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Abstract

An impressed feature of inflation on warped Dvali–Gabadadze–Porrati (DGP) brane is that the inflationary phase exits spontaneously for a
scalar inflaton field with exponential potential, which presents a graceful exit mechanism for the inflation. But its reheating mechanism leaves
open. We investigate the curvaton reheating in inflation on warped DGP brane model. The reheating may occur in effectively 5-dimensional or
4-dimensional stage. We study the permitted parameter space of the curvaton field in detail. We demonstrate how the inflation model of the warped
DGP brane is improved by the curvaton mechanism.
© 2006 Published by Elsevier B.V.
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1. Introduction

The inflation is a work schema, rather than a model. There
are several inflation models since Guth’s seminal work [1], for
a review, see, for example [2]. Though the inflationary scenario
successfully solved several problems in the standard big bang
model, how to get an inflaton field from fundamental field the-
ory keeps unsolved. In view of achievements and shortcomings
of inflationary scenario, it is necessary to further our under-
standing of the inflationary scenario from a theoretical perspec-
tive.

The brane world scenario, in which the standard model par-
ticles are confined on the 3-brane while the gravitation can
propagate in the whole space, is an important progress in high
energy physics. Among various brane universe models, the one
proposed in [3], called DGP model, is very interesting. In the
DGP model, gravity appears 4-dimensional at short distances
but is altered at distance large compared to some freely ad-
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justable crossover scale r0 through the slow evaporation of the
graviton off our 4-dimensional brane world universe into an un-
seen, yet large, fifth dimension. The original DGP model was
soon generalized to warped DPG model [4]. In some sense, it
is a hybrid model sharing some features of Randall–Sundrum
model [5] and some features of DGP model.

The inflation on warped DGP brane has been discussed in
[6,7]. It is found that there may exist three stages in the inflation
period: at the ultra high energy limit, the spacetime is effec-
tively 4-dimensional; at middle energy region, the spacetime
is effectively 5-dimensional; and then the spacetime undergoes
the second 4-dimensional stage before nucleosynthesis (note
that in the ultra low energy limit, such as the present day, the
model can enter another 5-dimensional stage again). In a con-
crete numerical example of warped DGP inflation model, the
universe starts to inflate at the 4-dimensional stage and ends at
5-dimensional stage [7]. In inflation scenarios, the exponential
potential is an important example which can be solved exactly
in the standard model. In addition, we know that such expo-
nential potentials of scalar fields occur naturally in some fun-
damental theories such as string/M-theories. It is worth noting
that in this inflation model based on the warped DGP brane
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world scenario, for an exponential potential, the inflationary
phase can exit naturally. In this inflationary scenario, when the
energy density decreases, the scalar field makes a transition into
a kinetic energy dominated regime, which means the slow roll
parameters becomes larger than 1, bringing inflation to an end.
Since the inflaton survives this process without decay, an alter-
native reheating mechanism is required.

It is suggested in [8] that reheating took place via gravita-
tional particle production. This particle production mechanism
roots in the different vacuums of the inflationary phase and the
kinetic phase. The different vacuums are related by Bogoliubov
transformations. The vacuum state in the inflationary phase is
no longer vacuum state measured in the kinetic phase: there
are particles generated. However this mechanism is very in-
efficiency. So there is a rather long kinetic energy dominated
regime, which leads to short-wavelength gravitational waves to
reach excessive amplitudes [9]. The gravitational particle pro-
duction mechanism is also plagued by its prediction on pertur-
bation spectrum: it gives an spectrum far from scale invariant,
while the observation data prefer a nearly scale invariant spec-
trum.

In this Letter we shall propose a curvaton reheating mecha-
nism for the warped DGP inflation model. The curvaton mech-
anism is firstly suggested as an alternative mechanism to gener-
ate the primordial scalar perturbation which is responsible for
the structure formation. In the curvaton scenario the primordial
density perturbation originates from the vacuum fluctuation of
some “curvaton” field σ , different from the inflaton field [10].
The curvaton reheating mechanism was firstly suggested in
context of the quintessential inflation model in [11]. It is shown
in [12] that the eta-problem of quintessential inflation can be
also ameliorated under the curvaton hypothesis. And recently
the curvaton reheating mechanism is applied to the different in-
flation models [13].

