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Mice over-expressing salmon calcitonin have strongly attenuated osteoarthritic
histopathological changes after destabilization of the medial meniscus
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Objective: Calcitonin is well-known for its inhibitory actions on bone-resorbing osteoclasts and recently
potential beneficial effects on cartilage were shown. We investigated effects of salmon calcitonin (sCT) on
the articular cartilage and bone, after destabilization of the medial meniscus (DMM) in normal and sCT
over-expressing mice.
Design: Bone phenotype of transgenic (TG) C57Bl/6 mice over-expressing sCT at 6 months and 12 months
was investigated by (1) serum osteocalcin and urinary deoxypyridinoline and (2) dynamic and normal
histomorphometry of vertebrae bodies. In subsequent evaluation of cartilage and subchondral bone
changes, 44 10-week old TG or wild-type (WT) mice were randomized into four groups and subjected to
DMM or sham-operations. After 7 weeks animals were sacrificed, and knee joints were isolated for
histological analysis.
Results: Trabecular bone volume (BV/TV) increased 150% after 6 months and 300% after 12 months in
sCT-expressing mice when compared to WT controls (P< 0.05). Osteoblast number, bone formation rate
and osteocalcin measurements were not affected in TG mice over-expressing sCT. In WT animals, a 5-fold
increase in the quantitative erosion index was observed after DMM, and the semi-quantitative OARSI
score showed over 400% (P< 0.001) increase, compared to sham-operated WT mice. DMM-operated TG
mice were protected against cartilage erosion and showed a 65% and 64% (P< 0.001) reduction,
respectively, for the two histopathological evaluation methods.
Conclusions: sCT over-expressing mice had higher bone volume, and were protected against cartilage
erosion. These data suggest that increased levels of sCT may hamper the pathogenesis of osteoarthritis
(OA). However more studies are necessary to confirm these preliminary results.

� 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Hallmarks of osteoarthritis (OA) are progressive degeneration of
articular cartilage, changes in the subchondral bone compartment,
and subsequent joint space narrowing. Experimental and clinical
observations suggest that the structural integrity of articular
cartilage is dependent on normal subchondral bone turnover, intact
chondrocyte function and ordinary biomechanical stresses1,2.
Because there is a strong inter-relationship between the sub-
chondral bone and the articular cartilage, an ideal therapeutic
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agent might logically be directed at regulating the metabolic
activity of both bone and cartilage.

Calcitonin is a natural peptide hormone produced by paraf-
ollicular C-cells in the thyroid gland3,4. Calcitonin was discovered
more than 40 years ago5, and possesses potent anti-resorptive
effects, which by Chambers et al. was shown to be mediated by
direct binding of calcitonin to the calcitonin receptor (CTR) on the
osteoclasts6. Recently, much attention has been drawn to the sug-
gested effect of calcitonin on chondrocytes in addition to that on
osteoclasts7e9. A range of studies has documented that salmon
calcitonin (sCT) is associated with a shift in chondrocyte phenotype
from a catabolic to an anabolic state. The initial study by Hellio et al.
demonstrated that calcitonin dose-dependently inhibited collage-
nase and phospholipase A2 activity in isolated human OA articular
chondrocytes cultured in vitro10. Others studies have shown
anabolic effects of sCT under various settings in different types of
ublished by Elsevier Ltd. All rights reserved.
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articular cartilage11e13. Interestingly, in other experimental
settings, calcitonin has been shown to stimulate growth and
maturation of hypertrophic chondrocytes and cartilage matrix
formation in pelvic cartilage from avian embryos14,15. Subsequently,
the CTR in articular chondrocytes was identified9 which may, in
part, explain some of these pharmacological effects.

