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Abstract  

We define a symplectic surgery along positively intersecting symplectic surfaces in 4-manifolds, 
the generalized symplectic sum, and prove an existence theorem for the special case of a 3-fold 
sum. With a slight generalization of the 3-fold sum, we show how to sum along immersed surfaces 
and indicate a relation between the sums and algebraic desingularization. We use images of the 
moment map for a torus acting in the neighborhood of intersection points to illustrate when it is 
possible to perform the proposed sums. © 1998 Elsevier Science B.V. All rights reserved. 
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1. I n t r o d u c t i o n  

A smooth manifold M is symplectic if  it is equipped with a nondegenerate closed 

2-form a~. The nondegeneracy of  the form means that its top exterior power is a vol- 

ume form. The existence of  a nondegenerate 2-form implies the existence of  an almost 

complex structure (a complex structure on the tangent bundle). While  any open almost 

complex manifold admits a symplectic structure [8], the only way to show that a closed 

manifold is symplectic is to actually produce a symplectic structure on it. Among the 

methods for constructing symplectic manifolds, some are analogs of  complex algebraic 

operations (blowing up and down, branched covers), some are motivated by topological  

constructions (the symplectic sum, symplectic fibrations) and some are more closely tied 

to symplectic geometry (symplectization and symplectic reduction). 

Since a K~ihler form is closed and nondegenerate, any K~hler manifold is symplectic. 

In 1976 Thurston [23] showed how to put a symplectic structure on a fiber bundle with 
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symplectic fiber and base, in particular on a twisted torus bundle that has bl odd and there- 

fore admits no K~hler structure. (It was later discovered that this example was previously 

known to Kodaira [13].) The first simply-connected example was a 10-dimensional man- 
ifold constructed by McDuff [16] by blowing up C P  5 along a symplectically embedded 

copy of Thurston's manifold (the above-mentioned torus bundle). Recently Gompf [6] 

applied the symplectic sum to produce a myriad of interesting examples, among them a 
simply-connected symplectic 4-manifold that, by calculations of Fintushel and Stern [5], 

is not diffeomorphic to any complex surface. Gompf also used the symplectic sum to 

prove that any finitely presented group can be realized as the fundamental group of a 

symplectic 4-manifold. 
Gromov [10] introduced the notion of a symplectic sum, which topologically is a 

connected sum along codimension 2 submanifolds with anti-isomorphic normal bundles. 

Proofs that the symplectic sum does in fact yield a symplectic manifold were provided 

independently by Gompf [6] and McCarthy and Wolfson [15]. Note that the usual (point- 

wise) topological connected sum of two symplectic manifolds does not in general admit 
a symplectic structure induced from the summands (except in dimension 2 where it is 
a trivial case of the symplectic sum). In particular, in dimension 4 the connected sum 

of two symplectic manifolds admits no almost complex structure, and consequently no 

symplectic structure. 

Gromov [10] had also suggested the possibility of performing a symplectic sum along 
immersed submanifolds with orthogonal intersections. The author defined and studied 
such a generalization for dimension 4 in [22]. In this paper we focus primarily on a 

special case, the 3-fold sum, proving in Section 4 that it is indeed a symplectic operation. 
(Another special case, the 4-fold sum was used by McDuff and the author [19] to show 

the symplectic equivalence of certain 4-manifolds.) 

The motivation for defining the 3-fold sum came from an effort to answer a question of 
Bogomolov [3] as to whether one can define a symplectic analog of algebraic desingular- 

ization. By algebraic desingularization we mean the passage from a degenerate complex 
algebraic hypersurface to a smooth one by a perturbation of its defining equation. We 

show in Section 6.2 that the 3-fold sum does realize the desingularization of the degener- 
ate cubic z~ zzz3 = 0 in C P  3. This degenerate cubic provides a (topological) model for a 

generic triple intersection of algebraic surfaces in an algebraic 3-fold. We conjecture that 
the generalized symplectic sum of the type considered in this paper, together with the 
symplectic sum, can be used to realize the algebraic desingularization of any degenerate 

degree d hypersurface in C P  3 (or in fact any algebraic 3-fold). 

In the next section we define the generalized symplectic sum, and as a warm-up define 
the symplectic sum in such a way that it is clearly a special case of a generalized 
symplectic sum. We also define the 3-fold sum and state the existence theorem we prove 
in Section 4. In Section 3 we collect some useful facts about Hamiltonian torus actions 
and moment maps and describe the model neighborhoods of submanifolds and boundaries 
that we use in our proofs. While torus actions and moment maps are not necessary for 
any of the proofs, the geometric picture one can extract using these notions is quite 
helpful as a guide in these constructions. In Section 6.1 we show how to perform a 
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symplectic surgery along two pairs of  symplectic surfaces among which one surface is 

immersed. When the immersed surface is a sphere, the surfaces of  the other pair cannot 

have the same area and we are forced to modify slightly the definition of  the 3-fold sum 

to one which can increase the total volume. We discuss this modification of  the sum in 

Section 5. 

The constructions described in this paper could be generalized to higher dimensions, 

but we concentrate here on the 4-dimensional case where the triviality of  any complex 

line bundle over a punctured surface simplifies matters. Throughout this paper, unless 

otherwise specified, the reader should assume that surfaces and manifolds are without 

boundary and submanifolds are embedded. 

2. Background and results 

2.1. The symplectic sum 

Consider a pair of  codimension 2 symplectomorphic submanifolds S C (M, ~v) and 

S t C ( M r , J ) ,  Recall that S ,  S t being symplectomorphic means there exists a dif- 

feomorphism ,~/~: (S,~v~) -~ ( S t , ~ c , )  such that ~* (~z , )  = ~ z .  Here the symplectic 

forms ~ s ,  ~vs, are induced by inclusion in M, M q  If M, M t are 4-manifolds, then 

the surfaces S ,  S t are symplectomorphic if they have the same genus and area. 

The symplectic sum of M, M t along S ,  S t is the union of two manifolds with 

boundary. Topologically, it is the union of  M - N ( S )  and M t - N ( S  t) glued along 

their boundaries, where N denotes neighborhood. The identified boundaries constitute 

the gluing locus X C M,  a circle bundle over S = S t. See Fig. 1 where M,  M t are 
diffeomorphic to M - N ( S ) ,  M '  - N ( S ' ) .  