The organization of this Letter is as follows. For a thorough
discussion on the curvaton reheating process, in the next sec-
tion we briefly review the warped DGP inflation, stressing on
the different stages of different effective dimensions. In this
section we also reanalyze the example discussed in [7], point-
ing out the critical points of the dimension transition, which is
very important for the studies on the permitted parameter space
of the curvaton field. In Section 3 we traverse the constraint
on the curvaton field. We investigate all the possible 3 cases:
(1) The curvaton oscillates and decays in 5-dimensional stage;
(2) the curvaton oscillates in 5-dimensional stage but decays in
4-dimensional stage; and (3) the curvaton oscillates and decays
in 4-dimensional stage. In the last section we present our con-
clusions and discussions.

2. A short review on the warped DGP inflation model

For further discussions on curvaton reheating after inflation-
ary phase, we first give a brief review on the warped DGP
inflation model. For a thorough discussion, see [7].

We start from the Friedmann equation on the warped DGP
brane. Assuming a Friedmann–Robertson–Walker (FRW) met-
ric on the brane, one derives the Friedmann equation

(1)H 2 + k

a2
= 1

3μ2

[
ρ + ρ0

(
1 + εA(ρ, a)

)]
,

where as usual H is the Hubble parameter, a denotes the scale
factor, ρ denotes the matter field density, k is the constant cur-
vature of the maximal symmetric space of the FRW metric, μ is
a parameter with dimension of mass, which denotes the strength
of the induced gravity term on the brane, and ε denotes either
+1 or −1, represents the two branches of this model. A is de-
fined by

(2)A=
[
A2

0 + 2η

ρ0

(
ρ − μ2 E0

a4

)]1/2

,

where

(3)A0 =
√

1 − 2η
μ2Λ

ρ0
, η = 6m6

5

ρ0μ2
(0 < η � 1),

(4)ρ0 = m4
λ + 6

m6
5

μ2
.

Λ is defined as

(5)Λ = 1

2

(
(5)Λ + 1

6
κ4

5λ2
)

,

where (5)Λ is the 5-dimensional cosmological constant in the
bulk, κ5 is the 5-dimensional Newton constant, and λ is the
brane tension. Note that here there are three mass scales, μ,
mλ = λ1/4 and m5 = κ

−2/3
5 . E0 is a constant related to Weyl

radiation. Since we are interested in the inflation dynamics of
the model, as usual, we neglect the curvature term and dark
radiation term in what follows. Also in this Letter we restrict
ourselves in the Randall–Sundrum critical case, that is Λ =
1
2 ((5)Λ + 1

6κ4
5 λ2) = 0. Then the Friedmann equation (1) can be

rewritten as

(6)H 2 = 1

3μ2

[
ρ + ρ0 + ερ0

(
1 + 2ηρ

ρ0

)1/2]
.

Because only in the branch ε = −1 the inflation exits sponta-
neously, we only consider this branch from now on. In the ultra
high energy limit where ρ � ρ0 � m4

λ, the Friedmann equation
(6) is

(7)H 2 = 1

3μ2
(ρ + ε

√
2ρρ0 ).

This describes a four-dimensional gravity on the brane. In the
intermediate energy region where ρ � ρ0 but ρ � m4

λ, for the
branch with ε = −1, the Friedmann equation changes to

(8)H 2 = m4
λ

18m6
5

(
ρ + ρ2

2m4
λ

− μ2m4
λ

6m6
5

ρ − μ2

4m6
5

ρ2
)

.

