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Introduction

The notion of afundamental solution(in the sequel abbreviated as FS) gradually
came clearer during the 19th and 20th century. It is only in the setting ofLaurent Schwartz
theory of distributions that FSs can be defined in general and can be applied—v
convolution of distributions—to the solution of linear partial differential equations w
constant coefficients. In part, the relevant concepts were worked out by John Ho
cf. [20–25]. In this survey paper, we first review some important steps in the “histo
FSs.” Second, we explain why the singular support of the FSs of homogeneous op
P(∂) is just the dual hypersurface of the zero set ofP if P is of principal type. This is o
fundamental importance in the third part, where we present some recent results in the
culation of FSs of homogeneous cubic and quarticoperators in three dimensions. Final
we discuss what is known for the system of crystal optics, where, similarly as in dyn
anisotropic elasticity, many questions are still open.

1. A brief history of fundamental solutions

1.1. Fundamental solutions in the 18th and 19th century: special equations of
mathematical physics

The first use of a non-trivial fundamental solution can probably be ascribed to
d’Alembert. In 1747 he considered the deflectionu of a vibrating string. It satisfies th
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∂2u

∂t2
− c2∂2u

∂x2
= f,

which is solved by convolvingf with the FSE(t, x) = 1
2c

Y (t − |x|/c) of the operator
∂2
t − c2∂2

x , c > 0. In fact, this yields the formula

u(t, x) = f ∗ E = 1

2c

∫ ∫
|x−ξ |<c(t−τ )

f (τ, ξ)dτ dξ,

which—applied to the initial value problem, i.e., withf = δ(t) ⊗ u1(x) + δ′(t) ⊗
u0(x), whereuj (x) = (∂

j
t u)(0, x), j = 0,1,—furnishes d’Alembert’s solution, see [1

[33, p. 15 ff]. We observe that the FSE appears, as in much of the old literature, only
an implicit way.

Here and in the following, we use the notations∂t = ∂
∂t

, ∂x = ∂
∂x

, ∂1 = ∂
∂x1

etc.,�n =
∂2

1 +· · ·+∂2
n , ∂α = ∂

α1
1 · · ·∂αn

n , P(∂) =∑
α∈N

n
0
cα∂α , Y (t) = 1 for t � 0 andY (t) = 0 else,

x = (x1, . . . , xn)
T, ∇ = (∂1, . . . , ∂n)

T, |x| =
√

x2
1 + · · · + x2

n.

In 1789, Pierre Simon de Laplace used the FSE = − 1
4π |x| of the elliptic operator�3,

which bears his name, and thereby established the connexion of the Laplace opera
the Newtonian gravitational potential (cf. [29]). To tell the truth, Laplace just recogn
that�3(E∗f ) = 0 outside the support off , and it was Simon Denis Poisson, who obtain
the equation�3(E ∗ f ) = f in 1813 (cf. [41]).

In 1809, Laplace considered the first parabolic operator, namely the heat op
∂t − �n, and calculated its FS

E(t, x) = Y (t)

(4πt)n/2e−|x|2/(4t )

in the casen = 1, cf. [30]. The generalization to highern, in particular ton = 2, was found
by Poisson in 1818 [42].

In 1818, Joseph Fourier was able to calculate the FSE of the operator of the dynam
deflections of beams∂2

t + ∂4
x , an operator of fourth order:

E(t, x) = Y (t)

2
√

π

t∫
0

sin

(
x2

4τ
+ π

4

)
dτ√

τ

= Y (t)

[√
t

π
sin

(
x2

4t
+ π

4

)
− |x|

2
C

(
x2

4t

)
+ |x|

2
S

(
x2

4t

)]
,

where

C(x)

S(x)

}
= 1√

2π

x∫
0

{
cos
sin

}
(u)

du√
u

,

see [7].
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As well in 1818, Poisson generalized d’Alembert’s formula to three space dimen
by representing the solutions of the wave operator∂2

t − �3 as convolution with the FS
E = δ(t − |x|)/(4π |x|), cf. [43]. This notation, viz. the first use of Dirac’s delta functio
goes back to Gustav Kirchhoff’s paper of 1882 (see [27], [33, p. 99]).