We define the symplectic sum so as to facilitate generalization. The key to our definition 

is to notice that the open manifold (M - S )  U ( M  t - S  t) is symplectomorphic to the 

interior of  a manifold M U M t, well defined up to symplectomorphism, whose boundary 

is diffeomorphic to the union of  the unit normal bundles of S and S t. We call M • M  t the 

associated manifold with boundary. Note that henceforth we do not require that S ,  S t 

lie in different manifolds. 

Fig. 1. A symplectic sum ATI and its gluing locus X. 
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Definition 2.1. Let C = {S,  S ~} be a pair of disjoint embedded symplectic surfaces in 

a symplectic 4-manifold (M, ~) (which need not be connected). Let M be the associated 

manifold with boundary. A closed symplectic manifold (M, ~) is the symplectic sum of 

M along S ,  S ~ if there exists a symplectic embedding ~ : (M - C) ~ M which extends 
to a surjective symplectic immersion ~ :  M ~ M. 

m 

The kernel of the symplectic structure restricted to the boundary 8 M  defines a line 
field whose integral is the characteristic foliation, which in this case is a circle fibration. 

Forming the symplectic sum amounts to identifying the boundary components of M via a 

diffeomorphism (induced by the immersion ~) that respects the characteristic foliations on 

the boundaries and covers a symplectomorphism of the surfaces. Such a diffeomorphism 

can be found whenever S ,  S ~ are symplectomorphic and have anti-isomorphic normal 
bundles. Restricting to dimension 4, this existence statement can be phrased as follows: 

Theorem 2.2 (Gromov [10], McCarthy and Wolfson [15], Gompf [6]). A symplectic sum 

of M along symplectic surfaces S ,  S ~ exists if and only if S ,  ~1 have equal genus and 
area, and k + k ~ = 0 where k, k ~ are the self-intersection numbers of S ,  S ~. 

That the symplectic sum exists when the normal bundles of the submanifolds are trivial 

is clear. The neighborhoods of the submanifolds admit split symplectic structures, and 
the sum can be done fibrewise thanks to the facts that in dimension 2 any annuli of the 

same area (including the punctured disk) are symplectomorphic and that there is an area 
preserving diffeomorphism of any annulus to itself that interchanges the inner and outer 

boundaries. When the normal bundles are twisted a little more care needs to be taken, 
but the topological requirement that the normal bundles be anti-isomorphic still suffices 

for the symplectic sum to exist. 
Because the complement M - X is symplectomorphic to M - ( S  u S~), cutting M 

along X and collapsing the circle fibers on each resulting boundary component yields 

M. This inverse of the symplectic sum is the process of symplectic cutting defined by 
Lerman [14]. The collapsing of the circle fibers is a special case of symplectic reduction. 

The necessity of the symplectic equivalence of S ,  Z ~ is clear since they both must be 
symplectic reductions of the same hypersurface, the gluing locus X = ~(OM). 

Remark  2.3. The ability to sum along submanifolds that are not symplectomorphic de- 
pends upon the ability to deform the symplectic structure on M to make them symplec- 
tomorphic. We discuss the appropriate deformation for dimension 4 in Section 5. I. 

We choose not to form symplectic sums by removing tubular neighborhoods of sym- 
plectomorphic surfaces and identifying collar neighborhoods since the construction would 
then require a deformation of the symplectic structures unless the normal bundles were 
trivial. 



M. Symington / Topology and its Applications 88 (1998) 27-53 31 

2.2. The generalized symplectic and 3-fold sums 

We now define the generalized symplectic sum along surfaces that have orthogonal 
intersections. Note that it suffices for the intersections to be positive, since the surfaces 

can then be perturbed to have orthogonal intersections. The definition is analogous to 

that of the symplectic sum, except now the boundary of the associated manifold M 
has corners along Lagrangian tori. There is one Lagrangian torus for each intersection 

point, hence we call them intersection tori. To form a generalized symplectic sum we 
identify corresponding smooth components of the connected boundary components of 

M. These smooth components are circle bundles over punctured surfaces--the surfaces 
along which we glue, minus any intersection points. Thus the gluing locus X is a singular 

hypersurface whose singular set X0 C X is a union of Lagrangian toil. See Fig. 2. Recall 

that a submanifold L C (M, w) is Lagrangian if the dimension of L is half the dimension 

of M and j r*w  = 0 for the inclusion map jL. We make precise in Definition 3.10 the 
- -  ! 

notion of the manifold with boundary M associated to M - (St U S~) where $1, S 2 
are surfaces that intersect orthogonally at one point. It is a trivial matter to extend this 
definition to the manifold with boundary associated to M - C for a general collection of 

surfaces with orthogonal intersections. 

Definition 2.4. Let C be a collection of intersecting immersed symplectic surfaces in a 
symplectic 4-manifold (M, ~) (which need not be connected). Assume that any intersec- 
tions of the surfaces are symplectically orthogonal. Let M be the associated manifold 

with boundary. A closed symplectic manifold (M, ~) is a generalizedjymplectic sum 

of  M along C if there exists a symplectic embedding ~ : (M - C) --~ M which extends 

to a surjective symplectic immersion ~ : M ~ M. 

The immersion ~ defines the diffeomorphisms between smooth components of the 
boundary of M. If the collection of surfaces consists of a pair of disjoint symplectomor- 
phic surfaces then the generalized symplectic sum is just a symplectic sum. 

In this paper we restrict our attention to generalized symplectic sums in which X0 

consists of one Lagrangian torus and locally there are three smooth components of X 
meeting along the one torus of X0 (or equivalently, such that the preimage ~-1 (X0) 

is a disjoint union of three Lagrangian tori). Fig. 3(a) represents a 3-fold sum, a sum 

of three manifolds (M~, ~ ) ,  i = 1.2, 3, each of which contains a pair of surfaces 

Fig. 2. A generalized symplectic sum and its gluing locus. 
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(a) 

(b) M 

Fig. 3. (a) A 3-fold sum. (b) A generalized symplectic sum. 

Fig. 4. Admissible surfaces for a 3-fold sum. 

Si' ~q- I  that intersect positively at exactly one point and such that for each i (understood 
mod3),  Zi and S~ are symplectomorphic. See Fig. 4. Fig. 3(b) represents a generalized 

symplectic sum of two manifolds, one of which contains an immersed surface, such as 

in Example 6.1. 
We define the 3-fold sum as a special case of  the generalized symplectic sum which 

applies only to collections of three pairs of  surfaces: 

Definition 2.5. Let C be a collection of  three pairs of  symplectic surfaces in a symplectic 
4-manifold (M, ~)  (which need not be connected). A manifold M is a 3-fold sum of  M 

along C if it is a generalized symplectic sum such that ~ -1  (X0) is the disjoint union of 
three intersection toil. 