And in low energy limit ρ � m4
λ � ρ0, Friedmann equation (6)

becomes

(9)H 2 = 1

3m2
p

[
ρ +O

(
ρ

ρ0

)2]
,



H. Zhang, Z.-H. Zhu / Physics Letters B 641 (2006) 405–414 407
where m2
p = μ2/(1 − η), mp is 4-dimensional Planck mass.

Carefully observe the conditions for (7), (9), and (8), one finds
only when

(10)λ � 6m6
5

μ2
,

the universe really undergoes a 5-dimensional phase. Otherwise
the universe will be always in a 4-dimensional evolution, which
is without interest. Considering (10), and only leaving the most
important term, (7)–(9) are further simplified to

(11)H 2 = 1

3μ2
ρ,

(12)H 2 = ρ2

36m6
5

,

and

(13)H 2 = λ

18m6
5

ρ,

respectively. Clearly, the above 3 equations describe effec-
tively 4-dimensional gravity, 5-dimensional gravity, and 4-
dimensional gravity, respectively. But the corresponding gravi-
tational constants are different. The dimension transition from
ultra high energy region to intermediate energy region occurs at

(14)ρ′
4.5 = 12m6

5

μ2
,

(15)H ′
4.5 = 2m3

5

μ2
,

where have used (11) and (12). Similarly by using (12) and (13),
the transition from intermediate energy region to low energy
region occurs at

(16)ρ4.5 = 2λ,

(17)H4.5 = λ

3m3
5

.

Consider an inflation scalar field φ on the brane with exponen-
tial potential

(18)V = Ṽ e
−√

2/p
φ
μ ,

where Ṽ and p are two constants. Introduce

(19)u = V

ρ0
.

Recall the numerical example given in [7], η = 0.99, μ2 =
0.01m2

p ∼ (1017 GeV)2, e-folds of the inflation N = 60, p =
50, the value of u when the inflation ends uend = 0.05, the value
of u when the cosmic scale observed today crosses the Hubble
horizon during inflation ui = 36, λ

μ4 = 6.7×10−12, m5
μ

= 0.02,
(5)Λ

μ2 = 6.7 × 10−14.
Now we check the inflationary process of this example. First,

(20)
λμ2

6m6
5

= 0.017 � 1,
hence the evolution of the universe really undergoes 4-dimen-
sional stage, 5-dimensional stage, and then the other 4-dimen-
sional stage. Second,

(21)ui = 36 � 1,

therefore the universe inflates in a 4-dimensional stage when the
cosmic scale observed today crosses the Hubble horizon during
inflation. Finally

(22)uend = 0.05 � 1,
ρ

m4
λ

= 58.3 � 1,

hence the inflation phase exits in a 5-dimensional stage.
Then, in the model without curvaton field, the universe en-

ters a kinetic period, in which the energy density decreases very
fast, which soon restores the universe to be a 4-dimensional
again before nucleosynthesis. But, as we have mentioned, such
a scenario brings several serious problems because the gravita-
tional particle production is far from efficient.

3. The curvaton reheating

In this section we shall explore the permitted parameter re-
gion of the curvaton field which is responsible for particle pro-
duction and for the structure formation.

3.1. The dynamics of the curvaton field

Curvaton is a new mechanism for the primordial curvature
perturbation generation suggested in literatures in recent years.
In contrast with the usual inflaton reheating process, the infla-
ton need not roll slowly. The inflation and reheating are charged
by different fields, such that many hopeful inflation models sur-
vive. We here assume that the inflaton has no interactions with
inflaton except the gravitational coupling. Hence, similar to the
inflaton, the equation of motion of curvaton field σ can be writ-
ten as

(23)σ̈ + 3Hσ̇ + U ′(σ ) = 0.

For simplicity, we assume U(σ) = 1
2m2σ 2. We start to give

a brief description of the dynamical evolution of the curvaton
field. First, the curvaton coexists with the inflaton field through-
out the inflationary phase, during which the inflaton energy
density dominates the energy density of curvaton. Because the
curvaton is effectively massless before oscillation, σ keeps at its
initial value σi , where the subscript i denotes the value when the
cosmic scale observed today crosses the Hubble horizon during
inflation [10]. The next stage begins when the curvaton field be-
comes to oscillate, and this should happen at the kinetic epoch,
otherwise its fluctuation can be suppressed by the fluctuation of
inflaton.

