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Introduction

The notion of afundamental solutioiin the sequel abbreviated as FS) gradually be-
came clearer during the 19th and 20th century. It is only in the settihguwent Schwartz’
theory of distributions that FSs can be defined in general and can be applied—via the
convolution of distributions—to the solution of linear partial differential equations with
constant coefficients. In part, the relevant concepts were worked out by John Horvath,
cf. [20-25]. In this survey paper, we first review some important steps in the “history of
FSs.” Second, we explain why the singular support of the FSs of homogeneous operators
P(9) is just the dual hypersurface of the zero sePoif P is of principal type. This is of
fundamental importance in the third part, waeve present some recent results in the cal-
culation of FSs of homogeneous cubic and quargierators in three dimensions. Finally,
we discuss what is known for the system of crystal optics, where, similarly as in dynamic
anisotropic elasticity, many questions are still open.

1. A brief history of fundamental solutions

1.1. Fundamental solutions in the 18th and 19th century: special equations of
mathematical physics

The first use of a non-trivial fundamental solution can probably be ascribed to Jean
d’Alembert. In 1747 he considered the deflectioof a vibrating string. It satisfies the
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one-dimensional wave equation
92u 282u
-2
912 dx2
which is solved by convolving® with the FSE(z, x) = 2%Y(t — |x|/c) of the operator
32 — c?82, ¢ > 0. In fact, this yields the formula

:f,

u(t,x):f*E:% // f(z,&)dr dg,

lx—&|<c(t—71)

which—applied to the initial value problem, i.e., with = §(#) ® u1(x) + 8'(®) ®
uo(x), whereu;(x) = 0/ u)(0,x), j =0,1,—furnishes d’Alembert’s solution, see [1],
[33, p. 15 ff]. We observe that the FS appears, as in much of the old literature, only in
an implicit way.

Here and in the following, we use the notatidhs= 2, 3, = 2, 31 = Bixl etc., A, =
O+ 407,04 =871+ 8)", P(3) = X yeny Cad”, Y (1) =1forr > 0andy (1) = O else,

x:(.x]_,...,.xn)T,V:(al,...,an)T, |x|:\/x]2_++x3

In 1789, Pierre Simon de Laplace used theAF~S _%lxl of the elliptic operatonA s,
which bears his name, and thereby established the connexion of the Laplace operator with
the Newtonian gravitational potential (cf. [29]). To tell the truth, Laplace just recognized
thatA3(E * f) = 0 outside the support gf, and it was Simon Denis Poisson, who obtained
the equatiomz(E *x f) = f in 1813 (cf. [41]).

In 1809, Laplace considered the first parabolic operator, namely the heat operator
9, — A,, and calculated its FS

YO ix2scan
B0 = Gryp® "

in the caser = 1, cf. [30]. The generalization to higher in particular ton = 2, was found
by Poisson in 1818 [42].

In 1818, Joseph Fourier was able to calculate theEF& the operator of the dynamic
deflections of beam&’ + 94, an operator of fourth order:

E(t )—& tsin<x—2+£)d—T
o " 4) T
0

—Y(t)\/zsin x—2+z mC x_z +MS x_z
o b 4 4 2 4t 2 "\4r)|
where

C(x) } 1 /x{ COS}(M) du
Sx) | Vor sin Ju'
0

see [7].
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As well in 1818, Poisson generalized d’Alembert’s formula to three space dimensions
by representing the solutions of the wave operafor Az as convolution with the FS
E =§(t — |x])/(4r|x|), cf. [43]. This notation, viz. the first use of Dirac’s delta function,
goes back to Gustav Kirchhoff’s paper of 1882 (see [27], [33, p. 99]).