In Section 4 we examine the configurations of  surfaces for which a 3-fold sum exists. 
The following characterization is convenient: 

Definition 2.6. A collection of  symplectic surfaces C is adm&sible for a 3-fold if they 
can be labeled so that C , 3 = {~i~ ~ i } i ~ l  where 

• Zi ,  N~ are disjoint and diffeomorphic for each i, and 

• there are exactly three (symplectically orthogonal) intersections xj = $1NZ~,  x2 = 
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Then the content of  Theorem 4.1 is that for a 3-fold sum along a collection of  surfaces 

to exist, the surfaces must be admissible and the pairs Si ,  S~ must be symplectomorphic 

with ki + k~ - - 1  for each i, where k~, k~ are the self-intersection numbers of  Si ,  S~. 

The existence theorem is the converse: 

Theorem 2.7 (Symington [22]). Consider a collection C {Si ,  ~ 3 = S~}i= l of symplectic 
surfaces in (M, ~v) which are admissible for a 3-fold sum. I f  for each i the surfaces 
Zi,  S~ are symplectomorphic and ki + k~ = -1 ,  there exists a generalized symplectic 

sum ( M , ~ )  of Al along C, in this case called a 3-fold sum. 

The following is the simplest example of  a 3-fold sum. More interesting examples are 

given in Section 6. Recall that a proper transform of a surface S C M is a surface in 

the class IS] - [E] once a point of  M on S has been blown up and E is the resulting 

exceptional sphere. 

Example 2.8. Let M = M1 U M2 tJ M3 where each Mi = CP2#C--P  2. Consider the 

collection of  surfaces C - 3 = {Li, E i - I } i = l  where Ei C Mi is an exceptional curve and 

L~ ~ [Li] - [E~ 1 is the proper transform of a line in Mi. This collection is admissible 

for a 3-fold sum and Li • Li + E~-i • Ei-1 = - 1 .  If we choose the areas of all the lines 

Li to be the same and of all the exceptional spheres E~ to be half that area, then the 

pairs Li, E i - i  are symplectomorphic for each i and we can form the 3-fold sum along 

C. Because these manifolds are toric it is easy to see, using images of the moment map, 

that the 3-fold sum along this collection is just a copy of  C P  2 whose lines have area 

3 /2  times the area of  the original complex lines. We explain this in the next section in 
Example 3.7. 

The 3-fold sum is distinct from other symplectic constructions when it is performed 

along surfaces that do not intersect any exceptional spheres (embedded spheres of  self- 
intersection - 1). It remains to be seen whether it will yield new examples of  symplectic 

4-manifolds. 

3. Preliminaries 

3.1. Hamiltonian actions and moment maps 

While very few smooth 4-manifolds admit a global Hamiltonian T 2 action (only blow- 

ups of  C P  2 or S 2 × $2), the images of these manifolds under the moment map give 

rise to a nice way to represent the symplectic neighborhood of  a pair of  orthogonally 
intersecting symplectic surfaces in any symplectic 4-manifold. 

Guillemin and Sternberg [11] and Atiyah [1] proved that the image of  any closed 

connected symplectic manifold under the moment map for a torus action is a convex 

polytope. Delzant [4] studied the special case when the dimension of  the torus is half 

the dimension of  the manifold. He showed that if the action is effective, i.e., if every 
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element of  the group other than the identity moves at least one point, then the symplectic 

manifold is determined up to equivariant symplectomorphism by its image under the 

moment map. We recall the necessary definitions. 

Definition 3.1. A T n action on a symplectic manifold (M, w) is Hamiltonian if for 

any element ~ of  the Lie algebra t = R n there is a function f~ : M --~ ]K such that 

w(X~,  .) = - d  f (  where X(  is the fundamental vector field for ~. The function f~, 

defined up to a constant, is called a Hamiltonian for the vector field X~. 

Definition 3.2. The moment map for a Hamiltonian T n action on a symplectic manifold 

(M, w) is a map # :  M --+ t* = 1R n such that for x E M ,  (#(x) ,  ~) = f~ (x) defines a 

Lie algebra homomorphism from t to the Lie algebra of  smooth functions (with respect 

to the Poisson bracket) which takes { to f¢. 

Example 3.3. The standard Hamiltonian toms action on C 2 is t. (z1, z2) 7- (e itl z1, eit2z2). 

The standard moment map associated to this action is # : C 2 --+ ]R 2 given by #(z l ,  z2) = 

(Iz, 12/2, Iz212/2). 

R e m a r k  3.4. If  a symplectic manifold admits a torus action T n × M --+ M given by 

t .  x = t (x )  then it also admits a torus action t • x = (B t ) ( x )  for any B that is an 

automorphism of  the toms. If  # is a moment map for the original action then B T #  is a 

moment map for the new one. Thus if the moment map images of  two closed connected 

manifolds with a half-dimensional effective torus action are equivalent up to unimodular 

transformation, then the manifolds are symplectomorphic. 

Example  3.5. The images of  moment maps for standard torus actions on C P  2, ,.q2 × $2 

and Cp2#c--ff 2 are shown in Fig. 5(a)-(c). In the image of  a moment map, the preimage 

of  a vertex is a point, the preimage of  a point on the interior of  an edge is a circle 

and the preimage of  a point on the interior of  the polytope is a toms. Thus the edges 

of  the polytope represent intersecting spheres and the preimage of  a neighborhood of  a 

vertex is a bal l - -a  neighborhood of  an intersection of  two spheres. We use thick lines to 

indicate the orbit in the preimage of  these points is not the full toms. The images of  C P  2 

and Cp2#c--ff 2 illustrate that blowing up a point in the symplectic category amounts to 

removing a ball and collapsing the circles of  the characteristic foliation on the resulting 

boundary to form an exceptional sphere. 

(a) (b) 

Fig. 5. (a) Cp2; (b) S 2 x 292; (c) CP2~-f f  2. 

(c) 
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A nice feature of the moment map is that we can read off of the image both the 
self-intersection numbers and the areas of the spheres that are preimages of an edge. For 
instance, choosing the torus action appropriately, the image lies in the first quadrant of R 2 
with one corner at the origin and two spheres Sj, $2 whose images lie along the pl, p2 
axes of R 2 with endpoints at the origin and (al,0),  (0, a2), respectively. Let rnl, m2 
be the slopes of the adjacent edges with vertices at (al, 0), (0, a2). Then the areas and 
self-intersection numbers of the spheres &,  $2 are 27raq, 27ra2 and - 1/ml, -m2. This 
can be verified by looking at the image of ~(Lk ® C), the projectivized line bundle over 

a sphere with Chern class k, under two different torus actions. These are the Hirzebruch 
surfaces [12], i.e., rational ruled surfaces. 