For the sake of preventing a stage of curvaton-driven infla-
tion, the universe must be still dominated by inflaton till this
time. This condition imposes a constraint on the initial values
the curvaton field. In this period the curvaton evolves as pres-
sureless dust because its mean kinetic energy equals the mean
potential energy. From (23) we see the curvaton becomes to
oscillate when H � m, while the universe can be effectively
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5-dimensional or 4-dimensional. According to our assumption
the universe is still dominated by inflaton, which behaves as
stiff matter in kinetic epoch. Therefore we obtain, for the case
of oscillating in 5-dimensional stage

(24)m/Hkin = a6
kin/a

6
osc,

where kin stands for the value when the universe exits from
the inflationary phase and enters the kinetic energy dominated
epoch. And for the case of oscillating in 4-dimensional stage

(25)m/Hkin = a6
kin

a6
4.5

a3
4.5

a3
osc

,

where 4.5 stands for the transition point from a 5-dimensional
stage to a 4-dimensional stage. In the oscillating period the en-
ergy density of the curvaton field evolves as dust,

(26)ρσ = ρσia
3
osc/a

3,

where ρσi = m2σ 2
i /2. The third stage is that of curvaton de-

cay into radiation, which happens when the decay parameter
Γ = H . Here we adopt a sudden decay approximation, which
is a quite good approximation in curvaton models [14]. We see
there are three free parameters of the curvaton field: the initial
value of the field σi ; the mass m; and the decay energy scale Γ .

If the curvaton oscillates in 5-dimensional stage, it may de-
cay in 5-dimensional stage or 4-dimensional stage. If the cur-
vaton oscillates in 4-dimensional stage, it must also decay in 4-
dimensional stage. Hence there are three cases: (1) oscillation in
5-dimensional stage, decay in 5-dimensional stage; (2) oscilla-
tion in 5-dimensional stage, decay in 4-dimensional stage; and
(3) oscillation in 4-dimensional stage, decay in 4-dimensional
stage. Each of the three cases includes two subcases to be con-
sidered, depending whether the curvaton field decays before or
after it becomes the dominant component of the universe. In the
following subsections we shall discuss these cases one-by-one.

3.2. Case 1: oscillation and decay in 5-dimensional stage

In this subsection we present the constraints on the parame-
ter space of the curvaton in the case of the curvaton oscillates
and decays in 5-dimensional stage. First, we should ensure that
the inflaton dominates the evolution of the universe when the
curvaton starts to oscillate, which implies

(27)
ρσ

ρφ

∣∣∣∣
osc

< 1,

where

(28)ρσ = ρσi = m2σ 2
i /2,

since we have assumed the σ is effectively a constant before
oscillation, and by using (12),

(29)ρφ = 6m3
5m.

So we obtain

(30)mσ 2
i < 12m3

5.
There are two subcases in this case depending the curvaton
dominates the universe before or after decay. First, we study
the curvaton begins to dominate the universe before decay. The
events sequence is as follow: the curvaton starts to oscillate,
the energy density of curvaton σ equals the energy density
of inflaton φ, the curvaton decays, the universe transits from
5-dimensional phase 4-dimensional phase, the nucleosynthesis
happens. One can translate this sequence into equation

(31)m > Heq1 > Γ > H4.5 > Hnuc,

where Heq1 denotes the value of the Hubble parameter when
the density of curvaton equals the density of inflaton in 5-
dimensional stage, Hnuc = 10−41mPl denotes the value of the
Hubble parameter when nucleosynthesis happens. The energy
density of inflaton evolves as

(32)ρφ = ρkin
a6

kin

a6
= 6m3

5Hkin
a6

kin

a6
.

So we obtain

(33)
ρσ

ρφ

∣∣∣∣
a=aeq1

= mσ 2
i

2

a3
osc

a3
eq

1

6m3
5

a6
eq1

a6
kin

= 1,

which yields

(34)Heq1 = σ 4
i

4

m3

36m6
5

,

where we have used

(35)
m

Hkin

a6
osc

a6
kin

= 1,

and

(36)Heq1 = Hkin
a6

kin

a6
eq1

.

Here eq1 labels the time when the density of curvaton equals
the density of inflaton in 5-dimensional stage. And then (31)
becomes

(37)m >
σ 4

i

4

m3

36m6
5

> Γ >
λ

3m3
5

> Hnuc.

