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A b s t r a c t - - F o r  the equation, 

(t) r (t) N (t) 
1 + [N (t)] ~ b (t) N (t) - a (t) N (g (t)), 

we obtain the following results: boundednees of all positive solutions, extinction, and persistence 
conditions. The proofs employ recent results in the theory of linear delay equations with positive and 
negative coefficients. © 2005 Elsevier Ltd. All rights reserved. 

g e y w o r d s - - D e l a y  equations, Extinction and persistence, Mackey-Glass equation, Bounded solu- 
tions. 

1. I N T R O D U C T I O N  

Consider the following differential balance equation which is widely used [1-3] in population 
dynamics 

= f~ (t, N) - 5 (t, N) - A (t, N) .  (1) 
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In this model, all per capita rates depend solely on the size of the population and the current 
time t, where 

(a) /3(t, N) is the per capita fecundity rate (the birth rate), 
(b) 5(t, N) is the per capita mortality rate, and 
(c))~(t, N) is the per capita consumer rate (harvesting rate per capita). 

According to Hassell [4], models in population dynamics in a limited environment are based on 
two fundamental premises: populations have the potential to increase exponentially and there is 
a feedback that progressively reduces the actual rate of increase. 

We assume that functions 5(N) and A(N) are monotone increasing functions. 
Most population models incorporate function/3(t, N),  where/3(t, N) is typically assumed to 

be a linear decreasing function of N. For example, if/3(t, N) - r(1 - N / K ) ,  where K is the 
carrying capacity of the environment, then in the absence of 5, A, we have the logistic equation, 
IV(t) = r N ( 1  - N / K ) .  

Some models incorporate ~(t, N) which is a Hill's type function, 

r 
/3 (t, N) - 1 + N~'  (2) 

7 > 0 (see [2,5-7]). A parameter 7 > 0 is referred to as the "abruptness" parameter, some- 
times [5]. 

In [6-8], the function of type (2) was applied to model white blood cells production (Mackey- 
Glass equation) 

d N  r N~ 
- - -  bN, (3) 

dt I + N~ 

where E ( N )  = r N T / ( 1  + N~r) modeled the blood cell reproduction, the time lag Nr = N ( t  - ~-) 

described the maturational phase before blood cells are released into circulation, the mortality 
rate is proportional to the circulation. Equation (3) was introduced to explain the oscillations in 
numbers of neutrophils observed in some cases of chronic myelogenous leukemia [6,8]. The repro- 
duction function can differ from one in (3). For instance, r / ( K  ~ + N ~) describes the red blood 
cells production rate [9], where three parameters, r, K, 7, are chosen to match the experimental 

data. 
Generally, models with the delay in the reproduction term recognize that  for real organisms, it 

takes time to develop from newborns to reproductively active adults. The harvesting term may 
also include time lag 0, where 0 can be the time to develop a consumer strategy. 

When we multiply both sides of (1) by N and take into account delays, we get the following 
time-lag model based on equation (1), 

d N  
d---~ = N~/3 (t, N~) - 5 (t, N) N - ), (t, No) No, (4) 

where N~ = N ( t  - T), T is time to recover. 
In further considerations, we assume/3 is a Hill's type function (2) and 5, A depend on t only, 

d N  r (t) N~ 

dt 1 + N~r 
b (t) N - a (t) No, (5) 

where r (a fecundity factor), a (a hunting factor), b (a mortality factor), and 7 (an abruptness 
factor) are positive. 

More general form of equation (5) is 

d N  r (t) N n _ b (t) N - a (t) No, (6) 
d-T = I + N r  ~ 
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where two different delays are involved in the reproduction term (which may be important espe- 
cially at the early stages of population growth). 

For example, for a(t) - O, r(t) -- r, equation (5) is the Mackey-Glass equation (3). 
Our goal is to investigate an equation of type (5). In the present paper, we consider this 

equation, where a delay is included in the harvesting term aNo only. Hereafter, we do not 
assume that parameters of differential equations are continuous functions. 

We study the existence of global solutions for the initial value problem, boundedness of these 
solutions, and also extinction and persistence conditions. The following three possibilities are de- 
scribed: a positive solution eventually exceeds some positive number, there are positive solutions 
approaching zero, there are solutions which intersect the x-axis. In the first case, the solution is 
persistent while in the second and the third cases the population extincts, either eventually or in 
finite time. 

Such problems for another delay equation with harvesting were considered in [10,11] and for 
equations with Richard's nonlinearity in [12,13]. 