Example 3.6. The rational ruled surfaces can be equipped with a Hamiltonian toms 
action by embedding them into C P  l × CP  2 as 

{([Z0:Zl] , [x0:xI:x2]  )lzk0 x '  -- Z k x  0 = 0} 

and taking the restriction of the Hamiltonian torus action 

t .  ([z0: Zl] , [xo: Xl: x2] ) : ([e it' zo: z,], [xo: e'kt'x,: eitzx2]) 

(cf. Audin [2]). Letting ~ = ([x :y], [y-ku :x-ku :v]) be a point on the ruled surface, 
the moment map # = (#l, P2) for this action is 

1 { Ixl 2 -klxl-Zklul 2 ) 
.,(4) = ~ \ lx l~7 lyi2 + (ixl_2k + lYl_Zk)lul 2 + ivi2, ,  

1 (  ,~,2 ) 

/z2(~) = ~ (ixl_Rk + ]SzS~)lui2 + ivi2 . 

In the image of F(Lk ~ C) under this moment map, SI is a section and $2 is a fiber. For 
k = - 1  the image is shown in Fig. 5(c). To interchange the positions of the images of 
the section and the fiber, modify the action by taking 

;) 
1 

where B is applied as in Remark 3.4. 

In the examples shown in Fig. 5, letting M denote the 4-manifold, the preimage of 
#(M) A ({p2 < el } t5 {pl < e2}) is a symplectic neighborhood of S~ t_J $2 consisting of 
plumbed disk bundles. This neighborhood is invariant under the toms action. 

Example 3.7. Using the images of moment maps we can see that the 3-fold sum in 
Example 2.8 is just C P  2. To do this we apply to the images linear maps that are compo- 
sitions of unimodular transformations and translations. We denote these as the sum of a 
matrix and a vector, so (t3 + b)p = 13p + b where B is unimodular and p, b are vectors 
in R e. Recall that in this example M is a disjoint union of three copies M1, M2, M3 
of CP2#C--P 2. Let Mi  be the manifold with boundary associated to Mi - (Ei U L,). 
Suppose the area of a line in any of these is a and the fibers Li have area a/2. If 
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I 

Fig. 6. Example of a 3-fold sum yielding CP 2. 

# is the moment map for the toms action described in Section 3.1 then the union 
(B1 + bl)(#(ml)) U (B2 + b2)(/z(m2) U B3(M3)) is, up to translation, an image of 
CP  2 if we choose 

B I =  ( ; 1  01) ' B 2 =  (11 10), t33= ( ~  ; 1 ) ,  

= , b 2 =  ½aj. 

See Fig. 6 where we distinguish the image of the boundary of Mi from the images of the 
punctured spheres invariant under the torus action by using thin lines. The new projective 
plane contains projective lines that are the connected sum of a line and a fiber and so 
have area 3a/2. Note that translations of these images amounts to varying by a constant 
the Hamiltonians defined by the torus actions, but these functions are defined only up to 
a constant to begin with. 

3.2. Model neighborhoods 

The possibility of summing along codimension 2 symplectomorphic submanifolds de- 
pends only on the isomorphism class (symplectic, or unitary) of the normal bundle thanks 
to the symplectic neighborhood theorem which states that the submanifold and its normal 
bundle determine the symplectic structure of the neighborhood. In particular, in a sym- 
plectic 4-manifold, if two embedded symplectic surfaces have the same genus, area and 
self-intersection number then they have symplectomorphic neighborhoods. This implies 
that the symplectic sum can be described in terms of model neighborhoods that are easy 
to classify. 

In this section we construct model neighborhoods for orthogonally intersecting sym- 
plectic surfaces (S1, ~1), (S~, ~ ) .  (The primes are used here to be consistent with the 
notation for the 3-fold sum.) Fortunately we have a symplectic neighborhood theorem 
for such pairs of surfaces: the symplectic structure of the neighborhood depends only on 
the self-intersection numbers, areas and genera of the surfaces (cf. [20,22]). Therefore, 
given two symplectic surfaces, we can build model neighborhoods that are classified by 
two integers: the Euler classes of the two disk bundles being plumbed (i.e., the self- 
intersection numbers of the surfaces in the model neighborhood). Then given any two 
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symplectic surfaces that intersect orthogonally at one point in a 4-manifold, their union 

has a tubular neighborhood symplectomorphic to one of the model neighborhoods. 
Because any symplectic 2-plane bundle over a surface minus a disk is trivial, we can 

construct model neighborhoods of $1 U S~ that are built out of three simple pieces: 

a neighborhood of the intersection point and product neighborhoods of the surfaces mi- 
nus closed 2-disks centered at xl = ZI rq Z~. By Darboux's theorem (the symplectic 

neighborhood theorem applied to a point), the first piece is symplectomorphic to a neigh- 

borhood of the origin in (C2,COo @ coo) where coo O coo = ½i(dzl A d2j + dz2/~ d~2) 
is the standard symplectic structure on C 2. Note that in higher dimensions we would 

not have such a simple decomposition of the neighborhood since the normal bundle of a 
punctured submanifold would in general have nontrivial invariants. 

We choose the neighborhood of the origin so that its image under the moment map 

encodes the self-intersection numbers in the same way as for closed toric 4-manifolds. 
Thus, although a closed symplectic surface with genus greater than zero has no neigh- 

borhood that admits a Hamiltonian T 2 action, we can still represent the data of area and 

self-intersection number in a simple diagram. We call the chosen neighborhood of the 
origin a "hinge" H C (C 2, coo @ COo) because of the shape of its image under the moment 

map. We define 

H = W I U r W 2  with 
1 "~ W, = {(zl,z2) l f lz l l  2 < 71 - ½kllZel 2, 2lz2l" < s l } ,  

{/~2 = { ( Z I , Z 2 ) [ 1  i z , , , 2 12 

where r (z l ,  Z2) = (Z2, ZI), 71, "Y2 )" 0 and the thickness parameters Sl, C~ are chosen 

' a n d  ' ' ' > e l .  small enough that 71 - klCl > s2 72 - k2c2 
To complete the neighborhood we define "strips" & C (ZI x C, col® COo), S '  C 

