C <log C. We obtain under assumption (39):
Kin (f) = / hda,,, <RV (Vlog*(UX~'/?)
ey
+(V+1)(Y? + Y log(UX12)))
+ R1/4+12X7ﬂ(l) UZ'B(I)
x (V1og?(UX 1) + (V + 1)(Y¥2 + Y2 log(UX~1/2)))

+ R1/4+6X72/3(2) U4ﬂ(2>
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x (V1og*(UX V%) + (V + 1)(Y + log(UX~'/?)))
< RV (Viog® C+ (V +1)(Y? + Y2 log €))
1 RVA-BO)/2+e 725D B
x (Vlog> C+ (V + 1)(Y? + Y2 log C))
L RVABQ)+e 4B 028
x (Vlog> C+ (V + 1)(Y +log C)). (77)

Condition (39) implies that X ' U?> ;. So the conclusion stays valid if we replace
all B(j) by belB()), -

3.5. Smooth bounds

The sum of Kloosterman sums K., (f) is an approximation of the sum
Ay, (A4, B; C): the bounds on (c, ¢’) have been replaced by smooth conditions. We
fix Y and find:

K. (f) <y RV (V1og® C + (V + 1)log C)
 RVA=PO24e 260 (7 4 1) PO 1og €
+ R4 PR+ yA2) 02BC) (1 1og? C + (V + 1)log C). (78)

If there are no exceptional coordinates at all, the sum with smooth bounds is, in the
C-aspect,

Ky (f)<a.Brr 10g2 C. (79)

In particular, this says that the analog of the Linnik conjecture holds, with smooth
bounds, in the context of this paper.

3.6. Direct estimation of sums of Kloosterman sums

For Q< R?, we denote by M(Q) the number of ce @ such that (c,c')eQ. Let us
assume that @ is connected and has a piecewise smooth boundary.

To estimate M(Q), we choose a compact fundamental domain IT for the lattice
O = R? such that 0eI1. By M;(Q), we denote the number of translates ¢ + I1, ce€0,
that intersect Q. Hence M (Q)< M,(Q) = M(Q,), where

Q= C—|—H).

Uce@‘,c+HmQ;é(Z) (
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Let 0 :=sup{2||x||: xell}, and let Q[6] be the J-neighborhood of Q. Then
Q= Q[d], and M(Q) < pvol(Q[d]).
For 0<a<b, 0<t<u, we estimate vol(Q(a, b, t,u)[d]) with
Q(a,b, t,u) = {(x1,x) eR* t<|x1x2| <u,a<|xy/x2| <b}. (80)
We use that
vol(Q(a, b, t,u)[0]) <vol(Q(a,b, t,u)) + 6 length(9Q(a, b, t,u)) + 5°. (81)
In fact, for convex 2 with smooth boundary, we have the equality
vol(Q[d]) = vol(Q) + dlength(9Q) + 1>
This follows from the fact that there is an obvious bijection between 9Q[d] and 0%,
to be used in an evaluation of the area of Q[J]\@2 with Stokes’ theorem. In a similar

way one obtains (81) for Q = Q(a, b, t,u). The integrals along the concave parts of
the boundary give less than J times the length of that part of the boundary. Each of

the 16 corner points of dQ contributes less than 7d>.
Let & = Q(a,b,1,u)n (0, 00)*. We have vol(Q(a, b, 1,u)[d]) <4 vol(Z[0]).

vol(E) = // qdp—l <b>”_l
p=t

The two straight parts of the boundary 0% have the lengths:
|(Vua, /uja) — (Via, \/1/a)|| + ||(Vub, \/u/b) — (Vib, \/1/b)]]
=((a+a )2+ (b+b)")(Vu - Vi)
<max(a~"? bV (Vu — V).