The model (5),(6) incorporates variable coefficients which can describe, for instance, seasonal 
changes, daily and periodical changes in the disease process, and changing in time harvesting 
policy. A specific feature of equation (5),(6) is that the linearized equations contain both positive 
and negative coefficients. To analyze it, we apply some recent oscillation results for such linear 
equations (see [14,15]). 

The research of the present paper can be extended in the following directions. In addition to 
extinction and persistence problems, it is interesting to obtain stability and oscillation conditions 
and to study equations (5) and (6) with delays in the reproduction term (~, ~- ¢ 0) as well. 

2. P R E L I M I N A R I E S  

Consider a scalar delay differential equation 

r ( t ) N ( t )  
_~(t) - 1 + [N(t)] ~ b ( t ) N ( t ) - a ( t ) N ( g ( t ) ) ,  t_>0, (7) 

with the initial function and the initial value, 

N (t) -- ~ (t), t < 0, N (0) = No, (8) 

under the following conditions: 

(al) 7 > 0; 
(a2) r(t)  >_ O, b(t) >_ O, a(t) >_ 0 are Lebesgue measurable and essentially bounded on [0, co) 

functions, lira inft-~oo b(t) > b > 0; 
(a3) g(t) is a Lebesgue measurable function, g(t) <_ t, limsupt_~c ¢ g(t) = oo; 
(a4) ~ : (-co,  0) ~ R is a Borel measurable bounded function, ~o(t) >_ 0, No > 0. 

DEFINITION 1. A locally absolutely continuous function N : R -~ R is called a solution of 
problem (7),(8), i f  it satisfies equation (7), for a/most all t E [0, co) and equalities (8), for t < 0. 

If to is the first point, where the solution N(t )  of (7),(8) vanishes, i.e., N(to)  = O, then we 
consider this solution only in the interval [0, to). It means that we consider only positive solutions 
of the problem (7),(8). 

We will present below lemmas which will be used in the proof of the main results. 
Consider the scalar linear delay differential equation, 

n 

~ ( t ) + ~ - ~ c l ( t ) x ( g z ( t ) ) = f ( t ) ,  t_>O, (9) 
l = 1  
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with the initial condition, 

(t) = ~ ( t) ,  

and the corresponding differential inequality, 

t < 0, x (0) = x0, (10) 

n 

~ . ) ( t ) + E c z ( t ) y ( g / ( t ) ) < _ f ( t ) ,  t>_O. (I i)  
l : l  

DEFINITION 2. 

n 

(t) + ~ c~ (t) ~ (g~ (tl) = o, 
/ = I  

is called a fundamental function of (9). 

A solution X( t ,  s) of the problem, 

t > s, x ( t )  = O, t < s, x(s) = 1, 

DEFINITION 3. We say that a function is nonoscillatory if it is either eventually positive or 
eventually negative. 

LEMMA 1. (See [16].) Suppose functions cl, f are Lebesgue measurable and essentially bounded 
on [0, oc), ~ : ( -oc,  O) ~ R is a Bore1 measurable bounded function, for g~ Condition (a3) holds. 
Then, for the solution of (9),(10), we have the following representation, 

/o /o x (t) = X (t, O) :co - X (t, s) c~ (s) ~ (g~ (s)) ds + X (t, s) .t' (s) ds, (12) 
/=1 

where ~(t)  = O, t >_ O. 

LEMMA 2. (See [17].) Suppose functions ct, f are Lebesgue measurable and essentially bounded 
on [0, oo), ~ : ( -oo ,  0) ~ R is a Bore1 measurable bounded function, (a3) holds for g~. Let 
c + (t) -- max{c/(t) ,  0}. 

1. If c/(t) >_ O, y(t) is a positive solution of (11), for t >_ to >_ O, then y(t) <_ x(t), t >_ to, 
where x(t) is a solution of (9) and x(t) = y(t), t <_ to. 

oo n t 2. If  cz(t) >_ O, fo ~z=l cl(t) d = co, then for any nonoscillatory solution x(t) of (9) with 
f ( t )  - O, we have limt--.~ x(t) = O. 

3 . / £  
f" 1 sup ~ c t  (~) d~ _ - ,  (13) 

t>o ~ Jmi.k g~ (~) e 

then, equation (9) with f ( t )  - 0 has a nonoscillatory solution. 
4. I f  either (!3) holds or there exists a nonnegative solution of the inequality, 

u (t) > Z e t  (t) exp ~, (s) ds , t > O; ~ (t) = O, t < O, (14) 
/=1 ~(t) 

and 
0 _~ ~ (t) <_ x0, (15) 

then, the solution of initial value problem (9),(10), with f ( t )  --O, is positive. 