In 1849, George Stokes obtained—as the kernel of an integral representation—t
damental matrixE of the system of partial differential operators which describes ela
waves in isotropic media [46]. This system can be found already in a memoir of 18
Poisson (cf. [44]). It is given by

P(∂) = (
∂2
t − µ�3

)
I3 − (λ + µ)∇ · ∇T (I3 = 3 by 3 unit matrix)

and Stokes’ fundamental matrix reads

E(t, x) = I3|x|2 − x · xT

4πµ|x|3 δ

(
t − |x|√

µ

)
+ x · xT

4π(λ + 2µ)|x|3δ

(
t − |x|√

λ + 2µ

)
+ t

4π |x|3
(

I3 − 3x · xT

|x|2
)[

Y

(
t − |x|√

µ

)
− Y

(
t − |x|√

λ + 2µ

)]
.

The FSE = Y (t − |x|)/(2π
√

t2 − |x|2 ) of the wave operator in two space dimensio
i.e., of∂2

t − �2, was found as late as 1894 by Vito Volterra, cf. [52].

1.2. Fundamental solutions in the 20th century: general theories

Investigating the equations of static anisotropic elasticity, Ivar Fredholm found in
(cf. [8]) the fundamental matrixE of the elliptic 3 by 3 system

P(∂) =
(

3∑
k,l=1

cijkl∂k∂l

)
i,j=1,2,3

, cijkl ∈ R,

of linear partial differential operators in three variables with constant coefficients an
mogeneous of second order. In our notation, his result is the following (cf. [8, (10), p. 7
[39, 3.2.2, (F), p. 332]):

E(x) = − i sign(x2)

2π

3∑
k=1

|ζk(x)|2 P(ζk(x))ad

x2
∂ detP

∂ξ1
(ζk(x)) − x1

∂ detP
∂ξ2

(ζk(x))
,

whereP(ζ )ad denotes the adjoint matrix ofP(ζ ) andζk(x) ∈ C3 \ {0} are determined up
to complex factors by the conditions

x · ζk(x) = 0, detP
(
ζk(x)

)= 0, Im

(
ζk(x)1

ζk(x)3

)
> 0, k = 1,2,3.

In 1908, Fredholm succeeded in representing the FSs of elliptic homogeneous operat
in 3 variables by Abelian integrals [9]. To test the theory, he applied it to the ope
∂4

1 + ∂4
2 + ∂4

3, and he obtained, up to the constant factor− 1
8π

, the beautiful formula

E(x) = − 1

8π

3∑
j=1

|xj |
∞∫

ζ/(2x2)

du√
4u3 − u
j
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8π

3∑
j=1

xjF

(
arcsin

( √
2xj√

ζ + x2
j

)
,

1√
2

)
.

Thereinζ denotes the largest of the three real roots of the cubic

ζ 3 − (
x4

1 + x4
2 + x4

3

)
ζ − 2x2

1x2
2x2

3 = 0,

andF denotes the elliptic integral of the first kind, cf. [12, 3.131.8 and 8.111]. (A gen
ization to elliptic operators of the form

∑3
j,k=1 cjk∂

2
j ∂2

k can be found in [56].)
In 1911, his pupil Nils Zeilon gave the first definition of a FS in case it is a loc

integrable function (cf. [58]):

F is a FS off ( ∂
∂x

, ∂
∂y

, ∂
∂z

) if and only if

u =
∫ ∫ ∫

F(x − λ,y − µ,z − ν)φ(λ,µ, ν)dλdµdν

solvesf ( ∂
∂x

, ∂
∂y

, ∂
∂z

)u = φ.

In 1913, Zeilon transferred Fredholm’s results to non-elliptic operators and, in p
ular, he considered∂3

1 + ∂3
2 + ∂3

3 (cf. [59]). He determined the singular support of its F
but, in contrast to Fredholm, he was not able to obtain an explicit representation for t
However, explicit formulae were found recently, see [53–55].