(S~ x C,CO~ OCOo). Let D~- C D, C (C,COo) be a standard 2-disk of area 2rr'y'~- < 2rrT, 

and choose a symplectic embedding 11,1 "(DI ,  COo) --+ (~1, COl), hi ((0, 0)) = .T, I . Define 
D~, D~- and h~ similarly. Denote the closure of D~- by D 1. Then 

Sl z {(37, z2) l x ~ s1 - h , ( D F ) ,  ½1z212 < ci } 

and S~ is defined similarly. We paste these together using the gluing maps 05j, r&~ where 

051(hl(Zl)lg2)=(Z](1-1glZgl2x\I/2IFT~) ' Z 2 ( ~ )  kl 

is defined on the domain U1 C Si, 

gl  = {(z,  z 2 ) I z  ~ hi(D1 - D 1 ) ,  ½lz2l 2 < El}, 

and ¢3~ is defined similarly on U~. Because the maps 051, 051 and r are symplectic, the 

space 

N = H U~,, $1 U r ~  S~ 
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is a smooth symplectic manifold. By construction, the normal bundles of .~1, ~2 in this 
model neighborhood have Euler classes kl, k~. 

Remark 3.8. Note that Nl = W1 U¢1 $1 and N~ = W~ tO,~ S~ are model symplectic 
neighborhoods of $1, S~', the union of which is N. We call ¢1, ¢~ the thicknesses of 

N1, N~'. 

Now look at the image of the hinge H under the moment map for the standard action 
on C 2, namely #(z, ,  z2) = (½1Zl 12, ½1z212). Choosing coordinates (p,,p2) on IR 2, the 
image is 

# (H)  = { ( P l , P 2 )  I 0 < Pl  < "71 - klP2,  0 < 1"02 < El}  

tO {(p,,p2) [ 0 ~< ~92 < ~ --  /Y2Vl, 0 • Pl < £'i}" 

Fig. 7 shows the image of a hinge for surfaces with self-intersection numbers kl = 
2, k~ = - 1. By design we can read the self-intersection numbers off of the diagram as 

for spheres in a closed toric manifold. Furthermore, the disks D1, D~ of areas 2rrTl , 2rrT~ 
have images that are line segments of lengths 71, 7~. 

Note that each factor of the action of the torus t = (tt, t2) on H extends to a circle 
action on one of the strips, e.g., tl • (a:, z2) = (a:, eit'z2) for points in &'. This is a well 
defined action since the gluing maps ~bi are equivariant with respect to the circle action. 

A model neighborhood of an immersed surface or a network of intersecting surfaces is 
now easy to construct. The model neighborhood consists of a hinge for each intersection 
point and a strip for each surface (minus disks centered at any intersection points on 
the surface). The Euler class of the normal bundle of a surface is then the sum of 
the contributions from each of the gluing maps that attach the strip to the hinges that 
correspond to intersection points on the surface. 

3.3. Associated manifolds and boundaries 

We now construct (M,~) ,  the symplectic manifold with boundary associated to 
M - ($1 tA S~) where Sl ,  S~ are a pair of symplectic surfaces with one orthogonal 
intersection. 

We use the adjective "associated" to indicate that M - (S1 tA Z~) and the interior 
of M are symplectomorphic, and that the boundary reduction of (M, ~) is (M, co). By 

e~ ~, 
/ 

#(D~) 
. . . .  . e l  

h 

#(D1) 

Fig. 7. Moment map image of a hinge. 
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the boundary reduction of (M,~)  we mean the manifold obtained by collapsing the 
circle fibers of the characteristic foliation on each smooth component of aM. This has 
the effect of collapsing the intersection torus to a point. Thus the boundary reduction 
collapses aM to ~1UZ~, and restricted to any smooth component of the boundary it is just 
symplectic reduction. In general, the symplectic reduction of a coisotropic submanifold 
A C (M, ~) is the symplectic manifold that is the quotient of A by the leaves of the 
foliation defined by ker(wla ). A coisotropic submanifold is one whose tangent bundle 
contains its own symplectic orthogonal complement, T A  ±~ C TA.  The closedness of 
implies the integrability of the plane field ker(~la ) = :FA ±~. 

I 
To build M we start with a model neighborhood N that is symplectomorphic to a 

neighborhood of ~,  U Z~ C (M, ~'), so ~1 = j~(~) where jj "~1 ---+ M is the inclusion 
From N we will construct N, a model collar neighborhood map, and similarly for w2- 

i I 
for the boundary of M. Using the symplectic equivalence of the interior of N and 

N - (Zt U ~2), we define 

s~ = ( M  - (~,  u £~)) us~l,,,,~ i f ,  

where f : N - ,  M is a symplectic embedding and 7v' N ~ N is a symplectomorphism 
I I 

on the interior of N and symplectic reduction on ON. 
To define N all we need to do is make a symplectic change of coordinates on N - 

(Z1 U E~), essentially replacing punctured disks with annuli and then taking the closure 
of the "inside" boundaries of these. Indeed, on SI and S~ make the following change 

of coordinates in the fibers: P2 = ½1z212 and q2 = argz2 = z2/]z2]. On H make that 
same change of coordinates in both complex planes yielding coordinates (p, q) where 

P = (Pl ,P2), q = (ql, q2). Then N -  (Z, U E~) is symplectomorphic to the interior of 

where 

H :  { ( p , q ) I p ,  < " ~ 1 -  ]~ ip2 ,  0 ~ p 2  < c 1 }  

u { (p, q) lpz < ~/~ - kip,,  o ~ p, < c'z }, 

5 ,  = {(x,  pe,qz) t x  E S ,  - hi(D1-), 0 ~< P2 < c,} 
- - /  

and S 2 is defined similarly. The symplectic map ~1 is defined by 

~, (~, (v,, q,), p2, q2) = (v, - k,p2, q,, ;2, q2 + k, q,) 

with hj (p,, ql) = h, (z,) and T(p, q) = (Tp, Tq) where 

T =  0 " 

Again, ~/2 is defined analogously. The symplectic structure a~- agrees with 021 ®aJstd, aJ~® 
(.Ust d o n  S I~  S~ and with ~std@aJsta = dpl A dql + dp2A dq2 on H.  The boundary of N has 
two smooth components joined along a Lagrangian torus T defined by {Pl = P2 = 0}. 
The inverse of this change of coordinates extends to a smooth surjective submersion, 
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7r : N ~ N. The intersection toms T is the preimage under rr of the intersection point: 
T = re- l  ((O, O)) = 7 " i ' - l f - l ( x l )  where x,  = E l  r-i E~. 