Consider also the following linear delay equation with positive and negative coefficients, 

(t) + a (t) x (g (t)) - c (t) x (t) = 0, t > 0, (16) 

and the corresponding differential inequality, 

9 (t) + ~ (t) y (g (t)) - c (t) y (~) < o, t > o. (17) 
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LEMMA 3. 
bounded on [0, co) functions, (a3) holds, 

(See [14,15].) Suppose a(t), c(t), g(t) are Lebesgue measurable and essentially 

and 

Then, 

/o a (t) _ c (t) >_ 0, [a (t) - c (t)] dt -- co (18) 

l imsupc( t )  It - g(t)] < 1. (19) 

1. I f  y(t) is a positive solution of (17), for t >_ to >_ O, then y(t) <_ x(t), t >_ to, where x(t) is 
a solution of (16) and x(t) = y(t), t <_ to. 

2. For every nonoscillatory solution x(t) of (16), we have limt--.oo x(t) = O. 

3.  E X I S T E N C E  A N D  B O U N D E D N E S S  O F  S O L U T I O N S  

THEOREM 1. Suppose (al)-(a4) hold. Then, problem (7),(8) has a unique local positive solution. 
This solution either becomes negative or is a global positive bounded solution. 

PROOF. The  existence of the unique local solution is a consequence of well-known results for 
nonlinear delay differential equations (see, for example, [18,19]). Since initial conditions in (8) 
are nonnegative, then there exists a local positive solution. So, we need only to prove the second 
part  of the theorem. Here, we apply some ideas from [12]. 
solution, we have 

lim N (t) = +co.  
t - , to -  

Rewrite (7) in the left neighborhood of to in the form 

Since 

Suppose for some positive local 

r(t) b(t) -a( t)  N ( g  (t))] 
(t) = N (t) 1 + IN (t)] ~ N (t) ] "  

lim r (t) = 0 
t - . to-  1 + [N (t)] "~ 

(20) 

(21) 

and b(t) _> b > 0, then for some 5 > 0 and, for to - 5 < t < to, we have Nl(t) <_ O, which 
contradicts (20). 

It means tha t  every local solution which remains positive, can be continued on [0, co). We need 
only to prove that  this global positive solution is bounded. 

First, suppose tha t  for this solution 

lira N (t) = co. (22) 
t--+e~ 

Equat ion (21) implies that ,  for some T > 0 and, for t > T, we have N'(t) < 0, which contra- 
dicts (22). 

Now, suppose 

but  limt--.oo N(t) does not exist. 
a,~+l, limbn = co, such tha t  

lim sup N (t) = co, (23) 
t--+OO 

Then, there exists a sequence of intervals In = [an,bn], bn < 

sup N (t) > K~, inf I N '  (t)[ < e~, 
tEI~ tEI,~ 

where lim~ K,~ = co, lim~ e~ = 0. 
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Condition (a2) implies r(t) < ro < oo. Hence, for t E I,~, we have 

consequently, 

r (t) N (t) 

1 + [N (t)] ~ 
- b (t)  N (t) - a (t)  N (g ( t ) )  < e~,  

r (t) N (t) 
1 + [N (t)] "~ b (t) N (t) + e,~. a (t) N (g (t)) < 

Hence, for n sufficiently large, we have 

a (t) N (g (t)) r (t) < 
N (t) 1 + IN (t)] ~ 

This is a contradiction and the theorem is proven. 

b (t) + ~ ( t )  < 
r0 £n 
[~ '~ - bo + ~n~-" < o. 1 + 

N ( t )  < N( t0 )  exp [r(s)  - b(s)] ds . 

A substi tut ion to = g(t) proves the lemma. 
Denote 

A0 = sup x (t) ,  
t_>0 

where x(t) is the solution of (24). 
If in (24) r(t) >_ B(t),  then the solution of this equation increases for 

1) 
and decreases otherwise. Hence, x(t) does not exceed 

1] } 
and so, Ao _< A. 

Hence, 

(27) 

LEMMA 4. Assume (al),(a2) hold, where b(t) is changed by B(t). Then, there exists a unique 
positive bounded global solution of the problem 

(t)  x (t)  B (t)  x (t)  x (o) = xo > o. (24) 
(t) - 1 + [x (t)] ~ 

PROOF. The proof is similar to the proof of Theorem 1. 
It  is to be noted that ,  unlike Theorem 1, the solution cannot become negative due to the 

existence and uniqueness theorem for ordinary differential equations since the zero function is a 
solution of (24). 