In 1849, George Stokes obtained—as the kernel of an integral representation—the fun-
damental matrixt of the system of partial differential operators which describes elastic
waves in isotropic media [46]. This system can be found already in a memoir of 1829 by
Poisson (cf. [44]). It is given by

P(@) = (92 — nA3)l3— (. + )V - V' (I3=3 by 3 unit matriy
and Stokes’ fundamental matrix reads

E(t’x)213|x|2—x-xT (t—ﬂ>+ x-x' 5<t— x| )
A7t pu|x|3 Vi) Ar(+2u)|x)3 VA+2u
e )OO )]
4 |x|3 |x|2 VI Vi+2n

The FSE =Y (t — |x|)/ (27 /12 — |x|2) of the wave operator in two space dimensions,
i.e., of atz — Ap, was found as late as 1894 by Vito Volterra, cf. [52].

1.2. Fundamental solutions in the 20th century: general theories

Investigating the equations of static anisotropic elasticity, Ivar Fredholm found in 1900
(cf. [8]) the fundamental matri¥ of the elliptic 3 by 3 system

3
P(3) = ( > Cijklakal) . cCijk €R,
i.j=12.3

k=1

of linear partial differential operators in three variables with constant coefficients and ho-
mogeneous of second order. In our notatios,feisult is the following (cf. [8, (10), p. 7],
[39, 3.2.2, (F), p. 332)):

f i 3 2 ad

Isign(x2) Z 15k ()]~ P (Sk (x))

ddetP ddetP

E( ): ’
g 21 = 0% (g () — 11 29 (g (x))

where P ()24 denotes the adjoint matrix @f(¢) and¢i(x) € C3\ {0} are determined up
to complex factors by the conditions

Ce(x)1
Ce(x)3

In 1908, Fredholm succeeded in represemthre FSs of elliptic homogeneous operators
in 3 variables by Abelian integrals [9]. To test the theory, he applied it to the operator
37 + 95 + 83, and he obtained, up to the constant factgf-, the beautiful formula

x-f(x)=0, detP(f(x))=0, Im( )>0, k=1,23.

13 rd
u
E@) =—=—"Ixl f ——
8m 4 1 ! VAuS — u

= yed
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1< o Vx| 1
=5 ;x,F<arcsu—<m>, ﬁ)
Therein¢ denotes the largest of the three real roots of the cubic
§3 — (xi1 + xé +x§)§ — foxzzxg =0,
andF denotes the elliptic integral of the first kind, cf. [12, 3.131.8 and 8.111]. (A general-
ization to elliptic operators of the for@?’kzl ¢jx0297 can be found in [56].)

In 1911, his pupil Nils Zeilon gave the first definition of a FS in case it is a locally
integrable function (cf. [58]):

FisaFSoff (L, %, 2 if and only if

u:///F(x—)»,y—M,Z—v)q)()»,u,v)d)\dudv
9 9 9
solvesf (&, o, 2)u=¢.

In 1913, Zeilon transferred Fredholm’s results to non-elliptic operators and, in partic-
ular, he considered + 33 + 93 (cf. [59]). He determined the singular support of its FS,
but, in contrast to Fredholm, he was not able to obtain an explicit representation for the FS.
However, explicit formulae were found recently, see [53-55].

In three famous papers from 1926 to 1928 (see [13]), Gustav Herglotz overcame the
restriction to 2 or 3 independent variables and represented the FSs of elliptic and of strictly
hyperbolic homogeneous operators of the degréen variables (with < m) by (n — 1)-
fold and by(n — 2)-fold integrals, respectively. Latethese formulae came to be known as
the Herglotz—Petrovsky formulae.

In 1945, Ivan Petrovsky represented—in the hyperbolic case—the B$ integrals
over cycles in complex projective space and investigated the lacun&sbgfmeans of
algebraic topology [40].

In 1950/51, Laurent Schwartz first published his Théorie des Distributions [45], in
which framework he also gave the general definition of FSs:

EisaFSofP(d) ifandonlyif P(3)E =34.

In Chapter 6 (Transformation de Fourier) of his book, Schwartz rederives the &g of
A" (8,2 — Ay — )™, (0 — A, — 2™, & € C, by distributional calculus, cf. also [22,23].