The effect of calcitonin has also been investigated in various
in vivo models of cartilage degradation9,16e21. These principal
experiments have provided important evidence for beneficial
effects of calcitonin on both bone and cartilage by inhibiting the
progression of OA, thus emphasizing calcitonin as a potential dual
action treatment of OA8. However, all these experiments have been
performed with either a nasal or oral pharmacological formulation,
in which exposure was not reported. The effect of systemic
continuous exposure has not been investigated. This is a critical
distinction in the case of parathyroid hormone (PTH), which
displays anabolic effects on bone when given intermittently, but
catabolic and bone degrading effects with sustained increased
exposure22. As both the PTH receptor and the CTR are type II G
protein-coupled receptors, it is highly relevant to investigate how
exposure patterns may result in divergent pharmacological effects,
or whether exposure is directly proportional to efficacy. Further-
more, loss of functionality might be observed, as the CTR is known
to be internalized after prolonged stimulation in vitro23.

This study was performed to describe the bone phenotype and
histomorphometric characteristics of the sCT over-expressing
transgenic (TG) mice and to assess the effects on subchondral
bone and articular cartilage of continuous systemic exposure to sCT
in an OA pre-clinical model. Mice over-expressing sCT were bred
and subjected to destabilization of the medial meniscus (DMM),
which has previously been used as an appropriate traumatic OA
model24,25 and in pre-clinical murine models of OA26e28.

Methods

Generation of TG mice

Mice over-expressing sCT, hereafter referred to as ApoE-sCT
mice, were generated by injection of a construct into blastocysts of
C57Bl/6 mice, where the complete open reading frame (ORF)
encoding sCT was placed under the control of the apolipoprotein
E (ApoE) promoter and liver-specific enhancer29. To ensure
proteolytic processing by furin-like proteases and C-terminal ami-
dation by peptidylglycine alpha-amidating monooxygenase two
mutations were introduced into the sCT-encoding cDNA according
to Takahashi et al.30

Of the TG mice bred using this methodology, six animals aged
6 months and a further six aged 12 months were used for the
following investigations. Genotyping was performed by Southern
Blotting using the SV40-pA as a probe. The same probe was used to
monitor expression of the transgene in various tissues by Northern
Blotting. Circulating serum levels of sCT were determined by ELISA
(Diagnostic Systems Laboratories, Webster, Texas, US) and the
endogenous mouse calcitonin levels were measured using radio-
immunoassay (Immutopics, San Clemente, CA, US). Ethical
Approval was obtained from the Amt für Gesundheit und Ver-
braucherschutz (09/03), Germany.

Biochemicalmarkers of bone metabolism

Serum concentrations of osteocalcin were quantified using
radioimmunoassay (Immutopics, San Clemente, CA, US). To quan-
tify osteoclastic bone resorption, we measured the urinary excre-
tion of deoxypyridinoline (Dpd) cross-links using the Pyrilinks-D
ELISA (Metra Biosystems, Santa Clara, CA, US). Values are expressed
relative to creatinine concentrations as determined by a standard-
ized colorimetric assay using alkaline picrate (Metra Biosystems,
Santa Clara, CA). To rule out that observed differences are caused by
diurnal variations, mice were generally sacrificed between 10 AM
and noon after fasting.

Bone histomorphometry

Mice were sacrificed at 6 and 12 months of age, and the
dissected skeletons were fixed in 3.7% PBS-buffered formaldehyde
for 18 h, before they were stored in 80% ethanol. All skeletons were
first analyzed by contact radiography using a Faxitron X-Ray
cabinet (Faxitron X-Ray Corp., USA). For histology, the lumbar
vertebral bodies L1 to L4 and one tibia of each mouse were dehy-
drated in ascending alcohol concentrations and then embedded in
methylmetacrylate as described previously31. Sections of 4 mm
thicknesses were cut in the sagittal plane on a Microtec rotation
microtome (Techno-Med GmbH, Germany). These were stained by
toluidine blue and von Kossa/van Gieson-staining procedures as
described31. Histomorphometry, including the determination of
cortical thickness, was performed according to the ASBMR guide-
lines using the OsteoMeasure histomorphometry system (Osteo-
metrics Inc., USA)32. All parameters of static, cellular and dynamic
histomorphometry were measured in two vertebral bodies (L3 and
L4) for each animal, and the mean value was used for statistical
analysis. Fluorochromemeasurements for the determination of the
bone formation rate were performed on two non-consecutive
12 mm-sections for each animal.