We will apply Lemma 4 for B(t)  = b(t) and 

{; } B ( t ) = b ( t ) + a ( t ) e x p  - [ r ( s ) - b ( s ) ] d s  . (25) 
(t) 

LEMMA 5. Assume (al)-(a4) hold and N(t)  is a positive solution of (7),(8). Then, 

N (g (t)) _> N (t) exp " [r (s) - b (s)] ds . (26) 
(t) 

PROOF. Equali ty (7) implies, for any to >_ 0, 

(t) _< r (t) N (t) - b (t) N (t) ,  t >__ to. 
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THEOREM 2. Assume (al)-(a4), (15) are satisfied, and either 

sup a(s) exp - Li-+--Ag b(r) dr ds<_-, 
t>O Jg( t )  (s) e 

where Ao is denoted by (27), or the inequality 

sup r i t  [a (s) + b (s)] ds <_ 1_ (29) 
t>__O dg( t )  e 

holds, with Xo = No, where either B(t) = b(t) or B(t) is denoted by (25). Then, for the solution 
of (7),(s), we have 

0 < N (t) _< A0, t _> 0. (30) 

PROOF. Suppose the statement of the theorem is not correct. Then, there exists a solution N(t), 
such that either N(t) is a global positive solution of (7),(8) satisfying N(t-) > Ao, for some f > 0 
or N(t) vanishes, for some t > 0, 

0 < N (t) _< Ao, 0 < t < ~; N (t-) = 0. (31) 

Suppose the first possibility holds and B(t) = b(t). For any to < [ and for 0 _< t < to, we have 

r (t) N (t) 
(t) < b(t) N ( t ) .  

- 1 + [N ( t ) ]  "r 

Hence, [20] N(t) <_ x(t), where x(t) is the solution of ordinary differential equation (24) with 
X0 ~---N0. 

Since x(t) <_ Ao, then N(t) _< A0 and we have a contradiction. 
Suppose now B(t) is denoted by (25). Lemma 5 implies 

~r (t) _< 
r (t)  N (t) 

1 + IN (t)] ~ 

Hence, 0 < N(t) <_ Ao is proved similar to the previous case. 
Let (28) and (31) hold. Define y(t) by the following expression 

{ / t [  r(s) b(s)] ds}y( t )  
N (t) = exp 1 + [N (s)] ~ 

y(t)  = ~( t ) ,  t < 0, y(0) = No, 

t>_0, 

and substitute this expression into (7). We obtain the equation 

{z+I 1} (t)  = - a  (t)  e x p  - r ( s )  b (+) d~ y (g ( t ) )  
(t) 1 + [N (s)] "y 

y (t) = ~ (t), t < 0, y (0) = No. 

(32) 

(3a)  

By assumption (31) N(t) <_ Ao, thus, (28) implies 

a ( s )  e x p  -- , , ~ , , +  b ( ~ )  d r  ds  
(t) (s) 

_< a ( ~ ) e x p  - ,Ao, + 
(t) (,) 
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L e m m a  2, Par t  4, implies tha t  for the solution of (32),(33), we have y(t) > O, t >_ O. Hence, 
N(t )  > O, t >_ O. We have a contradiction. 

Suppose now (29) and (31) hold. Solution Y ( t )  of (7),(8) is also a solution of the  linear delay 
differential equation, 

(t) + c (t) x (t) + a (t) x (g (t)) = O, 0 < t < {, x (t) = N ( t) ,  t _< O, 

where 

(t) = b (t) 

We have e + (t) <_ b(t), 0 < t < {, hence, 

(t) 
1 + N (t) ~" 

s n p f  t [a (s) + c+ (s)] as < ! ,  
t>o Jg(t) e 

L e m m a  2, Par t  4, implies N(t )  --- x(t)  > 0, 0 < t < t. We have a contradict ion with (31) and the 

theorem is proven. 

REMARK. Number  A0 in Theorem 2 can be replaced by any greater  number  A >_ Ao. 

The  proof  of Theorem 2 implies the following corollaries. 

COROLLARY 2. I .  Suppose (al) - (a4)  hold. Then, (30) holds for any positive solution of  (7). 

COROLLARY 2.2. Suppose (al)-(a4),  (15), and (29) hold. Then, the solution of  (7),(8) is positive. 

COROLLARY 2.3. Suppose (al)-(a4)  hold, r(t) = ab(t), c~ > O, and N( t )  is a positive solution of 

(7),(8). 
(1) I r a  <_ 1 or ~ > 1, No > N* = ( a -  1)W'r, then N( t )  < No. 
(2) If a > 1, No <_ N*, then N(t )  <_ N*. 