In 1952, Jean Leray stated a distributional version of the Herglotz—Petrovsky formulae
for homogeneous hyperbolic operators, thereby also treating thencase(cf. [31]). The
same goal was reached in 1959 by Vladimir A. Borovikov for operators of principal type
(cf. [5]) and presented in the textbook “Generalized Functions” by Israel M. Gel'fand and
Georgi E. Shilov (cf. [11]).

The first existence proofs for FSs were given in 1953/54 by Bernard Malgrange and
Leon Ehrenpreis (cf. [6,34]). These proofs were based on the Hahn—Banach theorem. In
1957, Lars Hormander showed that there always exist “regular” FSs (at that time called
“proper” FSs) having “best” regularity properties (cf. [15]). The existence of FSs depend-
ing C* or even holomorphic (in case of “constant strength”) on the coefficienf¥(&f
was proved by Francois Treves, cf. [47-49]; see also the survey paper [38].
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In 1957/58, Lars Hormander and Stanislaw tojasiewicz independently solved the “di-
vision problem” and thereby proved the existence of temperate FSs (cf. [16,32]). Different
proofs thereof were found later by Michael F. Atiyah [2] and Joseph N. Bernstein [4].

In 1970/73, Michael Atiyah, Raoul Bott, and Lars Garding extended and generalized
Petrovsky’s work, thereby developing a general theory of FSs of hyperbolic operators,
cf. [3]. For general operators, this was ddished in the fundamental work of Lars Hor-
mander, cf. [14,17,18].

We also mention the first major table of FSs by Norbert Ortner in 1980 (cf. [36]) and
the discovery of the connexion of lacunas of FSs with the existence of right inverses by
Reinhold Meise, B. Alan Taylor, and Dietmar Vogt in 1990 (cf. [35]).

Finally, I would like to sketch a proof of the Malgrange—Ehrenpreis theorem | found in
1994, influenced by a paper of Heinz Kdnig (cf. [28]). This constructive proof seems to be
the shortest one at present.

Theorem (Malgrange/Ehrenpreis, 1953/54)et P(§) = ;< ce&® be a not identi-
cally vanishing polynomial iR" (i.e.,cq, € C, & = (£1,...,&,) € R", &% = gfl - E7m, not
all ¢, =0). Then there exists a FS #f9), i.e.,3E € D'(R"): P()E =6.

Proof [37]. The distributionE € D’'(R") defined by

)\'"e)tﬂxf—]-( P(i§+kn)) dx )

Et)= PGE + An) ) 27in

Py (1)
1eC, |A|=1

is a FS of P(d), if P,(&§) = ZIO(\:m cu&® (i.e., P, is the principal part ofP), n € C"
with Py, () # 0 is fixed, nx = nix1 + --- + nux,, and F denotes the Fourier transform
(Fop)(x) = [¢(e§)e*'x5 d¢ for ¢ € D, and extended t&’ by continuity) with the inverse
FIT = (2n)™"(FT)(—x). Formula (1) makes sense, since

P& +rn)
P(i& + )

and since this distribution continuously depends.omhat formula (1) yields a FS is seen
by direct verification:

€ L*(R}) c S'(R"),

_1( P& + 1) dx
— m nx 1
P(B)E_Pm(n) g P(a)(eA 4 (P(ié—l—kn)))Znik
reC, [A|=1
1 L (PGE+Am)Y) dr
— mehnx [ p 1
P (1) / e ( O+im 7 <P(i$+kn)>>2ﬂik
r€C, |A|=1
1 — . dr
— mpnx ——1 F _un
T Pu(n) / MEMETH(PAE+A0) 5
reC, |A|=1
1 — dr
— m Anx et
T Pu() / we P@+imoz s
reC, |A|=1
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Py (1) A
AeC, =1

m—1
= / A 3 P () 8+ Y AF 0k ()8 d—k.=5.
= 2mi

2. Duality and microlocal analysis

An important step in the calculation of FSs consists in the determination of its singular
support. Here | would like to sketch a connexion of microlocal analysis with Pliicker’s the-
ory of dual algebraic curves. This relation is also at the heart of the Atiyah—Bott—Garding
theory, but applies to non-hyperbolic operatof principal type as well. For operators
with, e.g., double characteristics, things are more difficult, see the articles by Tsuji Mikio
[50,51], and by Lars Hormander [19].