In three famous papers from 1926 to 1928 (see [13]), Gustav Herglotz overcam
restriction to 2 or 3 independent variables and represented the FSs of elliptic and of
hyperbolic homogeneous operators of the degreem in n variables (withn � m) by (n−1)-
fold and by(n− 2)-fold integrals, respectively. Later, these formulae came to be known
the Herglotz–Petrovsky formulae.

In 1945, Ivan Petrovsky represented—in the hyperbolic case—the FSE by integrals
over cycles in complex projective space and investigated the lacunas ofE by means of
algebraic topology [40].

In 1950/51, Laurent Schwartz first published his Théorie des Distributions [45
which framework he also gave the general definition of FSs:

E is a FS ofP(∂) if and only if P(∂)E = δ.

In Chapter 6 (Transformation de Fourier) of his book, Schwartz rederives the FSs of(�n −
λ)m, (∂2

t − �n − λ)m, (∂t − �n − λ)m, λ ∈ C, by distributional calculus, cf. also [22,23
In 1952, Jean Leray stated a distributional version of the Herglotz–Petrovsky form

for homogeneous hyperbolic operators, thereby also treating the casem < n (cf. [31]). The
same goal was reached in 1959 by Vladimir A. Borovikov for operators of principal
(cf. [5]) and presented in the textbook “Generalized Functions” by Israel M. Gel’fand
Georgi E. Shilov (cf. [11]).

The first existence proofs for FSs were given in 1953/54 by Bernard Malgrang
Leon Ehrenpreis (cf. [6,34]). These proofs were based on the Hahn–Banach theo
1957, Lars Hörmander showed that there always exist “regular” FSs (at that time
“proper” FSs) having “best” regularity properties (cf. [15]). The existence of FSs dep
ing C∞ or even holomorphic (in case of “constant strength”) on the coefficients ofP(∂)

was proved by François Trèves, cf. [47–49]; see also the survey paper [38].
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In 1957/58, Lars Hörmander and Stanislaw Łojasiewicz independently solved th
vision problem” and thereby proved the existence of temperate FSs (cf. [16,32]). Dif
proofs thereof were found later by Michael F. Atiyah [2] and Joseph N. Bernstein [4]

In 1970/73, Michael Atiyah, Raoul Bott, and Lars Gårding extended and genera
Petrovsky’s work, thereby developing a general theory of FSs of hyperbolic oper
cf. [3]. For general operators, this was established in the fundamental work of Lars Hö
mander, cf. [14,17,18].

We also mention the first major table of FSs by Norbert Ortner in 1980 (cf. [36])
the discovery of the connexion of lacunas of FSs with the existence of right invers
Reinhold Meise, B. Alan Taylor, and Dietmar Vogt in 1990 (cf. [35]).

Finally, I would like to sketch a proof of the Malgrange–Ehrenpreis theorem I foun
1994, influenced by a paper of Heinz König (cf. [28]). This constructive proof seems
the shortest one at present.

Theorem (Malgrange/Ehrenpreis, 1953/54).Let P(ξ) = ∑
|α|�m cαξα be a not identi-

cally vanishing polynomial inRn (i.e.,cα ∈ C, ξ = (ξ1, . . . , ξn) ∈ Rn, ξα = ξ
α1
1 · · · ξαn

n , not
all cα = 0). Then there exists a FS ofP(∂), i.e.,∃E ∈D′(Rn): P(∂)E = δ.

Proof [37]. The distributionE ∈D′(Rn) defined by

E(x) = 1

Pm(η)

∫
λ∈C, |λ|=1

λmeληxF−1
(

P(iξ + λη)

P (iξ + λη)

)
dλ

2π iλ
(1)

is a FS ofP(∂), if Pm(ξ) = ∑
|α|=m cαξα (i.e., Pm is the principal part ofP), η ∈ Cn

with Pm(η) 	= 0 is fixed,ηx = η1x1 + · · · + ηnxn, andF denotes the Fourier transfor
((Fφ)(x) = ∫

φ(ξ)e−ixξ dξ for φ ∈ D, and extended toS ′ by continuity) with the inverse
F−1T = (2π)−n(FT )(−x). Formula (1) makes sense, since