Because of transitivity (37) is a fairly strong constraint on m,
Γ , and σi , which includes

(38)m >
σ 4

i

4

m3

36m6
5

,

(39)m > Γ,

(40)m >
λ

3m3
5

,

(41)m > Hnuc,

(42)
σ 4

i

4

m3

36m6
5

> Γ,

(43)
σ 4

i

4

m3

36m6
>

λ

3m3
,

5 5
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(a) (b)

Fig. 1. The subcase decay after domination of case 1. In this and all the following figures we adopt the numerical example of the parameters in warped DGP model

given in [7], where η = 0.99, μ2 = 0.01m2
p ∼ (1017 GeV)2, λ

μ4 = 6.7×10−12, m5
μ = 0.02,

(5)Λ

μ2 = 6.7×10−14, and the shadowed region represents the permitted

region. (a) y versus x, in which we take z = −3. (b) z versus x, in which we take y = −3.
(44)
σ 4

i

4

m3

36m6
5

> Hnuc,

(45)Γ >
λ

3m3
5

,

(46)Γ > Hnuc,

(47)
λ

3m3
5

> Hnuc.

Note that (30) is just (38). They represent the same relation be-
tween ρφ and ρσ to be compared at different times.

We plot a figure to display the parameter space permitted
clearly, in which we will use the numerical example in [7]. In
this example

(48)
λ

3m3
5Hnuc

= 3 × 1034 > 1,

hence Eqs. (38)–(47) reduce to

(49)m >
σ 4

i

4

m3

36m6
5

,

(50)m > Γ,

(51)m >
λ

3m3
5

,

(52)
σ 4

i

4

m3

36m6
5

> Γ,

(53)
σ 4

i

4

m3

36m6
5

>
λ

3m3
5

,

(54)Γ >
λ

3m3
5

.

Define

(55)x = log
m

μ
,

(56)y = log
σi

,

μ

(57)z = log
Γ

μ
.

Substitute the values of the parameters in warped DGP model
in this example, (49)–(54) become

(58)x + 2y < −4,

(59)x > −6.55,

(60)x > z,

(61)4y + 3x > z − 8.16,

(62)4y + 3x > −14.6,

(63)z > −6.55,

respectively. We show the permitted parameter region in Fig. 1.
Now we turn to subcase 2: curvaton dominates the universe

after decay. The event sequence is slightly different from the
above subcase: the curvaton starts to oscillate, the curvaton de-
cays, the energy density of curvaton σ equals the energy density
of inflaton φ, the universe transits from 5-dimensional phase 4-
dimensional phase, the nucleosynthesis happens, or by equation

(64)m > Γ > Heq1 > H4.5 > Hnuc.

Just mimicking the discussion of the last subcase, we plot the
permitted parameter region in Fig. 2.

3.3. Case 2: oscillation in 5-dimensional stage,
decay in 4-dimensional stage

In this subsection we deduce the constraints on the parame-
ter space of the curvaton in the case of the curvaton oscillates
in 5-dimensional stage, but decays in 4-dimensional stage. The
condition that the inflaton dominates the evolution of the uni-
verse when the curvaton starts to oscillate is the same as in last
case, which is just (30).

This case also include two subcases depending the curvaton
dominates the universe before or after decay. First, we study
the curvaton begins to dominate the universe before decay. The
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(a) (b)

Fig. 2. The subcase decay after domination of case 1. (a) y versus x, in which we take z = −3. (b) z versus x, in which we take y = −3.

(a) (b)

Fig. 3. The subcase decay after domination of case 2, where the energy density of curvaton equals the energy density of inflaton happening in 5-dimensional stage.
(a) y versus x, in which we set z = −10. (b) z versus x, in which we set y = −2.
events sequence is as follow: the curvaton starts to oscillate,
the universe transits from 5-dimensional phase 4-dimensional
phase, the energy density of curvaton σ equals the energy den-
sity of inflaton φ, the curvaton decays, the nucleosynthesis
happens; or the curvaton starts to oscillate, the energy den-
sity of curvaton σ equals the energy density of inflaton φ,
the universe transits from 5-dimensional phase 4-dimensional
phase, the curvaton decays, the nucleosynthesis happens. One
can translate the sequences into equation