DMM model

Animals, housing, diet
The animals were housed in cages placed in Scantainer-plus

both from Scanbur (Karlslunde, DK) at approximately 21e23�C
and 55e65% relative humidity, and a 12 h light/dark cycle was
maintained. Each individual cage had 530 cm2

floor area, 1284 L EU
standard type II L (Scanbur, Karlslunde, DK) with Tapvei 4HV
bedding and as nest material Enviro-Dri (Brogaarden, Lynge, DK)
along with two paper tissues and all cages were further equipped
with a triangular red colored plastic mouse house (Tecniplast,
Buguggiate, IT) and a 10�10� 50 mm aspen wood gnawing stick
(Brogaarden, Lynge, DK). Onlymice from the same litter of the same
sex were housed in each cage, and maximum four male mice per
cage. Food and water intake was allowed ad libitum, Altromin 1324
and 5e7 dried corn per mouse per week (Brogaarden, Lynge, DK).
The animal welfare was checked daily, and the cages were cleaned
once a week.

Microsurgery and study design

The experimentwas conducted in parallel as themicewere born
and the mice were weaned after 3 weeks, tagged, and blood
samples were collected for genotyping, please see Fig. 1. The
animals were randomly allocated to either the sham or DMM
group. Prior to DMM or sham surgery, circulating serum levels of
sCT were measured by an in-house biochemical ELISA to distin-
guish ApoE-sCT mice from wild-type (WT). Microsurgery was per-
formed to introduce joint instability by DMM, using methodology
previously described by Glasson et al., 200724 or a sham operation
in ApoE-sCT mice and controls. The experiment was approved by
the ethics committee of the Danish Ministry of Justice and con-
ducted in accordance with the European Standard for Good Clinical
Practice (2008/561-1450). With mice under isofluran/CO2 anes-
thesia, the knee joints were shaved free of fur, cleaned with chlo-
rhexidin, and 2e4 drops of local anesthesia Xylocain were added



Fig. 1. Timeline and design of the experimental study.
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before the joints were opened using a scalpel. The medial menis-
cotibial ligament was transected where it anchors to the anterior
tibial plateau using a syringe needle under a microscope, and the
meniscus body was left intact to move freely. Please see Fig. 2 for an
illustration of the mouse joint. The wound was stitched by 0/8
vicryl suture and the skin closed by 3M Vetbond tissue adhesive
(3M, Minnesota, US). The mice received Rimadyl� (carprofen) for
pain relief after the operation and the two following days and the
mice were observed daily. The DMM operation was performed
bilaterally to avoid compensatory locomotion from the mouse.

A total of 44 male and female mice at 10 weeks of age were
operated on as follows: (1) WT sham-operated (n¼ 11), (2) WT
DMM (n¼ 11), (3) ApoE-sCT sham-operated (n¼ 10), (4) ApoE-sCT
DMM (n¼ 11). One mouse in the ApoE-sCT sham group died during
the study period. The distributions of male and female mice were
50% in each group. Seven weeks after surgery, all animals were
terminated. The right knee joint was collected for histological
purposes and fixed in 4% formaldehyde.

Histology

The formaldehyde-fixed knee joints were subsequently decal-
cified in 15% ethylenediaminetetraacetic acid (EDTA) and 0.3%
formaldehyde and paraffin-embedded. The joints were sliced into
5 mm sections from the frontal plane towards the back and moun-
ted on Superfrost plus glass (Thermo Scientific, Rockford, IL, US).
After deparaffinization, all the serial sections were stained using
Safranin’O and Fast green. Subsequently, the sections were dehy-
drated and mounted with Pertex and a covering glass. All sections
were examined microscopically and the single section used for
histological scoring representing the central weight-bearing region
of the tibial plateau was selected based on the presence of the
cruciate ligament and anatomy of the lateral meniscus. Histographs
were captured on a 60� Olympus microscope equipped with
a camera at 2� magnification.