P(iξ + λη)

P (iξ + λη)
∈ L∞(

R
n
ξ

)⊂ S ′(
R

n
)
,

and since this distribution continuously depends onλ. That formula (1) yields a FS is see
by direct verification:

P(∂)E = 1

Pm(η)

∫
λ∈C, |λ|=1

λmP(∂)

(
eληxF−1

(
P(iξ + λη)

P (iξ + λη)

))
dλ

2π iλ

= 1

Pm(η)

∫
λ∈C, |λ|=1

λmeληx

(
P(∂ + λη)F−1

(
P(iξ + λη)

P (iξ + λη)

))
dλ

2π iλ

= 1

Pm(η)

∫
λ∈C, |λ|=1

λmeληxF−1(P(iξ + λη)
) dλ

2π iλ

= 1

Pm(η)

∫
λmeληxP (∂ + λη) δ

dλ

2π iλ

λ∈C, |λ|=1
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Pm(η)

∫
λ∈C, |λ|=1

λmeληx

[
λm Pm(η) δ +

m−1∑
k=0

λk Qk(∂)δ

]
dλ

2π iλ
= δ. �

2. Duality and microlocal analysis

An important step in the calculation of FSs consists in the determination of its sin
support. Here I would like to sketch a connexion of microlocal analysis with Plücker’s
ory of dual algebraic curves. This relation is also at the heart of the Atiyah–Bott–Gå
theory, but applies to non-hyperbolic operators of principal type as well. For operato
with, e.g., double characteristics, things are more difficult, see the articles by Tsuji
[50,51], and by Lars Hörmander [19].

Let P(∂) be a real homogeneous operator of the degreem and ofprincipal type, i.e.,
∀ξ ∈ Rn \ {0}: dP(ξ) 	= 0. Then we can easily solve the division problemP(ω) ·Φ = 1 on
the sphereSn−1 by Φ = vp 1

P(ω)
∈ D′(Sn−1), which is defined through

〈ψ,Φ〉 = lim
ε↘0

∫
|P(ω)|>ε

ψ(ω)

P (ω)
dσ(ω), ψ ∈ D

(
Sn−1).

From this we obtainT ∈ S ′(Rn) with P(ξ) ·T = 1 by puttingT = Pfλ=−m[Φ(ξ/|ξ |)|ξ |λ].
The distributionT is homogeneous inRn \ {0} and we can describe its wave front s
WFT quite explicitly: Near a zeroξ0 ∈ Rn \ {0} of P , we usey1 = P(ξ) as a coordinate
and obtain, since WFT is defined intrinsically in the cotangent spaceT ∗Rn, that

WFT ∩ T ∗(Rn \ {0})= {
(ξ, x); ξ ∈ Rn \ {0}, P (ξ) = 0, x = t · dP(ξ),

t ∈ R \ {0}}.
Making use of the following theorem, which goes back to the school of Sato, we o

a precise description of WFE, whereE := (im/(2π)n)FT is a FS ofP(∂).

Theorem [18, Theorem 8.1.8].Let u ∈ D′(Rn) be homogeneous inRn \ {0} and identify
T ∗Rn with R2n. Then

(x, ξ) ∈ WF(u) ⇔ (ξ,−x) ∈ WF(Fu) if ξ 	= 0, x 	= 0,

x ∈ suppu ⇔ (0,−x) ∈ WF(Fu) if x 	= 0,

ξ ∈ suppFu ⇔ (0, ξ) ∈ WF(u) if ξ 	= 0.

Hence we conclude that

WFE = {
(x, ξ); ξ ∈ Rn \ {0}, x = 0 or

[
P(ξ) = 0, x = t · ∇P(ξ), t ∈ R \ {0}]},

where∇P = ( ∂P
∂x1

, . . . , ∂P
∂xn

)T. In particular,

sing suppE = {
t · ∇P(ξ); t ∈ R, ξ ∈ Rn, P (ξ) = 0

}
.