Let P(d) be a real homogeneous operator of the degresnd ofprincipal type i.e.,

V& € R"\ {0}: dP (&) # 0. Then we can easily solve the division probléXtw) - @ =1 on
the spher&’ 1 by @ = vpﬁ e D'(S'1), which is defined through
. ¥ (w) n—1
(W, ®) = l@o / @) do(w), ¥ eD(SH).
|P(w)|>¢
From this we obtaif” € S’(R") with P(&) - T =1 by puttingT = Pf__,,[®(£/|£])|&|*].
The distributionT is homogeneous iR" \ {0} and we can describe its wave front set
WEFT quite explicitly: Near a zer§p € R" \ {0} of P, we usey; = P(&) as a coordinate
and obtain, since WF is defined intrinsically in the cotangent spaceR”, that

WFET NT*(R"\ {0}) = {(£,x); E eR"\ {0}, P(§) =0, x =1-dP (&),
t R\ {0}}.

Making use of the following theorem, which goes back to the school of Sato, we obtain
a precise description of WE, whereE := (i" /(2n)")FT is a FS ofP(9).

Theorem [18, Theorem 8.1.8]Letu € D'(R") be homogeneous iR" \ {0} and identify
T*R" with R?*. Then
x,&)eWFu) < (&,—x)eWFRFu) ifE+£0, x #0,
xesuppe <& (0,—x) e WR(Fu) ifx#0,
EesuppFu < (0,&) e WF®w) ife#£0.

Hence we conclude that
WFE ={(x,£); §€R"\{0}, x=00r[P(&)=0, x=1-VP(&), t e R\ {0}]}
whereV P = (g—fl, e %)T. In particular,
singsuppt = {1 - VP(€); teR, £ eR", P(§)=0}.

This means that sing sugipis the algebraic variety dual to the zero varietyRflLet us
recapitulate this@ncept from algebraic geometry.
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If V is a finite-dimensional vector space ower= R or C, then the corresponding
projective space is the set of all one-dimensional subspadésiie.,

P(V)={[vl; ve V\{0}}, [vl=K-w.

The projective spacB(V*) is canonically identified with the set of all subspaced/obf
codimension one and is called theal projective space. IX c P(V) is a hypersurface
given as the zero-set of a homogeneous polynomials above, i.e. X = {[v] € P(V);

P(v) = 0}, then the set of tangent planes Xois an algebraic variety ifP(V*), called
thedual hypersurfac& ™. We consider these varieties ouer= R or C, and denote them

by X or X¢, X* or X“*, respectively. From the above discussion, we obtain in our case
X* = {[x]; x e singsupE \ {0}}.

Trivial example: The cubie= s* (written projectively as3 — xox2 = O with s = x1/x3,

t = x2/x3) has a flex atk =+ = 0. The dual curve is, by definition, the collection of all
tangent lines, i.e4 = 3s3(s — so) + sg = ks + d and hence is parametrized by= 3s3,
d= —2sg. This is Neill's parabola, which has a cusp at the paiatd = 0 corresponding
tos=r=0.

In general, flexes and cusps correspond to one another by duality in the case of plane
curves. Ifk,8,b, f and «*, §*, b*, f* denote the number of cusps, (ordinary) double
points, bitangents, flexes of a plane algebraic curve and of its dual, respectively, then the
classical Plucker formulae say (cf. [10, p. 280])

b=8% b*=8, f=«* [r*=k, d*=dd—1)—25—3k,

_(d-1 s
g= 5 K.

Hered, d* are the degrees of our curves andenotes the genus.

If X¢is given byP (1, ¢2,¢3) =0, we obtainX* as the set of those projective points
[z] € P(C®) where the two equations- z = 0, P(¢) = 0 have a multiple projective solu-
tion [¢], and thus from the zero set of the discriminantRyfe, —(uz1 + z3)/z2, 1) with
respect ta.