PROOF. First,  suppose a <__ 1. Rewrite equation (24) with B(t )  = b(t) in the form 

a - 1 - [x (t)] v (34) 
0~ (t) = r (t) x (t) c~ (1 + [x (t)]~) " 

Hence, x(t)  < 0, t _> 0. The  proof of Theorem 2 implies N(t )  < x(t)  <_ xo = No. 
Now, suppose ~ > 1. Then,  N* > 0 is a positive equilibrium of (24) and we have two 

possibilities. 
If xo = No _< N*, then N(t )  <_ x(t)  < N*. 

If  Xo = No > N*,  then ~(t) < 0. 
Hence, N(t )  <_ x(t)  <_ xo = No. 

REMARK. If  a _< 1, then r(t) ~_ b(t). This case will be considered in the next  section. 

Now consider the autonomous  equation 

r N  (t) b g  (t) - a N  (t - r ) ,  t >_ O, (35) 
(t) - 1 + [N (t)] ~ 

where r > 0, b > 0, a > 0, T > 0, 7 > 0. 
Denote r \ 1/~ 

N* ~-- ( ±  1) ~-~ ae-r(r-b) 

b < r < b -b ae -r(r-b) ,  

1/-r 
, r >_ b + a e  -r(r-b) .  

(36) 
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COROLLARY 2.4. Suppose N* is denoted by (36). Then, for a positive solution of (35),(8), we 
h a v e  

N (t) <__ Ao = max {No, N*}. (37) 

If  (15) holds and either 

a r e x p { - [ ( l : A ~ - b )  r - 1 ] } _ < l  (38) 

or (a + b)r _< I/e,  where Ao is denoted by (37), then the solution of (35),(8) is positive. 

PROOF. If N* is defined by the first line in (36), then the first statement is a particular case of 
Corollary 2.3. 

Now, consider the case of the second line in (36). Rewrite equation (24) with B(t) = b + 
ae - r ( r - b )  in the form 

r x ( t )  
[b+ae -r(~-b)] x ( t ) .  (39) (t) = 1 + [x (t)] ~ 

The number N* is a positive equilibrium of this equation. Hence, for Xo = No > 0, we have 

x ( t ) < { N o ,  N o > N * ,  

- N* ,  N o < _ N * .  

Finally, the statement of Corollary 2.1 implies this corollary. 

REMARK. Suppose No < N*. If b < r < b + ae -~(~-b), then (38) turns into 

ave _< 1. (40) 

If r > b + ae -~(È-b), then (38) turns into 

ate-[  ae-'(~-")-l] -< 1. (41) 

4.  E X T I N C T I O N  A N D  P E R S I S T E N C E  

DEFINITION 4. We will say that N(t) is an extinct solution of (7),(8) i f  either 

lim N (t) = 0, 
t----> OO 

(42) 

or there exists { > O, such that N(t-) = O. 
The bounded solution is persistent i f  

lim inf N (t) > 0. (43) 
t ---*OO 

THEOREM 3. Assume (al)-(a4) hold, 

~0 °° [a (t) + (t) - r (t)] = c~ b dt 

and one of the two following conditions hold, 

b (t) _> r (t) (44) 

o r  

a ( t ) + b ( t )  >_r(t) _> b(t) ,  l i m s u p [ r ( t ) - b ( t ) ] ( t - g ( t ) )  < 1. (45) 
t --+ O0 

Then, every solution of (7),(8) is an extinct one. 

PROOF. It is sufficient to prove that for every positive solution N(t) of (7),(8), we have (42). 
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Suppose (44) holds. Since 

N '  (t) < - [b (t) - r (t)] N (t) - a (t) g (g ( t ) ) ,  

then, Lemma 2 implies 0 < N(t) <<_ x(t), where x(t) is a solution of the linear delay differential 
equation with positive coefficients, 

(t) + [b (t) - r (t)] x (t) + a (t) x (g (t)) = 0, 

and initial conditions (10). Again, by Lemma 2, we have lira x(t) = 0. Hence, (42) holds. 
t--+OO 

Now, suppose (45) holds. Then, 

N ' ( t )  _< [r (t) - b (t)] N (t) - a ( t )  N ( g ( t ) ) .  

Lemma 3 implies 0 < N(t) <_ y(t), where y(t) is a solution of the linear delay differential equation 

( t )  + a ( t )  ~ (g  ( t ) )  - [~ ( t )  - b (t)]  y ( t )  = 0.  

Again, by Lemma 3, we have lira y(t) = 0. Hence, (42) holds. The theorem is proven. 
t---* OO 

COROLLARY 3.1. Suppose b _> r or a + b > r > b, (r - b)~- < 1. Then, every solution of (35) is 
an extinct one. 