This means that sing suppE is the algebraic variety dual to the zero variety ofP. Let us
recapitulate this concept from algebraic geometry.
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If V is a finite-dimensional vector space overK = R or C, then the correspondin
projective space is the set of all one-dimensional subspaces inV , i.e.,

P(V ) = {[v]; v ∈ V \ {0}}, [v] = K · v.

The projective spaceP(V ∗) is canonically identified with the set of all subspaces ofV of
codimension one and is called thedual projective space. IfX ⊂ P(V ) is a hypersurface
given as the zero-set of a homogeneous polynomialP as above, i.e.,X = {[v] ∈ P(V );
P(v) = 0}, then the set of tangent planes toX is an algebraic variety inP(V ∗), called
thedual hypersurfaceX∗. We consider these varieties overK = R or C, and denote them
by X or Xc , X∗ or Xc∗, respectively. From the above discussion, we obtain in our
X∗ = {[x]; x ∈ sing suppE \ {0}}.

Trivial example: The cubict = s3 (written projectively asx3
1 −x2x

2
3 = 0 with s = x1/x3,

t = x2/x3) has a flex ats = t = 0. The dual curve is, by definition, the collection of a
tangent lines, i.e.,t = 3s2

0(s − s0) + s3
0 = ks + d and hence is parametrized byk = 3s2

0,

d = −2s3
0. This is Neill’s parabola, which has a cusp at the pointk = d = 0 corresponding

to s = t = 0.

In general, flexes and cusps correspond to one another by duality in the case o
curves. If κ, δ, b, f and κ∗, δ∗, b∗, f ∗ denote the number of cusps, (ordinary) dou
points, bitangents, flexes of a plane algebraic curve and of its dual, respectively, th
classical Plücker formulae say (cf. [10, p. 280])

b = δ∗, b∗ = δ, f = κ∗, f ∗ = κ, d∗ = d(d − 1) − 2δ − 3κ,

g =
(

d − 1

2

)
− δ − κ.

Hered, d∗ are the degrees of our curves andg denotes the genus.
If Xc is given byP(ζ1, ζ2, ζ3) = 0, we obtainXc∗ as the set of those projective poin

[z] ∈ P(C3) where the two equationsζ · z = 0,P (ζ ) = 0 have a multiple projective solu
tion [ζ ], and thus from the zero set of the discriminant ofP(u,−(uz1 + z3)/z2,1) with
respect tou.

3. Homogeneous cubic and quartic operators in 3D

As mentioned earlier, I. Fredholm calculated the FS of∂4
1 + ∂4

2 + ∂4
3, whereas N. Zeilon

failed to find an explicit representation for a FS of∂3
1 + ∂3

2 + ∂3
3 . In later years, Herglotz

Petrovsky, Garnir, etc., explicitly calculated FSs for products of wave and Laplace op
tors, but, up to 1997,∂4

1 + ∂4
2 + ∂4

3 remained the only irreducible homogeneous operat
of degree> 2, the FS of which was known. In 1997, I succeeded in representing
of ∂3

1 + ∂3
2 + ∂3

3 (which I called “Zeilon’s operator”) by elliptic integrals, and in 199
I generalized the result to operators of the form∂3

1 + ∂3
2 + ∂3

3 + 3a∂1∂2∂3, a ∈ R \ {−1}
(cf. [53,54]). Let me describe the main result.

According to Newton’s classification of real elliptic curves, the non-singular real h
mogeneous polynomialsP(ξ) of third order in three variables are divided into two typ
according to whether the real projective curve{[ξ ] ∈ P(R3): P(ξ) = 0} consists of one o
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cubic curves are—up to linear transformations—given by

Pa(ξ) = ξ3
1 + ξ3

2 + ξ3
3 + 3aξ1ξ2ξ3, a ∈ R \ {−1}.