Remark  3.9. Notice that the projection of H onto the p-coordinates is the same as the 

image of H under the moment map for the standard torus action on C 2 D H.  

Definition 3.10. Consider a pair of embedded symplectic surfaces C = {El,  S~} that 

intersect orthogonally in one point in (M, co) and let f : N ~ M be a symplectic em- 

bedding that realizes N, a model neighborhood of S1 U E~ as a neighborhood of C in 
M. The associated manifold with boundary for M - C is the manifold (M, ~) given by 

M = (M - d )  us~li., ~ N. 

The symplectic structure ~ is defined by ~[M-C = co and ~IN = co-;. 

The symplectic structure ~ is well defined since f l r  is a symplectic map. It is not hard 

to show that M is well defined up to symplectomorphism (cf. [22]). 

By construction 0 M  has one connected boundary component with two smooth com- 

ponents which we call the associated boundaries (to S l ,  S ; )  and label 0N, , ONt. By 

E1 we mean the surface with boundary obtained by removing xl = Sl  N S~ from El,  
making a symplectic change of coordinates Zl = (pl, ql) on a coordinate chart centered 
at Xl and taking the closure, adding in the boundary given by {pl = 0}. The intersection 

0NI A 0N; is the intersection torus r r - l f - l ( x l  ). Furthermore, the characteristic foliations 

on the smooth components of the boundary 0N~, 0N; are circle fibrations over El ,  Z~. 
In the more general situation where we have intersecting, possibly immersed surfaces, 

the manifold M is constructed in the same way, with the same changes of coordinates 

on the strips and hinges as in the above case. 

4. Existence  of  the 3-fold sum 

In this section we prove the existence of the 3-fold sum. We also rephrase the theorem 
in terms of the image of the moment map, providing a diagrammatic way of checking 
for the existence of a 3-fold sum. 

We begin with the following result on the structure of a 3-fold sum: 

Theorem 4.1. Suppose (M, ~) is a 3-fold sum of (M, co) along a collection C of three 
pairs of symplectic surfaces. Then the surfaces of C are admissible for a 3-fold sum and 
for each i = 1,2, 3 the surfaces Si ,  S~ are symplectomorphic and their self-intersection 
numbers satisfy ki + k~ = -1.  

Proof. In the definition of the 3-fold sum, the fact that ~ : M ~ M must be an immer- 
sion implies that the image of each intersection toms, arising in M from an orthogonal 

intersection of surfaces in C, must belong to the singular part of the gluing locus X0 C X. 
Thus, because ~-1 (X0) is the disjoint union of 3 intersection tori, there are exactly 3 
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intersection points among the surfaces. Without loss of generality we choose to label the 
surfaces so that the pairs S~, S~ give rise to smooth boundary components that are iden- 

tiffed in M. Then the Si, Si must be disjoint, for otherwise the gluing would collapse 
the intersection torus to a circle by identifying transverse circle fibrations, contradicting 

the assumption that ¢ is an immersion. So in order to have 3 intersection points, each 

surface must intersect one from another pair and we can choose the labeling of admissible 

surfaces. The surfaces Si ,  S~ must be symplectomorphic because S i -  Xl and S ~ -  :r,:_l 
are both symplectic reductions of the same hypersurface. 

To see the necessity of the condition ki + k~ = -1,  notice that because X0 is a 

Lagrangian torus, it has a neighborhood symplectomorphic to a neighborhood of the 
zero section of T * T  2 = T 2 × R 2. Because ~ l (x0) is the union of three intersection 

tori, its neighborhood must be symplectomorphic to a union of three hinges Hi.  The 

boundary identifications induce maps on the 1-dimensional homology of the Hi  given 

by 

j2i = (k~ + k: - 1 )  

1 0 ' 

where we have chosen the canonical generators for the homology of the Hi  C T * T  2, 

namely {p~ = p2 = 6, q2 = c~} and {p, = p2 = 6, q~ = a} for constants 6, c~. For the 
neighborhood of Xo to be trivial, we must have (2, ~22S23 = Id .  This can happen only if 
k ~ + k ~ = - I  f o r i =  1,2,3. [] 

We now prove the existence theorem: 

Theorem 4.2. Consider a collection C = {Si, S~}~= 1 ofsymplect ic  surfaces in (M, 0:) 
which are admissible for  a 3-fold sum. Suppose for  each i the surfaces S i ,  S~ are 

symplectomorphic and ki + k~ -- - 1  where ki, k~ are the self-intersection numbers of  

S i ,  S~. Let (M, ~) be the manifold with boundary associated to M - C. I f  ki + k~ -- 

- 1  for  each i = 1,2,3 then there is a symplectic manifold ( M , ~ )  and a symplectic 

embedding ~ : ( M -  C) ~ M that extends to a surjective symplectic immersion -~" ~-[ ---+ 

M.  

Recall that the interior of M is symplectomorphic to M - C. 

To demonstrate existence we define diffeomorphisms that identify the corresponding 
smooth components 0Z~ , 0Z~ of a M  and yield a smooth symplectic manifold. In par- 
ticular, we make sure that tl~e diffeomorphisms (boundary identifications) respect the 

characteristic foliations on the corresponding smooth boundary components and that we 
do not loose smoothness or agreement of the symplectic structures of the summands near 
the images of the intersection tori. 

Before starting the proof, we note that any map 13:T*T 2 ---, T * T  2 of the form 
B(p, q) = (Bp,  t3 -Tq)  with B unimodular is a symplectornorphism with respect to the 

standard symplectic structure ~std • ~C~td = dpl A dql + dp2 A dq2. We use the notation 
(p, q) to represent a point (pl ,ql ,p2,  q2) in T * T  2 with p = (pl,p2) and q = (ql, q2). 
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Proof. We define boundary identification maps 0~ between the corresponding smooth 

boundary components of model collar neighborhoods Ni associated to model symplectic 
neighborhoods Ni of S~ U S~+1. We can always do this because the corresponding 
boundary components are trivial circle bundles that cover symplectomorphic punctured 

surfaces. Here the subscripts should be understood mod 3, so £'~ denotes the surface S~. 
Once we establish that 

3 

Nx = U -Ni/ol, 02, o3 
i = l  

defines a smooth open symplectic manifold, it follows that the manifold 

M = M/Ot, 02, 03 

is a 3-fold sum of M along C with Nx a model neighborhood of the gluing locus X c M 
since 

M ~- (M-C) UflTrl'f27r2'f37r3 ( O Ni) 

implying 

M = ( M  -- C) UflT,rl,S2¢i-2,S3~3 (N~ ' ) ,  

Here the fi, 7ri are as in Section 3.3 and each map 7r~ is restricted to the interior of Ni. 
The symplectic structure ~ is induced from w via the changes of coordinates. 