Scoring of cartilage erosion

The same observer scored cartilage erosion and was blinded
from treatment codes. For the quantitative erosion index, the
length of eroded articular cartilage surface was measured and
divided by the total length of the articular cartilage surface. The
index has previously been validated as a measure of OA progres-
sion, although this was in the ovariectomized (OVX) rat model33.
Fig. 2. The anatomy of a mouse joint. Histological section of a mouse knee joint stained
by Safranin’O and Fast green.
Additionally, the newly developed semi-quantitative scoring
system for murine OA characteristics34, the OARSI score (Table I),
was applied. The two applied scores, the erosion index and OARSI
score were used for the evaluation of all four condyles of the knee
joint: medial tibial plateau, medial femoral condyle, lateral tibial
plateau, and lateral femoral condyle, see Fig. 2.

Statistics

The effect of operation and sCT on cartilage erosion was statis-
tically analyzed using a two-tailed non-parametric ManneWhitney
U test in the GraphPad Prism program. Only independent obser-
vations were used.

Results

Characterization of the ApoE-sCT mice

TG mice were generated to express bioactive sCT under the
control of the ApoE promoter and liver-specific enhancer, as shown
in [Fig. 3(A)]. The initial characterization of the TG mice by
Northern blotting using the SV40-pA probe revealed that the gene
was only expressed in the liver [Fig. 3(B)]. The circulating levels of
sCT in the TGmice were in the range of 800 pg/mL, about eight-fold
higher than the mouse calcitonin levels in WT mice [Fig. 3(C)].

Increased bone mass in ApoE-sCT mice

Since one of the well-established effects of calcitonin is its
inhibitory action on bone-resorbing osteoclasts6, an extensive bone
histomorphometric analysis was performed to establish the bone
phenotype of the TG mice. Figure 4(A) shows the non-decalcified
von Kossa/van Gieson-stained bone sections of the vertebral
bodies, and Fig. 4(B) shows the results of the histomorphometric
quantification. The trabecular bone volume (BV/TV) of TG mice was
more than 100% greater than that of WTmice (P< 0.05), at the ages
of 6 and 12 months. Additionally, the trabecular number (Tb.N.) and
thickness was increased in the TG mice compared toWT (P< 0.05).
Accordingly, the trabecular spacing was significantly decreased by
50% and 70%, respectively.

As expected, histomorphometry analysis in mice aged 6 months
revealed a significantly decreased osteoclast number but normal
The OARSI scoring system for murine OA

Grade Osteoarthritic damage

0 Normal
0.5 Loss of Safranin’O without structural changes
1 Small fibrillations without loss of cartilage
2 Fibrillation down to the layer immediately below the superficial layer

and some loss of surface lamina
3 Fibrillation/erosion to the calcified cartilage extending to <25% of the

width of articular surface
4 Fibrillation/erosion to the calcified cartilage extending to 25e50%

of the width of articular surface
5 Fibrillation/erosion to the calcified cartilage extending to 50e75%

of the width of articular surface
6 Fibrillation/erosion to the calcified cartilage extending >75% of the

articular surface



Fig. 3. Generation of ApoE-sCT TG mice. (A) Schematic representation of the injected
sCT construct. (B) Northern Blot expression analysis with the SV40-pA probe revealed
liver-specific expression. (C) ELISA determination of sCT and endogenous mouse CT
serum concentrations in TG and WT mice. Not detectable, n.d.
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bone formation rate (Table II). As presented in Table II, histo-
morphometric quantification of the osteoblast number (NOb/BPm)
and function (BFR/BS), together with the determination of serum
osteocalcin, revealed that bone formationwas not affected in ApoE-
sCT TG mice. In contrast, a decreased number of osteoclasts (NOc/
BPm) and a reduced level of urinary Dpd cross-links, used as a bone
degradation biochemical marker, were observed when the values
were normalized to the increased bone mass.
ApoE-sCT mice are protected against OA progression

Pictures of representative sections of Safranin’O stained knee
joints were used for histopathological evaluation [Fig. 5(A)]. The
erosion index, in which the length of the eroded surface was
divided by the total length of the articular surface, showed WT
animals undergoing DMM had massive proteoglycan loss. Their
erosion index was 5-fold higher (P< 0.001) than that of sham-
operated controls. The DMM-operated ApoE-sCT TG mice,
however, showed a 65% reduction in erosion, P< 0.001, compared
to DMM-operated WT [Fig. 5(B)].