Suppose the conditions of Theorem 2 hold, the solution of the problem 

x (0) ---- No, (46) 

THEOREM 4. 

( t )  • ( t )  
(t) - ~ ~ x'(t-~ b (t) x (t) - a (t) A0, 

is positive and persistent, where Ao is denoted by (27). 
Then, the solution of (7), (8) is persistent. 

PROOF. Since N(t) <_ Ao, t >_ O, and (15) holds, then N(g(t)) <_ Ao, t > O. Hence, 

r (t) g (t) 
fi/(t)>_ l + N ( t )  ~ b(t) N ( t ) - a ( t ) A 0 .  

Equat ion (46) is an ordinary differential equation, thus, N(t) >>_ x(t), which completes the proof 

of the theorem. 

REMARK 1. The  result of Theorem 4 can be applied to autonomous equations. For example, 
let "y = 1. If equation (46) has equilibria, then they are real solutions of the following quadratic 

equation 

f (x) = r x -  bx(1 +x)  - aAo (1 +x)  = -bx  2 + ( r -  b -  a A o ) x -  aAo = O. 

Since f (0)  < 0, then this equation has either two positive solutions or two negative solutions or 
no real solutions. In two lat ter  cases, we cannot guarantee positiveness of solutions; in the first 
case, the solution is positive and persistent when the initial value exceeds some critical size. 

REMARK 2. The  s ta tement  of Theorem 4 remains true if we replace equation (46) by the following 

equation 

r (t) x (t) [b (t) + a (t)] A0, x (0) = No. 
( t )  - 1 + ~ ( t )  ~ 



Delay Differential Equations 559 

5. D I S C U S S I O N  A N D  N U M E R I C A L  E X A M P L E S  

The problem is well posed, as justified in Theorem 1. It either has a positive solution for all t 
which is bounded (the size of the population cannot infinitely grow due to a negative feedback 
which is a typical situation in population dynamics) or becomes negative in some finite time. 
Lemma 4 describes the source of the possible extinction. As far as there is no harvesting or there 
is no delay in the harvesting term, the solution is positive for all t. 

Theorem 2 provides sufficient conditions for the positiveness of solutions and presents an upper 
bound for a solution. Inequality (15) is vital for nonextinction in the following sense. If the 
harvesting rate is based on the size of the population some time ago, then for the survival of 
the population it is important that the field data on the population size is collected at the time 
when the population is not abundant. If the initial value is less than the initial function, then the 
harvesting based on the oversized estimation of the population can lead to the extinction at the 
very beginning of the history (when the influence of the prehistory is still significant). In (28), 
sufficient condition on harvesting, mortality and growth rates, and the delay provide the solution 
is positive. The greater the mortality and the harvesting rates are, the smaller should be delays 
providing that  there is no extinction of the population in some finite time. Or else, for prescribed 
delays and a given natural growth rate r(t) and the mortality rate b(t) the harvesting rate should 
not exceed a certain number to avoid possible extinction. As the growth rate r(t)  becomes higher, 
the greater can be the allowed delay in harvesting. Example 1 illustrates extinction due to either 
greater delay or high values of prehistory compared to the initial value. 

The solution estimate (30) illustrates an obvious fact that  under harvesting the solution cannot 
exceed the solution without harvesting. Corollary 2.3 deals with the situation when a nonconstant 
mortality rate is proportional to the birth rate. Corollary 2.4 claims that  at any point the solution 
does not exceed the maximal value among the equilibrium without harvesting and the initial value. 

Next, Theorem 3 claims that  if the total of the mortality and harvesting rates exceeds the birth 
rate, then the population is destined to extinct. It  either equals to zero at some finite moment 
of time or tends to zero. Example 2 illustrates all possibilities. 

Finally, Theorem 4 provides sufficient persistence conditions. Sometimes, the existence of the 
lower bound for a solution is not less important than positiveness of solutions. For instance, for 
blood diseases, the mortal rate of white or red blood cells is greater than zero. This means that 
for smaller values of N, the model can become irrelevant. Example 3 can demonstrate that  in the 
presence of delay in the harvesting term, the fact that the production rate is everywhere greater 
than the harvesting rate still cannot guarantee the persistence of any solution. Theorem 4 not 
only claims the persistence, its conditions provide that  the solution cannot become smaller than 
the solution of some nonhomogeneous ordinary differential equation (46). 

We proceed to results of numerical simulations. 