We begin by defining, for each i, the restriction of the map 0i to the part of the 
boundary component 0E~ that belongs to Si: 

vgi(x, 0, q2) = ( ~ ( x ) ,  0, -q2),  

where ~ • Zi ---+ S~ is a symplectomorphism that maps the intersection point in Zi to the 
intersection point in Z~, i.e., ¢~(xi) = x~_~. It is easy to see that this makes S~ U S~/O~ 
into an open symplectic manifold with a product symplectic structure. Indeed, the maps 
vgi are the boundary identifications induced from emheddings S~, S~ ~ (Si z T*T I , wi ® 
Wstd) that are the identity and ¢~-i x A where A:T*T  l --~ T*T l is the symplectic map 
A(p2, q2) = (-p2,-q2). (We assume that we have chosen the parameters 7~, 7~ to be 

equal in the definitions of Hi,  Hi-1 and Si, S~.) 
The gluing maps ¢i:  Ui ---+ Hi and 7-¢~ :U~ ~ H i - l  that attach the strips Si, S~ to 

the hinges H~, Hi-1 are defined as in Section 3.3. They induce continuations of the 
0i to the boundaries of the hinges. For each i, the map induced on the boundary in the 
overlap is the restriction to ~(¢i(U~)) of the map ¢~0i(¢i) -1. In the local coordinates 
(p, q) of the hinges Hi,  these maps are the restrictions to {7i- < Pl < 7i, P2 = 0} of 
the symplectic map 

K : ( p , q ) = ( K p ,  K - T q ) ,  w h e r e K =  (01 ki +k:-I ) = ( ~ -1-1) 
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by hypothesis. We extend the maps Oi to {0 ~< pl < 7~, P2 = 0 } ,  using the same 

definition with respect to these coordinates. Then 

3 

JVX" = U -Hi/tglt ~2, ~3 
i=l 

is a space with open boundary. 
The space Nxo is a smooth symplectic manifold because it is symplectomorphic to a 

neighborhood of the zero section To C T*T 2. To see this, define a symplectic embedding 

Z : Nxo ---+ T *T2 onto a neighborhood of To by specifying Z ] ~  = Zg where 

ZI • ](~, Z2 = ](~2, Z 3 = ]C 3 = Id.  

The map Z is well defined because for each i we have Zi](m=0} = E i - l ]  {pl=O}0i where 

the subscripts are understood mod 3. Therefore 

l~X = NX 0 U4~,,-rq~' ' (Sl U Stl/l~i ) U4,2,~-0~ (S2 U S;/~92) U63,r6; (S3 U S;//~3) 
3 

= U Ni / I~I '  192t 03 
i=1 

is also a smooth symplectic manifold. [] 

In the neighborhood of each intersection point xi we define a local moment  map to 

be the composition #f/-1 ]f~(/40 where f / :  N~ --~ M is a symplectic embedding realizing 
Ni as a neighborhood of Zi  U S~+ 1 C M and #(Zl, z2) = l(tzl12, Iz2] 2) C R 2 is the 

moment  map for the standard torus action on C 2. The following proposition rephrases 

the existence of a 3-fold sum in terms of the geometric properties of  the images of  local 

moment  maps. We assume that "/i = "7~ in the definitions of the Hi,  H i - l ,  reflecting that 

Zi ,  Z~ have equal area. Recall that 

,) 
1 - 1  ' 

Proposi t ion 4.3. A 3-fold sum along an admissible collection C of symplectic surfaces 
exists if and only if the union of images K (#( HI) ) U Kz(# (H2) )  U K3(#(H3) )  in R 2 is 
an open (nonconvex) 9-gon in which the images of corresponding surfaces coincide and 
the images do not overlap on any open set. (Fig. 8 shows such a 9-gon.) 

Proof .  By Theorems 4.1 and 4.2 we know that a 3-fold sum along an admissible collec- 

tion C exists if and only if the corresponding surfaces Si,  Z~ have the same area and 
k~ + k~ = - 1. We simply need to equate this criteria with the geometric statements about 

the images of  local moment  maps. 
Consider the union of images K(#(HI ))uKZ(#(H2))UK 3 (#(H3)) .  The corresponding 

(closed) sides lie along the same ray, so the union of images can be open if and only if 
these coincide exactly, in which case the areas of the surfaces agree since "/i = "7~ by 

choice. 
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Fig. 8. Local moment map image for a 3-fold sum. 

The open edges ei, e~+l of #(Hi) that are adjacent to #(Si ) ,  #(S~+l) have slopes 
-1 /k i ,  -k~+ 1, respectively. See Fig. 7. The unimodular transformation K maps the 
vector ( - ~ )  to (_k-~l_l). ThUS the slopes of e: and Kei agree if and only if ki + k~ = -1 ,  
in which case the union of images has 9 open sides. [] 

5. Mismatched areas 

5.1. Thickening and thinning 

The possibility of forming a symplectic sum or a 3-fold sum depends upon the symplec- 
tic equivalence of the pairs of surfaces along which one plans to glue. In this section we 
define a useful way to deform a symplectic structure in the neighborhood of a symplectic 
submanifold Si, namely by thickening or thinning along Zi. This type of deformation 
was described in [19] using the model neighborhood for a single surface. Here we give 
a description in terms of the model for intersecting surfaces. 

Thickening or thinning along Zi consists of replacing a neighborhood of Zi by a 
neighborhood of a different thickness. Unless the normal bundle of Si is trivial this 
process changes the area of Zi, and it always changes the area of the intersecting surface 
S~+j. Thickening or thinning along S~+ I is defined analogously. 