The OARSI semi-quantitative scoring system for murine OA
models showed that in WT animals, DMM resulted in a 400%
(P< 0.001) increase in histopathological changes compared to
sham-operated mice [Fig. 5(C)]. For the DMM-operated TG mice,
only a 20% non-significant increase in OARSI score was observed
compared to TG sham-operated. However, in DMM-operated TG
mice, histopathological changes was 64% less (P< 0.001) than in
the DMM WT group.

Discussion

At present there are no disease-modifying drugs available for
OA, although a number of compounds are currently under clinical
investigation35. These compounds include aggrecanase inhibitors,
interleukin-1 (IL-1) antagonists, selective estrogen-receptor
modulators (SERMs), inducible nitric oxide synthase (iNOS) inhib-
itors, tissue inhibitor of metalloproteinases (TIMPs), and various
MMP-13 inhibitors. This list gives an indication of the difficulty in
finding an effective treatment.

Complicating matters further, is the emerging understanding
that different forms and stages of OA are present36, each with its
own distinct pattern of initiation and progression. Consequently,
one treatment may work in one stage of the disease but not in
another. This highlights the need for testing possible intervention
strategies in a range of animal models reflecting the different forms
and stages of OA.

In this study we used TG mice to investigate the effect of
systemic over-expression of sCT on bone remodeling and cartilage
degradation as a function of traumatic induction of OA. Analyses of
bones from TG, but non-operated, mice at both 6 and 12 months of
age clearly showed increased bone volume in the trabecular bone.
Histomorphometry confirmed that this was due to a reduction in
osteoclast function, a finding which is in alignment with previous
studies showing that sCT reduces bone resorption6. The previous
data indicated that osteoclast numbers were reduced, a finding
which was surprising, yet can be explained by a recent study
showing that calcitonin reduces osteoclastogenesis in mouse
osteoclasts37. Interestingly, no changes in bone formation were
observed in the TG mice, despite the suppression of osteoclast
function. We hypothesize that the induction of sclerostin expres-
sion by sCT induced in young rats, leading to reduction of bone
formation, does not occur in these mice38. Although this will have
to be investigated in more detail, there are also indications from
human trials that bone formation is unaffected by sCT treatment,
and thus calcitonin will not fall into the category of molecules
showing a secondary inhibition of bone formation39,40.

In the present study, we used the DMM model in mice since
murine knees develop OA in a process highly similar to that in
humans34 and the model previously has been used to demonstrate
the importance of ADAM-TS5 in murine OA27. We used animals of
10 weeks of age, having the operation for 7 weeks and in the model
described by Glasson et al., 2007 the mice is terminated 8 weeks
post surgery24.While bone natural growth and development at that
age may have influenced the OA parameters, we nonetheless
clearly demonstrated that there was a significant reduction in
cartilage damage in TG ApoE-sCT mice, compared to WT, following
DMM. The reduction we found was in a comparable range of
protection as previously observed using the DMMmodel in ADAM-
TS5 deficient mice27. Previous studies using the DMM model have
showed that male mice developed OA more consistently than
female mice25. For the presented DMM study both female andmale
mice were included in all groups. We observed no difference of
female or male mice in disease progression or severity, as previ-
ously has been described. It might be explained by the housing of
littermates and the environmental enrichments described in the
Methods section, which may have minimized the fighting inci-
dences in the male housing groups.

A limitation of the study is that only one section fromeach animal
was used for the assessment of the histopathological changes. The
basis of the particular section was chosen from evaluation of all
sections retrieved from the mouse joint as being the at the most



Fig. 4. Increased bone mass in TG mice over-expressing sCT. (A) von Kossa/van Gieson-staining of non-decalcified sections from vertebral bodies in ApoE-sCT TG mice at 6 and
12 months of age. Pictures were taken with a 12.5-fold magnification. (B) Quantification of the BV/TV, Tb.N., trabecular thickness (Tb.Th.) and trabecular separation (Tb.Sp.) by static
histomorphometry. Bars represent Mean� SD (n¼ 6).
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weight-bearing region, and the section which had the anatomical
landmarks as described in themethods section. TheOARSI guidelines
recommend scoring of multiple sections. The histopathological
evaluations of the histological sections were carried out by a blinded
observer, which may be considered biased to the transection of the
menisci in the knee joints. As it can be seen in Fig. 5(A) the menisci
was not entirely eliminated but simply transected and still present in
the knee. Besides, in sections from sham animas the menisci were
sometimes absent due to the quality of the sectioning. Furthermore
advantages of the applied scores are that they primarily are quanti-
tative and not biased by subjective qualitative quantifications. The
erosion index is entirely quantitative.