The piece of the hyperbola x;x, = p with x,x, >0 and %e [a,b] has length

log b
/ 13 \/_/ Va+q! <\/_ /2 dx
log a
\/—max -1/2 b1/2
So length(9Z) <\/umax(a~'/?,b'/?). We have obtained:

Lemma 10. For O<a<b, 0<t<u:

M(Q(a,b, t,u)) <r(u— t)10g§+ u'? max(a'?,b'%) 4+ 1
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Proof of Proposition 7. All terms in the sum A, , (4, B; C) are

Ou(min(v/[N(r)], /IN(ri) ) C~"/2),

see (44). According to Lemma 10, the number of terms is

B
M(Q(4,B,C,20)) < ClogZ + ' max(47'2, 8% + 1. O

3.7. Difference between sums with sharp and with smooth bounds

The difference K, (f) — K., (fsn) can be estimated by a sum in which all terms

are bounded by min(+/|N ()], \/|N(r1)[)C~'/***, where we use the Weil-Sali¢ bound
(44). As K,,(f) is estimated in terms of R, it seems harmless to replace

min(y/|N(r)], /|N(r1)|) by \/\/IN(F)\\/\N(FI) = R4,
The definitions of tg,, os,, T and ¢ in Section 3.2 imply that the number of terms
in the sum is equal to the number of c¢e @ for which

C
(Jec'],e/c]) € |=—2C| x [Ae /Y B]
1+
X C,Zicl X(A,Be’I/Y)
1+ 4
C 2C
=Q|4e’ VY, B,——,C|uQ|4eV' B,——2C
1+55 1+
2 2
vl e VY 4, C, Cl uQ|Be /Y B, C, Cl .
1+ﬁ lJrﬁ

Lemma 10 gives an estimate for the number of terms:
B
< CY 'log (Z el/y> + C'?max(47"2e!/2Y B?) 41
+ CiY +C'? max(A’l/zel/zy,Al/z)

1
+ 5+ 12 max(B™1%e! 27, B12)

< (L+1)Y~'C+max(47'2 B2,
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We have obtained

Kpr () = Ko (fn)

<Rl/4((L+ 1)Y71C1/2+¢: +maX(A71/27Bl/2)Cﬁ)- (82)

3.8. Final estimates

We obtain a bound for 4,,,(4, B; C) by adding the bounds in (77) and (82). We
still have to choose the parameter Y >max(2, L") governing the steepness of the test
functions.

Ignoring the exponents &, the logarithms, and the influence of L and V', we have
four main terms:

R/4y2, RYA-B)/2y26Q1) y3/2 CB()

RVA=PQ g4 yc22)  RlAY-1C1/2, (83)

In the C-aspect, the optimal choice is ¥ = Y(C?, where Y, does not depend on C,
and with

1 if B(1)<i5B(2) <, (i)
p=1 530 i )2 BR)I<z+3BM), (i) (84)
1= FQ) i )< —g+36(2), fR)>15 (i)

In case (i), the middle terms in (83) are smaller in the C-aspect than the largest
term. But it seems not feasible to use this to get rid of the powers of U. We take
Yo = 1, and obtain Theorem 3, if we convert the condition ¥ >max(2,L~!) into a
condition on C. Indeed, noting that V' = L+ Y~' <L + 1, we have

Ay (A, B; C) < RV*(L 4 1)(log? C + C'3 4 €2 10g C)
+ R1/4—If(1)/2+8U2/f(1)Cﬁ(l)(L +1)
x (log” C + C'* + €' 1og C)
+ RVA P g C2CR) (L 4-1)(log* C + CV/° +1og C)
+ RVA((L+1)C"3 4 max(47'2, B'/?)C?). (85)

We do not completely work out the other cases, but consider the case that
p(1), p(2)<be (ﬁ,%) as in Theorem 6. We note that the bound in (77) stays valid if
we replace the f(j) by b. So we are in case (iii) of (84). We choose Y =
RCPU~2CV/4-b This has to be at least max(2, L~'). That is ensured by the condition
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in Theorem 6. We have also assumed in the theorem that ¥ >log®> C, which simplifies
many terms in (77). This leads to the estimate in Theorem 6.
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