3. Homogeneous cubic and quartic operatorsin 3D

As mentioned earlier, |I. Fredholm calculated the Fﬁfof— ag + 3%, whereas N. Zeilon
failed to find an explicit representation for a Fsaq”f+ 8% + ag. In later years, Herglotz,
Petrovsky, Garnir, etc., ekpitly calculated FSs for products of wave and Laplace opera-
tors, but, up to 1997&){1 + 8§ + ag‘ remained the only irreditltle homogeneous operator
of degree> 2, the FS of which was known. In 1997, | succeeded in representing a FS
of 33 + 93 + 83 (which I called “Zeilon’s operator”) by elliptic integrals, and in 1998,
| generalized the result to operators of the faif+ 83 + 95 + 3ad19203, a € R\ {—1}

(cf. [53,54]). Let me describe the main result.

According to Newton'’s classification o€al elliptic curves, the non-singular real ho-
mogeneous polynomialB(&) of third order in three variables are divided into two types
according to whether the real projective cufig] € P(R3): P (&) = 0} consists of one or
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of two connected components, respectively. In Hesse’s normal form, all non-singular real
cubic curves are—up to linear transformations—given by

P.(6) = 3+ £3 + €3 4+ Bat1283, aeR\ (-1}

(Intuitively, this comes from the fact that a homogeneous cubic polynomial in 3 vari-
ables, i.e.,P(§) = Y ,en3, uj=3Caé® has (3+2) = 10 coefficients and dim@R3) = 9

and hence the (Telchmuller) space of elliptic curves is one-dimensional. X} et

{[€] € P(R®); P,(&) = 0} denote the real projective variety defined By. Fora > —1,

X, is connected, whereas, far< —1, X, consists of two components (cf. Fig. 1). The
corresponding operato#’, (3) also differ from the physical viewpoint: Far< —1, every
projective line throughl, 1, 1] intersectsX, in three different projective points and thus
P, is strongly hyperbolic in the directiofi, 1, 1), for a > —1, P, is not hyperbolic in any
direction, nor is it an evolution operator.

We define the fundamental solutidfy of P,(9) as the Fourier transform of the homo-
geneous distribution which is of ordet3 and has vgg— e D/(S?) as its restriction to
the sphere. According to Section 2, the (analytic) smgular suppdit, a$ the dual curve
of X,, i.e.,

sing suppE, = singsupp E, and [singsuppE, \ {0}] = X;.
By the classical Plicker formula&;) is an algebraic curve of degree 6. Its complexifica-
tion has nine cusps, three of which are real in correspondence with the three flékes of
(cf. Fig. 2). Explicitly, we have sing supp, = {x € R3; A,(x) =0}, where
Ag(x) = 3a(a3 + 4)x%x%x32’ + 4(a3 + 1) (xfxg + xfxg + x%xg)
+ 6a2x1x2x3(xf + xg + xg) — (xi3 + xg + x%)z. (2)

If a < —1, thenP, is hyperbolic with respect tdl, 1, 1), andX}; consists ofwo conical
surfaces which are the respective duals of the two componeris.dfet F, denote the

a=-2 a=0
NG
2
b N
8 S Qf e b
T T T
I B BN
| R NS
-2 0 2
xi1 xi1

Fig. 1.{(&1,&2): [£1.&2,1] € X} for a = —2 and fora = 0.
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a=-10 a=1/3
x1=x2 x1=x2

x2=x3 x1=x3 x2=x3 x1=x3

Fig. 2.{x € R3; [x] € X*, x1 +x2 4+ x3 =1} for a = —10 and fora = 1/3.

unigue fundarpental solution dt,(9) with support in{x R3: x1 +x2+ x3>0}. Then
E, = %(Fa — F,), where the superscripindicates reflection with respect to the origin.
Further, we denote bi(, the propagation cone at, with respect tal, 1, 1), i.e.,

K, := dual cone of the component ¢f, 1, 1) in {x € R3 P,(x)# 0}. (3)

From the Herglotz—Petrovsky—Leray formula, we infer tligthas a Petrovsky lacuna
inside the cone
Lo:={x €Ky Au(x)>0} (a<-0. (4.1)

Hence sing supp, consists ob K, and ofd L,, which bound a convex and a non-convex
cone, respectively (cf. Fig. 2).
If a > —1, then stillE, has lacunas inside, and—L,, where now we define

L, :=componentofl,1,1)in {x e R% A,(x) >0} (a>-1). (4.2)

In both cases, the fundamental solutidfysare constant insidé, and—L,, and we rep-
resent these constant valuesampleteelliptic integrals of the first kind. Moreovek,, is
continuous outside the origin.