(65)m > Heq1 > H4.5 > Γ > Hnuc,

or

(66)m > H4.5 > Heq2 > Γ > Hnuc,

where eq2 labels the value of a variable when the density of
curvaton equals the density of inflaton in latter 4-dimensional
stage, while the curvaton begins to oscillate in 5-dimensional
stage. We demonstrate the numerical result of (65) in Fig. 3,
with the same parameters of the warped DGP model in the
above case.
To investigate (66) we need to find Heq2 in advance. Under
this situation the curvaton red shifts as

(67)ρσ = ρσi

a3
osc

a3
4.5

a3
4.5

a3
,

and inflaton red shifts as

(68)ρσ = 6m3
5Hkin

a6
kin

a6
4.5

a6
4.5

a6
.

The Hubble parameter evolves as

(69)H = Hkin
a6

kin

a6
4.5

a6
4.5

a6
.

The energy density of curvaton equals the energy density of
inflation when a = aeq2, which means

(70)
ρσ

ρφ

∣∣∣∣
a=aeq2

= 1,

hereby we derive

(71)Heq2 = mσ 2
i

12m3

√
λm

3m3
,

5 5
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(a) (b)

Fig. 4. The subcase decay after domination of case 2, where the energy density of curvaton equals the energy density of inflaton happening in 4-dimensional stage.
(a) y versus x, in which we set z = −10. (b) z versus x, in which we set y = −4.

(a) (b)

Fig. 5. The subcase decay after domination of case 2. (a) y versus x, in which we set z = −10. (b) z versus x, in which we set y = −4.
where we have used (35), which is still valid because the cur-
vaton oscillate in 5-dimensional stage. From now on we follow
the same program in case 1. (66) converts to ten equations:

(72)m >
λ

3m3
5

,

(73)m >
mσ 2

i

12m3
5

√
λm

3m3
5

,

(74)m > Γ,

(75)m > Hnuc,

(76)
λ

3m3
5

>
mσ 2

i

12m3
5

√
λm

3m3
5

,

(77)
λ

3m3
5

> Hnuc,

(78)
λ

3m3
5

> Γ,

(79)
mσ 2

i

12m3

√
λm

3m3
> Γ,
5 5
(80)
mσ 2

i

12m3
5

√
λm

3m3
5

> Hnuc,

(81)Γ > Hnuc.

We show the permitted parameter region of the curvaton field
in this subcase in Fig. 4.

The other subcase is that the curvaton starts to dominate the
universe after decay, which means,

(82)m > H4.5 > Γ > Heq2 > Hnuc.

Completely following the same procedures of the above sub-
case, we draw Fig. 5 to show the permitted region of this sub-
case.

3.4. Case 3: oscillation and decay in 4-dimensional stage

Surely, the curvaton can oscillate and decay after the uni-
verse arriving at the 4-dimensional phase. First we study the
condition that the universe is dominated by inflaton when the
curvaton starts to oscillate. In this latter 4-dimensional stage,
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the energy density of inflation red shifts according to (13),

(83)ρφ = 18m6
5

λ
H 2.

Hence

(84)
ρσ

ρφ

∣∣∣∣
H=m

< 1,

from which we derive

(85)σ 2
i <

36m5

λ
,

where we have used ρσ = m2σ 2
i /2. Therefore we can directly

get the constraint on the initial value of the curvaton if it oscil-
lates and decays in a 4-dimensional stage.

Also, there are two subcases: one is that the curvaton dom-
inates the universe before decay; the other is that the curvaton
dominates the universe after decay. The events sequence of the
former subcase: the curvaton starts to oscillate, the universe
transits from 5-dimensional phase 4-dimensional phase, the en-
ergy density of curvaton σ equals the energy density of inflaton
φ, the curvaton decays, the nucleosynthesis happens. The se-
quence of Hubble parameters is

(86)H4.5 > m > Heq3 > Γ > Hnuc,

where eq3 stands for the value of a variable when the density of
curvaton equals the density of inflaton in latter 4-dimensional
stage, at the same time the curvaton also begins to oscillate in
4-dimensional stage. The energy density of the curvaton field
decreases as (26). And the energy density of the inflaton field
decreases as

(87)ρφ = ρ4.5
a6

4.5

a6
.