Table II
Characterization of bone phenotype in 6 months old mice

WT (n¼ 6) ApoE-sCT (n¼ 6) P-value

NOb/BPm [mm�1] 24.81 (23.07e26.54) 22.62 (20.47e24.77) 0.073
NOc/BPm [mm�1] 1.10 (0.99e1.21) 0.65 (0.5e0.8) P< 0.001
BRF/BS

[mm3/mm2/y]
187.85 (157.2e218.5) 183.69 (141.2e226.2) 0.843

Serum osteocalcin
[mg/mL]

0.111 (0.088e0.134) 0.104 (0.078e0.130) 0.615

Dpd/Creatinie
[nM/nM]

16.0 (13.02e18.88) 17.9 (13.47e22.36) 0.370

Relative resorption
[ratio Dpd/BV]

1.36 (0.92e1.80) 0.69 (0.51e0.86) P< 0.01

Values are reported as mean (CI 95%), ApoE-sCT: TG mice, NOb/BPm: number of
osteoblasts/bone perimeter, NOc/BPm: number of osteoclasts/bone perimeter, BRF/
BS: bone function, Dpd: urinary Dpd cross-links, BV: bone volume. P-values, WT vs
ApoE-sCT TG mice.
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The anatomy of the mouse knee resembles that of other species
and is only notably different from other mammals by its extreme
miniaturization, the cartilage layer being only 30 mm thick. The
pathology of cartilage degeneration tends to progress rapidly from:
(1) a loss of proteoglycan, to (2) superficial degradation, then
(3) loss of non-calcified tissue extending to regions of full-thickness
loss of non-calcified tissue34.

It is well-known that OA is a highly heterogeneous phenom-
enon41, and that there are both metabolic causes, such as the
menopause, and traumatic causes such as meniscal tears. This
heterogeneity will most likely influence the response to potential
treatments of OA41. Interestingly, sCT has previously been tested in
both traumatic16,18,19 and non-traumatic animal models21,42, where
it, independent of OA model, has shown promise in preventing the
development of OA.
Fig. 5. ApoE-sCT mice are protected against OA progression. (A) Histological knee joint sectio
in WT and ApoE-sCT TG mice using, subjected to either sham or DMM at 10 week of age u
operated (n¼ 10), ApoE-sCT DMM (n¼ 11). All four condyles were evaluated for quantifica
sum of eroded length/sum of total length from all condyle surfaces (%) and (C) the newly
model. The error bars are mean� 95% confidence intervals.
An interesting aspect of treatment of OA with calcitonin is the
potential effect on subchondral bone. It is well-described that
accelerated turnover of this bone, i.e., due to menopause, is
involved in the pathogenesis of OA, ultimately resulting in scle-
rosis2,43e47. The interest in the subchondral bone was further
increased by a recent publication showing that bisphosphonate
treatment, which is known to strongly reduce bone turnover22,
prevented cartilage loss, and importantly also reduces pain in the
affected joints48. These data implicate the subchondral bone as an
important part of the bone pain sensation. Since sCT has been
shown to have musculoskeletal and bone pain-relieving effects49 in
patient with OA39,50, these data suggest that calcitonin through
several different mechanisms may provide benefits in OA patients.

The present study demonstrated that TG mice over-expressing
sCT had higher bone volume, and were protected against carti-
lage damage associated with a traumatic induction of OA. Thus sCT
in this model demonstrated dual activity in protecting both bone
and cartilage. The precise mode of action remains yet to be fully
understood but may be caused by combined effects on bone and
cartilage cells. Validation in long-term clinical settings is needed to
fully assess the potential utility of sCT in treating OA.
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