EXAMPLE 1. Let us illustrate the results of Corollary 2.4. For example, for the solution of 
equation (35) with r - 1.5, ~ = 1, b = 0.5, a = 0.6, T = 0.75, and the initial conditions, 
N(0) = 1, ~ -- 1, we have r > a + b  > b+ae  -r(r-b),  thus, (38) takes form (41), which is satisfied, 

a te  -[ae-~(~-b)-l] -~ 0.45e 1-0"6e-°'~5 ~.: 0.9213 < 1 

and the solution is positive (Figure la). I f r  = 1.5, ~ = 1, b = 0.5, a -- 0.6, ~- = 2, then 
condition (41) does not hold 

a~'e-[ "e-~(~-b)-l] = 1.2e 1-°'6~ ~ 3 > 1, 

numerical simulations demonstrate that  the solution extincts at t ~ 2.7 (Figure lb). If  r -- 1.5, 
~/-- 1, b = 0.5, a = 0.6, z = 0.75, then (38) is satisfied. However, if we take N(0) = 1, ~ - 2.3, 
then (15) does not hold. The solution extincts at t ~-. 1.2 (Figure lb). 
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F i g u r e  1. T h e  b e h a v i o r  of t he  so lu t ion  of (35), w i t h  r = 1.5, 3" = 1, b = 0.5, a = 0.6, 
1¥(0) = 1, ~ ---- 1, ~ = 0.75 (a). T h e n ,  t he  h y p o t h e s e s  of Coro l l a ry  2.4 a re  sa t i s f ied .  
T h e  s o l u t i o n  is p o s i t i v e  and  t e n d s  t o  t he  equ i l i b r i um.  T h e  h y p o t h e s e s  of Coro l l a ry  
2.4 a re  no t  sa t i s f ied  a n d  t h e  so lu t ion  becomes  n e g a t i v e  (b). Here,  first ,  i n s t e a d  of  
r = 0.75, we have  r = 2 a n d  thus ,  (38) does  no t  hold,  or for t h e  s a m e  p a r a m e t e r s  of  
t h e  e q u a t i o n  as  in t h e  left  g r a p h  i n i t i a l  cond i t i ons  a re  N ( 0 )  = 1, ~ ------ 2.3, thus ,  (15) 
does  no t  hold.  

0 , 5  J I i i 
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F igu re  2. T h e  behav io r  o f  so lu t ions o f  (35), where  r = 1.5, 3' = 1, b = 0.6, w i t h  
a = 1, N ( 0 )  = 0.5, ~ - -  0.5, g = 1, and  a = 0.9, g = 0.3, 3" = 0.01, N ( 0 )  = 0.1, 

_= 0, respec t ive ly .  T h e  f irst  so lu t i on  b e c o m e s  n e g a t i v e  a t  a b o u t  t ~-, 1.5, wh i l e  t he  

second  so lu t ion  t e n d s  t o  zero. 



Delay Differential Equations 561 

0.6 

0.5 

0.4 

Z 0.3 

0,2 

0.1 

delay - -  
non-delay . . . . . . .  

~ ljqffsjs ~ J j ~ ¸  

iII 
I I 

i I 
/g 

/ I  

0 i / 

15 0 5 10 20 
t 

Figure 3. The comparison of solutions of the  delay equation (47) with an ordinary 
comparison equation (48), with the same initial value 0.25. The solution of (48) 
is persistent (the lower bound is ~ 1.84), by Theorem 4, so is the solution of (47) 
with the initial function = 0.25. Moreover, the solution of (48) does not exceed the 
solution of (47). 
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Figure 4. The largest values for coefficient a and delay ~-, such that  the  solution 
of (35), with N(0) = 0.5, ~(t) = 0.5, r = 1.5, b = 0.6, and exponential 0' = 0.5, 1,2, 
is still positive. 

E X A M P L E  2. Figure 2 illustrates extinction when the hypotheses of Corollary 3.1 axe satisfied. 
Here, (see Figure 2) the solutions of (35), where r --- 1.5, ~, = 1, b = 0.6, with a = 1, N(0) -- 0.5, 

- 0.5, g = 1, and a -- 0.9, g = 0.3, 7 -- 0.01, N(0) = 0.1,~ - 0, respectively. The first solution 
becomes negative at about  t ~ 1.5, while the second solution is positive and tends to zero. 

Let us illustrate Theorem 4 by the following example. 

EXAMPLE 3. Consider the following equation 

3N (t) 2 N (t - 1). (47) 
(t) = 1 + g (t-----~ - 2N  (t) (t + 2) 2 

The equation, 2 = 3x/(1 + x) - 2x, has equilibria x = 0, 1/2, thus, as far as N(0) = x(0) < 1/2, 
we have A0 = 1/2. The solution of (46), which takes the form 

3x 1 
~ : - - -  2x 

1 + x (t + 2) 2, 



562 L. BEREZANSKY et al. 

is persistent and does not exceed the solution of equation (47), with the initial conditions ~(t)  - 
g ( 0 )  = 0.25 (see Figure 3). 