Outside the lacunag, (x) can be represented by elliptic integrals of the first kind. The
final result is contained in the following theorem (cf. [53, p. 286]).

Theorem. Leta € R\ {—1}. The limit
o jim YUE + 85 + 6 + Satabos| —¢)
CTEN0 048+ + Bakabots

defines a distribution i’ (R®). If E, := (i/(2n))3FT,, andA,, L., and, fora < —1, K,
are asin(2) (4.1), (4.2), (3), respectively, then

() E, is a fundamental solution @ + 33 + 93 + 3a19,93;
(b) E, is homogeneous of degrée
(c) E, is odd and invariant under permutations of the co-ordinates
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(d) singsupgE, =singsupp E, = {x € R%;, A,(x)=0};

(e) E, is continuous irR3 \ {0};

(f) if a < —1,thenE, = 1(F, — F,), P,(3)F, =8, SUPPF, = Ky;

(9) E, is constant inL, and in —L,, and the values,|;, are given by the following
complete elliptic integrals of the first kind

00 du
E IL _ 1 fp Vpa)’ 4= _1’
allLy = —
43r | [L A, a <1,

where p, (1) := 4(a® + Du® + 9a2u? + 6au + 1 and p is the smallest real root of
Pa);

(h) letx € U,, wherelU, := R3\ (L, U—Ly) if a > —1 andU, := K, \ Ly if a < —1, and
denote by (x) the only simple real root or, if belongs to one of the co-ordinate axes,
the triple rootO, respectively, of the cubic equation

Qa(x,2) 1= Aa(x)Z> + 9(ax? + xpx3) (ax3 + x1x3) (axd + x1x2) 22
+ [9a2xfx22x§ + 6a (xfxg + x:fxg + xgxg)
+ Brxoxa(xf + 63 +x3) ]
+ Bax2x5x2 + x3x3 + x:fxg + xgxg =0.
Thenz is a real-analytic function irt/,,, and

z(x

Y(—1—a) Sign( P, (x)) /
P

)
Eq(x)= ——— Eqlz, + du
X)= I
‘ RV VPa)
where P, (x) := 3[(a® — 2)p + a®lx1x2x3 — Bap + D (xd + 13 + x3).

Sketch of the proof. Applying the residue theorem in the Herglotz—Petrovsky—Leray for-
mula and using some substitution yields

Ea(x)=C1+C2-|m/.Q, x e U, (5)
y(x)

where C1, C2 are constantsy (x) is a path in the elliptic curveX;, := {[¢] € P(C3);
P,(¢) = 0} starting at some fixed point and leadind fdx)] € X¢ defined byx - y(x) =0

and Imy1(x) > 0, say. Furthermore2 is a generator of the space of holomorphic one-
forms onX¢. Then the addition theorem for elliptic functions (respectively Abel's theorem
for elliptic curves) is applied. O

Remarks. Interestingly, it follows from this theorem that the level surfaceg pfire alge-
braic. Up to present, there is no thetical explanation for this fact.

In the papers [56,57], we deduce similar folarifor elliptic, respectively, hyperbolic
quartic operators of the form?(9) = Z?,k:l Cjkajgakz. A typical picture of the slowness
surfaceX and of the dual surfacE* for such an operator is given in Fig. 3.
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1.5

Fig. 3.X andX* for 9 + 95 + 03 + 220203 + 2603 (37 + 93) with a = —0.7 andb = —1.2.