(Intuitively, this comes from the fact that a homogeneous cubic polynomial in 3
ables, i.e.,P(ξ) = ∑

α∈N3
0, |α|=3cαξα has

(3+2
3

) = 10 coefficients and dimgl(R3) = 9
and hence the (Teichmüller) space of elliptic curves is one-dimensional.) LetXa :=
{[ξ ] ∈ P(R3); Pa(ξ) = 0} denote the real projective variety defined byPa. For a > −1,

Xa is connected, whereas, fora < −1, Xa consists of two components (cf. Fig. 1). T
corresponding operatorsPa(∂) also differ from the physical viewpoint: Fora < −1, every
projective line through[1,1,1] intersectsXa in three different projective points and th
Pa is strongly hyperbolic in the direction(1,1,1), for a > −1,Pa is not hyperbolic in any
direction, nor is it an evolution operator.

We define the fundamental solutionEa of Pa(∂) as the Fourier transform of the hom
geneous distribution which is of order−3 and has vp 1

Pa(ω)
∈ D′(S2) as its restriction to

the sphere. According to Section 2, the (analytic) singular support ofEa is the dual curve
of Xa , i.e.,

sing suppEa = sing suppA Ea and
[
sing suppEa \ {0}]= X∗

a .

By the classical Plücker formulae,X∗
a is an algebraic curve of degree 6. Its complexifi

tion has nine cusps, three of which are real in correspondence with the three flexesXa

(cf. Fig. 2). Explicitly, we have sing suppEa = {x ∈ R3; Aa(x) = 0}, where

Aa(x) := 3a
(
a3 + 4

)
x2

1x2
2x2

3 + 4
(
a3 + 1

)(
x3

1x3
2 + x3

1x3
3 + x3

2x3
3

)
+ 6a2x1x2x3

(
x3

1 + x3
2 + x3

3

)− (
x3

1 + x3
2 + x3

3

)2
. (2)

If a < −1, thenPa is hyperbolic with respect to(1,1,1), andX∗
a consists oftwoconical

surfaces which are the respective duals of the two components ofXa. Let Fa denote the

Fig. 1.{(ξ1, ξ2): [ξ1, ξ2,1] ∈ Xa} for a = −2 and fora = 0.
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Fig. 2.{x ∈ R3; [x] ∈ X∗
a , x1 + x2 + x3 = 1} for a = −10 and fora = 1/3.

unique fundamental solution ofPa(∂) with support in{x ∈ R3: x1 + x2 + x3 � 0}. Then
Ea = 1

2(Fa − F̌a), where the superscriptˇ indicates reflection with respect to the orig
Further, we denote byKa the propagation cone ofPa with respect to(1,1,1), i.e.,

Ka := dual cone of the component of(1,1,1) in
{
x ∈ R3; Pa(x) 	= 0

}
. (3)

From the Herglotz–Petrovsky–Leray formula, we infer thatFa has a Petrovsky lacun
inside the cone

La := {
x ∈ Ka; Aa(x) > 0

}
(a < −1). (4.1)

Hence sing suppFa consists of∂Ka and of∂La , which bound a convex and a non-conv
cone, respectively (cf. Fig. 2).

If a > −1, then stillEa has lacunas insideLa and−La , where now we define

La := component of(1,1,1) in
{
x ∈ R3; Aa(x) > 0

}
(a > −1). (4.2)

In both cases, the fundamental solutionsEa are constant insideLa and−La , and we rep-
resent these constant values ascompleteelliptic integrals of the first kind. Moreover,Ea is
continuous outside the origin.

Outside the lacunas,Ea(x) can be represented by elliptic integrals of the first kind. T
final result is contained in the following theorem (cf. [53, p. 286]).

Theorem. Leta ∈ R \ {−1}. The limit

Ta := lim
ε↘0

Y (|ξ3
1 + ξ3

2 + ξ3
3 + 3aξ1ξ2ξ3| − ε)

ξ3
1 + ξ3

2 + ξ3
3 + 3aξ1ξ2ξ3

defines a distribution inS ′(R3). If Ea := (i/(2π))3FTa, andAa,La , and, fora < −1, Ka

are as in(2) (4.1), (4.2), (3), respectively, then

(a) Ea is a fundamental solution of∂3
1 + ∂3

2 + ∂3
3 + 3a∂1∂2∂3;