At the equality point,

(88)
ρσ

ρφ

∣∣∣∣
a=aeq3

= m2σ 2
i

2ρ4.5

a3
osc

a3
4.5

a3
eq3

a3
4.5

= 1.

Substitute

(89)
a3

osc

a3
= H4.5

m
,

4.5
(90)
a3

eq3

a3
4.5

= H4.5

Heq3
,

in (88), we obtain

(91)Heq3 = mσ 2
i

2ρ4.5
H 2

4.5 = mσ 2
i

36

λ

m6
5

,

where we have used (16) and (17). So (86) yields

(92)
λ

3m3
5

> m,

(93)
λ

3m3
5

>
mσ 2

i

36

λ

m6
5

,

(94)
λ

3m3
5

> Γ,

(95)
λ

3m3
5

> Hnuc,

(96)m >
mσ 2

i

36

λ

m6
5

,

(97)m > Γ,

(98)m > Hnuc,

(99)
mσ 2

i

36

λ

m6
5

> Γ,

(100)
mσ 2

i

36

λ

m6
5

> Hnuc,

(101)Γ > Hnuc.

Note that (85) is also just (96). They represent the same rela-
tion between ρφ and ρσ to be compared at different times. With
the same discussions used before and by the same group of pa-
rameters of warped DGP model, we obtain Fig. 6 to show the
permitted parameter region of the curvaton in this subcase.

The events sequence of the latter subcase: the curvaton starts
to oscillate, the universe transits from 5-dimensional phase
4-dimensional phase, the curvaton decays, the energy density
(a) (b)

Fig. 6. The subcase decay after domination of case 3. (a) y versus x, where we fix z = −10. (b) z versus x, where we fix y = 1.



H. Zhang, Z.-H. Zhu / Physics Letters B 641 (2006) 405–414 413
(a) (b)

Fig. 7. The subcase decay before domination of case 3. (a) y versus x, where we fix z = −10. (b) z versus x, where we fix y = −5.
of curvaton σ equals the energy density of inflaton φ, the nu-
cleosynthesis happens. The sequence of Hubble parameters is

(102)H4.5 > m > Γ > Heq3 > Hnuc.

We also show the permitted parameter region of curvaton in
this subcase in Fig. 7. From Figs. 1–7 we see that generally
speaking if the curvaton oscillates in a 5-dimensional stage the
permitted region of m,σi is open for the value of x can be arbi-
trarily large if y is small enough, while if the curvaton oscillates
in a 4-dimensional stage the permitted region of m,Γ is close.
In contrast with the permitted region of m,σ , the permitted re-
gion of m,Γ always keeps close. So the permitted parameter
region of the curvaton is much more ample when it oscillates
in the 5-dimensional stage than in the 4-dimensional stage, that
is, a reasonable curvaton model is much easier if the curvaton
becomes to oscillate in the 5-dimensional stage.

In all of these cases there exists viable curvaton model satis-
fying the requirements such as a enough high reheating energy
scale, sufficient particle generation mechanism for nucleosyn-
thesis (comparing to “gravitational production mechanism”).

4. Conclusion and discussion

The inflation model on DGP brane is of very interest and
attraction because the universe can exit the inflationary phase
spontaneously without any additional mechanism for an expo-
nential potential, which is generally a serious problem for the
ordinary inflation model with an exponential potential. How-
ever, this model suffer from the problem that the particles gener-
ated by gravitation is far from efficiency when nucleosynthesis
happens.

In this Letter we investigate the curvaton mechanism in
warped DGP model. We find it can hurdle the inefficient particle
production problem with fairly ample parameter regions. Be-
cause the curvaton may oscillates and decay in a 5-dimensional
stage or 4-dimensional stage, we discuss the 3 cases, say, oscil-
lation in 5-dimensional stage, decay in 5-dimensional stage; os-
cillation in 5-dimensional stage, decay in 4-dimensional stage;
and oscillation in 4-dimensional stage, decay in 4-dimensional
stage, respectively. We plot figures for every case to show per-
mitted parameter regions clearly.

Other constraints on the parameter of the curvaton field,
such as the fluctuations for structure formation generated by
the curvaton and the primordial gravitational wave etc., should
be further studied in the future work.
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