Inthe regionsA, B, the fundamental solutiof is given by incomplete elliptic integrals
of the first kind, in the Petrovsky lacundsit is given by linear functions the coefficients
of which are complete elliptic integrals of the first kind. We refer to [57] for details.

Note that the Riemann surfaces definedtiy) = 0 in this case have genus 3, liiis
still given byelliptic integrals. This comes from the fact thétis represented bgumsof
Abelian integrals in analogy with the imaginary part appearing in formula (5) above.

4. The system of crystal optics
If H denotes the magnetic field, agddenotes the density of current, and
g1 0 O
&= ( 0 & O ) ,
0 0 g3
u, ¢, €; being positive constants, then

(1392 + A(V))H = % rot(e ~1.7)

with the symmetric matrix

—d3k2 — dot2 dag12 dot1£3
AE) = ds£182 —d3k? — da£2 d1&283
do£1E3 dr£2E3 —d1£2 — dpE?

where we have set; = CZ/(,U.gj), j =1,2, 3. Particularly important for systems of PDOs
is the determinant operator. We have

det(7382 + A(V)) = 32R(d)
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with

3 3
R(z.&)=1*—1%Y £2(djp1+dj2) + EP Y E2dj11d; 42
Jj=1 j=1

(where we definds = d1, ds = d2). The slowness surface
X ={[(t,&)] e P(R*); R(z,6) =0} =& eR% R(1,¢) =0}

is called “Fresnel’s surface.” If the positive constadgitsdo, d3 are pairwise different, then
X is homeomorphic to two disjoint spheres glued together at four points, which two by
two are pairwise opposite and span the “optical axes.” In this c&ge,an irreducible
polynomial. If two of thed; are equal, i.e., itly = do = 1 anddz = d # 1 without loss
of generality, then the crystal is called “uniaxial,” because in this case the optical axes
coincide. Thenx is made up of a sphere and of an ellipsoid touching each other at the two
points on the optical axis.

Use of the matrix version of the Herglotz—Petrovsky formula yields a representation
of E by Abelian integrals (cf. [39, 2.2.2, p. 327], [26, p. 3318])

Y (1) P(1, £)%sign((3; detP) (L, §))

EC0="302% | [ 0adetP) (L. £) — va(adetp) (L. £)] & ©)

Cix

where
Crxi= {6 €R% detP(L,§) =0, t +& -x =0} (for (r,x) e RY).

Unfortunately, in the case of crystal optics (i.€.(0) = 138t2 + A(V), A as above), an
explicit evaluation (in terms of higher transcendental functions) of formula (6) has not yet
been achieved. Let me describe what is known so far [39, 3.4 and 4.3]:

If K denotes the support d, thenK is the dual cone of the connectivity component
of (1,0) in {(r,&) € R* R(z,£&) # 0}. The singular support of consists of the four
“Hamiltonian circles” and ofX*, whereX™* is the dual surface to the slowness surface
It turns out that

X*= {[(r, x)] e P(R%);

3 3
- 12 ij?(d;jl + d;jz) +1x12) " x%/(djyad)12) =04,
Jj=1 Jj=1
and henceX* is given by an equation analogous to that of Fresnel's surkac€he in-
tersection ofX* with a plane through the optical axes consists of a circle intersecting an
ellipse, see Fig. 4.
The fundamental matri¥ is explicitly known in the inner regioti. There

tY (1) 3x-xT
E=v I3 —
4 |x|3 |x|2

Furthermore, one can calculate the delta termB.imnd E is known in the uniaxial case.
In this case, the circle and the ellipse in Fig. 4 touch each otheFacan be expressed

1
) + :—g(tY(t) ® 8(x))13.



416 P. Wagner / J. Math. Anal. Appl. 297 (2004) 404-418

Fig. 4. Section of sing supp through the optical axes.

by delta terms and algebraic functions [FFpposition 3, p. 342]. For the biaxial case,
however,E is given inK \ J by Abelian integrals over curves of genus 3, the moduli of
which depend onz, x). Up to now, there is no representation by higher transcendental
functions known.
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