(b) Ea is homogeneous of degree0;
(c) Ea is odd and invariant under permutations of the co-ordinates;
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(d) sing suppEa = sing suppA Ea = {x ∈ R3; Aa(x) = 0};
(e) Ea is continuous inR3 \ {0};
(f) if a < −1, thenEa = 1

2(Fa − F̌a), Pa(∂)Fa = δ, suppFa = Ka ;
(g) Ea is constant inLa and in −La , and the valuesEa|La are given by the following

complete elliptic integrals of the first kind:

Ea |La = − 1

4
√

3π


∫∞
ρ

du√
pa(u)

, a > −1,∫ ρ

−∞
2 du√
pa(u)

, a < −1,

wherepa(u) := 4(a3 + 1)u3 + 9a2u2 + 6au + 1 and ρ is the smallest real root o
pa(u);

(h) let x ∈ Ua , whereUa := R3 \ (La ∪−La) if a > −1 andUa := ◦
Ka \La if a < −1, and

denote byz(x) the only simple real root or, ifx belongs to one of the co-ordinate axe
the triple root0, respectively, of the cubic equation

Qa(x, z) := Aa(x)z3 + 9
(
ax2

1 + x2x3
)(

ax2
2 + x1x3

)(
ax2

3 + x1x2
)
z2

+ [
9a2x2

1x2
2x2

3 + 6a
(
x3

1x3
2 + x3

1x3
3 + x3

2x3
3

)
+ 3x1x2x3

(
x3

1 + x3
2 + x3

3

)]
z

+ 3ax2
1x2

2x2
3 + x3

1x3
2 + x3

1x3
3 + x3

2x3
3 = 0.

Thenz is a real-analytic function inUa , and

Ea(x) = Y (−1− a)

2
Ea |La + sign(P̃a(x))

4
√

3π

z(x)∫
ρ

du√
pa(u)

,

whereP̃a(x) := 3[(a3 − 2)ρ + a2]x1x2x3 − (3aρ + 1)(x3
1 + x3

2 + x3
3).

Sketch of the proof. Applying the residue theorem in the Herglotz–Petrovsky–Leray
mula and using some substitution yields

Ea(x) = C1 + C2 · Im
∫

γ (x)

Ω, x ∈ Ua, (5)

where C1,C2 are constants,γ (x) is a path in the elliptic curveXc
a := {[ζ ] ∈ P(C3);

Pa(ζ ) = 0} starting at some fixed point and leading to[y(x)] ∈ Xc
a defined byx · y(x) = 0

and Imy1(x) > 0, say. Furthermore,Ω is a generator of the space of holomorphic o
forms onXc

a. Then the addition theorem for elliptic functions (respectively Abel’s theo
for elliptic curves) is applied. �
Remarks. Interestingly, it follows from this theorem that the level surfaces ofEa are alge-
braic. Up to present, there is no theoretical explanation for this fact.

In the papers [56,57], we deduce similar formulae for elliptic, respectively, hyperboli
quartic operators of the formP(∂) =∑3

j,k=1 cjk∂
2
j ∂2

k . A typical picture of the slownes
surfaceX and of the dual surfaceX∗ for such an operator is given in Fig. 3.
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Fig. 3.X andX∗ for ∂4
1 + ∂4

2 + ∂4
3 + 2a∂2

1∂2
2 + 2b∂2

3 (∂2
1 + ∂2

2) with a = −0.7 andb = −1.2.

In the regionsA,B, the fundamental solutionE is given by incomplete elliptic integral
of the first kind, in the Petrovsky lacunasL it is given by linear functions the coefficien
of which are complete elliptic integrals of the first kind. We refer to [57] for details.

Note that the Riemann surfaces defined byP(z) = 0 in this case have genus 3, butE is
still given byelliptic integrals. This comes from the fact thatE is represented bysumsof
Abelian integrals in analogy with the imaginary part appearing in formula (5) above.