EXAMPLE 4. Finally, for the autonomous equation (35) consider conditions for positiveness of 
solutions. To this end let us fix initial conditions N(0)  -- 0.5, ~(t)  ---- 0.5, and some of coefficients, 
r = 1.5, b = 0.6. For various T, 0.5 < T, Figure 4 demonstrates such values of a that for larger a 
the solution becomes negative. Three graphs are presented for exponential ~ = 0.5, 1, 2. 

In addition, let us compare experimental results for N(0)  = 0.5, ~(t)  -- 0.5, r = 1.5, b = 0.5, 
= 1, with sufficient estimates provided by (41). For comparison, see Figure 5. 
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Figure 5. The largest values for coefficient a and delay r,  such that  the solution 
of (35), with N(0) = 0.5, ~(t) -- 0.5, r = 1.5, b -- 0.5, and ~ = 1, is still positive, is 
compared to the corresponding values of a and r obtained by estimate (41). 

R E F E R E N C E S  

1. L. Edeistein-Keshet, Mathematical Models in Biology, Random House, New York, (1988). 
2. F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer- 

Verlag, (2001). 
3. M. Kot, Elements of Mathematical Ecology, Cambridge Univ. Press, (2001). 
4. M.P. Hassell, Density-dependence in single-species populations, J. Anim. Ecol. 44, 283-296, (1975). 
5. W.M. Getz, A hypothesis regarding the abruptness of density dependence and the growth rate of populations, 

Ecology 77, 2014-2026, (1996). 
6. M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197, 287-289, 

(1977). 
7. M.C. Mackey, M. Santill 'an and N. Yildirim, Modeling operon dynamics: The trytophan and lactose operation 

as paradigms, C.R. Biologies 327, 211-224, (2004). 
8. J. Losson, M.C. Mackey and A. Longtin, Solution multistability in first order nonlinear differential delay 

equations, Chaos 3 (2), 167-176, (1993). 
9. M.C. Mackey, Mathematical models of hematopoietic cell replication and control~ In The Art  of Mathemat- 

ical Modelling: Case Studies in Ecology, Physiology and Biofluids, (Edited by H.G. Othmer, F.R. Adler, 
M.A. Lewis and J.C. Dallon), pp. 149-178, Prentice Hall, (1997). 

10. L. Berezansky, E. Braverman and L. Idels, Delay differential logistic equation with a nonlinear harvesting 
[unction, Functional Differential Equations 10 (1-2), 83-94, (2003). 

11. L. Berezansky, E. Braverman and L. Idels, Delay differential logistic equations with harvesting, Mathl. Corn- 
put. Modelling 39 (11/12), 1243-1259, (2004). 

12. J. Miguel, A. Ponosov and A. Shindiapin, On a delay equation with l=tichards' nonlinearity, In Proceedings 
of the Third World Congress of Nonlinear Analysts, Part 6, Catania, (2000); pp. 3919-3924, vol. 47, (2001). 

13. A. Ponosov, A. Shindiapin, J. Miguel and A. Macia, Mathematical models with after-effect in population 
dynamics, In International Conference on Functional Differential Equations, Ariel, (1998); pp. 377-391, 
vol. 5, (1998). 

14. L. Berezansky, Y. Domshlak and E. Braverman, On oscillation of a delay differential equation with positive 
and negative coefficients, J. Math. Anal. Appl. 274, 81-101, (2002). 

15. L. Berezansky and E. Braverman, On Oscillation of equations with positive and negative coefficients and 
distributed delay II: Applications~ Electron. J. Diff. Eqns. 47, 1-25, (2003). 



Delay Differential Equations 563 

16. N. Azbelev, V. Maksimov and L. Rakhmatullina, Introduction to the theory of linear functional differen- 
tial equations, In Advanced Series in Mathematical Science and Engineering, Volume 3, World Federation 
Publishers Company, Atlanta, GA, (1995). 

17. I. GySri and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, (1991). 
18. J.K. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations, In Applied Mathematical 

Sciences, Volume 99, Springer-Verlag, New York, (1993). 
19. N.V. Azbelev, V.P. Maksimov and L.F. Rakhmatullina, Introduction to the Theory of Functional-Differential 

Equations, Nauka, Moscow, (1991). 
20. P. Hartman, Ordinary differential equations, In Classics in Applied Mathematics, Volume 38, Society for 

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2002). 