4. The system of crystal optics

If H denotes the magnetic field, andJ denotes the density of current, and

ε =
(

ε1 0 0
0 ε2 0
0 0 ε3

)
,

µ, c, εj being positive constants, then(
I3∂

2
t + A(∇)

)
H = 4πc

µ
rot
(
ε−1J

)
with the symmetric matrix

A(ξ) =
−d3ξ

2
2 − d2ξ

2
3 d3ξ1ξ2 d2ξ1ξ3

d3ξ1ξ2 −d3ξ
2
1 − d1ξ

2
3 d1ξ2ξ3

d2ξ1ξ3 d1ξ2ξ3 −d1ξ
2
2 − d2ξ

2
1


where we have setdj = c2/(µεj ), j = 1,2,3. Particularly important for systems of PDO
is the determinant operator. We have

det
(
I3∂

2
t + A(∇)

)= ∂2
t R(∂)
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with

R(τ, ξ) = τ4 − τ2
3∑

j=1

ξ2
j (dj+1 + dj+2) + |ξ |2

3∑
j=1

ξ2
j dj+1dj+2

(where we defined4 = d1, d5 = d2). The slowness surface

X = {[
(τ, ξ)

] ∈ P
(
R4); R(τ, ξ) = 0

}∼= {
ξ ∈ R3; R(1, ξ) = 0

}
is called “Fresnel’s surface.” If the positive constantsd1, d2, d3 are pairwise different, the
X is homeomorphic to two disjoint spheres glued together at four points, which tw
two are pairwise opposite and span the “optical axes.” In this case,R is an irreducible
polynomial. If two of thedj are equal, i.e., ifd1 = d2 = 1 andd3 = d 	= 1 without loss
of generality, then the crystal is called “uniaxial,” because in this case the optica
coincide. ThenX is made up of a sphere and of an ellipsoid touching each other at th
points on the optical axis.

Use of the matrix version of the Herglotz–Petrovsky formula yields a represen
of E by Abelian integrals (cf. [39, 2.2.2, p. 327], [26, p. 3318])

E(t, x) = −Y (t)

4π2 ∂t

∫
Ct,x

P (1, ξ)adsign((∂τ detP)(1, ξ))

|x3(∂2 detP)(1, ξ) − x2(∂3 detP)(1, ξ)| |dξ1| (6)

where

Ct,x := {
ξ ∈ R3; detP(1, ξ) = 0, t + ξT · x = 0

} (
for (t, x) ∈ R4).

Unfortunately, in the case of crystal optics (i.e.,P(∂) = I3∂
2
t + A(∇), A as above), an

explicit evaluation (in terms of higher transcendental functions) of formula (6) has n
been achieved. Let me describe what is known so far [39, 3.4 and 4.3]:

If K denotes the support ofE, thenK is the dual cone of the connectivity compone
of (1,0) in {(τ, ξ) ∈ R4; R(τ, ξ) 	= 0}. The singular support ofE consists of the fou
“Hamiltonian circles” and ofX∗, whereX∗ is the dual surface to the slowness surfaceX.
It turns out that

X∗ =
{[

(t, x)
] ∈ P

(
R4);

t4 − t2
3∑

j=1

x2
j

(
d−1
j+1 + d−1

j+2

)+ |x|2
3∑

j=1

x2
j /(dj+1dj+2) = 0

}
,

and henceX∗ is given by an equation analogous to that of Fresnel’s surfaceX. The in-
tersection ofX∗ with a plane through the optical axes consists of a circle intersectin
ellipse, see Fig. 4.

The fundamental matrixE is explicitly known in the inner regionJ . There

E = vp
tY (t)

4π |x|3
(

I3 − 3x · xT

|x|2
)

+ 1

3

(
tY (t) ⊗ δ(x)

)
I3.

Furthermore, one can calculate the delta terms inE, andE is known in the uniaxial case
In this case, the circle and the ellipse in Fig. 4 touch each other andE can be expresse
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Fig. 4. Section of singsuppE through the optical axes.

by delta terms and algebraic functions [39,Proposition 3, p. 342]. For the biaxial cas
however,E is given inK \ J by Abelian integrals over curves of genus 3, the modul
which depend on(t, x). Up to now, there is no representation by higher transcend
functions known.
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