We first work with model neighborhoods, defining deformations Tt(Ni) of Ni by 
replacing the minimum value of 0 on the p2 coordinate by a minimum value of t, so 

qFo( Ni) =- Ni. More specifically, 

' ~ ( ~ )  = ~'~(~) u(~)~ T~(~) us,+ ' ~+ j ,  
where 

Tt (Hi)  -- {(p,q) ] 0 <. pl < 7i - kiP2, t <~ P2 < el} 

U {(p,q) Jt ~< Ps < S{+l - k~+,pl, 0 ~< p, < e'i+l }, 

Tt( -S i )= {(x,  p2, q2) l x  C S i -  h i (Di-) ,  t ~<p2 <ci}, 

and (-¢i)t is given by the same formula as ¢i but defined on the domain 

q~t(Ui) = {(x,pe, q2) lx E hi(Di -D~- ) ,  t ~< p2 < ei}. 
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Now let 7£t(Ni) be the symplectic boundary reduction of qrt (Ni). The symplectic form 

~cqr~(,~) is induced via changes of coordinates from the forms ~std @ ~std on T t ( H i )  and 
~ s ,  @ ~sta on qFt(Si). Note, for the map ( ~ ) t  to be defined on the domain "~t(Ui), 

the parameter t must lie in the interval (Ti/k~, c~) if k~ < 0. If k~ ~> 0 then t can be 

anywhere in ( ~ , e i ) .  
To thicken or thin M along Si  means to replace f i (Nz)  with a copy of qI't(N~), 

yielding a closed symplectic manifold. We denote the thickened or thinned manifolds 

by ~'+ (M),  " I ~  (M) and the new surfaces by ~ +  ~'-  ~ , ~i  , respectively. After thickening 

(t, < 0) or thinning (t > 0) the area of Zi has changed from A~ to A~; - 27rk~t and the 

area A~+t has changed to A~i+l - 27ft. Note that if the normal bundle of Z~ is trivial then 

the ambient manifold can be thickened arbitrarily along r~ and the area of Si remains 

unchanged. 
The procedure of thinning gives a nice way to see the convexity (or concavity) of 

a symplectic neighborhood as dictated by the isomorphism class of the normal bundle, 

or equivalently, the self-intersection number of the surface. Namely, the convexity of a 

neighborhood can be thought of as a measure of the rate of growth of the area of S ~  

with respect to thinning. 

5.2. Patching 

In this section we introduce another way to accommodate mismatches in the areas of 

corresponding surfaces when trying to perform generalized symplectic sums and 3-fold 
sums. In addition to allowing ourselves to deform the symplectic structure of M before 

performigg a sum, we use neighborhoods of the zero section of T * T  2 as "patches" and 

allow M to have larger volume than M. This added flexibility is sometimes necessary 

to form the sum along an immersed surface, as we shall see in Section 6.1. 

Specifically, we define domains in T * T  2 to be open symplectic manifolds of the form 
U x T 2 C (T*T 2, &std@~std) where U is a domain in R 2. Then we modify the definition of 
the generalized symplectic sum by letting ~ be not surjective, yet asking that M - ~ (M)  

be properly contained in a union of open manifolds, each one symplectomorphic to a 
domain in T * T  2. 

We use these modified definitions and the language of Proposition 4.3 to express the 

existence theorem for the 3-fold sum in this setting. Recall that maps of the form B + b 
are compositions of unimodular transformations and translations with (B  + b)p = B p +  b. 

Proposition 5.1. Suppose C c (M, ~) is a collection of  surfaces admissible for  a 3-fold 
sum. A 3-fold sum along the collection exists if there exist vectors" bl, b2 such that the 

union of  images (K  + bl)(#(Hj))  U (/(2 + b2)(#(H2)) U K3(#(H3)), together with the 

domain bounded by the union, is an open 9-gon. 

We assume here that the parameters "~i, 7~+1 of the hinges Hi are chosen such that 
.['~, ~ - 27r'yi = .]s~ ~c - 27r7~ for each i, so that differences in the lengths of the sides 
of the hinges reflect differences in the areas of corresponding surfaces. 
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Fig. 9. Local moment map images for a 3-fold sum with mismatched areas. 

Proof.  Suppose that we have vectors b~, b2 such that the union of images satisfies 
the hypotheses. We construct 3 / / a s  follows. For each i choose Darboux neighborhoods 

/ ¢ ! 
hi(Di)  C Zi ,  hi+l(Di+l)  C Z~+ l of  xi where Di, D~+~ C R 2 are disks of  radius 

! / 
7i, 7i+1 and hi, h i t  1 are symplectic embeddings, and choose symplectomorphisms 
¢ i"  (Zi  - hi (D~-)) ~ (Z~ - h~ (D~-) ) .  Choose model neighborhoods Ni as in Section 3.2 
and boundary identifications Oi : Si --~ S~i as in the proof of  Theorem 4.2. Use the maps 
K q- bl~ K 2 + bE, K 3 to construct Nxo C T * T  2 as the domain in T * T  2 that is the union 

of the images and the manifold they bound (see Fig. 9). We can then glue all the strips 

Si,  S~ to NXo via the gluing maps ¢i,  ~-¢~ as defined in Section 3.2. The compatibility 

of  these maps with the Oi follows because ki + k~ = - 1 for each i by the arguments of  
Proposition 4.3. E3 

It is not hard to work out the exact constraints Proposition 5.1 places on the areas. 

When trying to sum along surfaces with mismatched areas it is helpful to first thin along 
the surfaces in question and then allow oneself the possibility of  thickening in order to 

satisfy the hypotheses of  the proposition. To quantify how much one can thin, recall 
t that that in the definition of the model neighborhoods Ni there are parameters ei, Q+I 

determine the size of  each neighborhood. Consider C = {Zi ,  S / V  iJ i=l ,  a collection of 
surfaces in (M, w) that is admissible for the 3-fold sum and assume ki + k~ = - 1  for 
i 1 2,3. Suppose {ei, t 3 3 = , {Ni} i= 1 can ei}i= 1 are such that the model neighborhoods be 
disjointly and symplectically embedded in M as neighborhoods of the {Si, ~'i+lt }i=1"3 

Thinning along Si  by an amount 6i and along S~ by tS~+ 1 changes the area of  Si  from 

fro co to g i  = f s ~ -  2 7 r k i 6 i -  27r6~+ 1 and changes the area of  Z~+ 1 to A~+ l = 
! ! 

fzi+~ w - 27r6i - 27rki+16i+l. One can thin by any amounts 6i < ei and 6~+1 < e~ i + l  " 

Using these modified areas, we can thicken and then apply a 3-fold sum whenever the 
hypotheses of  the following proposition are satisfied. 

Proposition 5.2. Let C {Zi ,  t 3 = ZI} i=  1 be a collection o f  surfaces in ( M , w )  admissible 

for  the 3-fold sum. Suppose ki + k~ = - 1 for  i = 1,2, 3 and define 

AAi = Ai - A~. 
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Then the 3-fold sum exists after thickening along the surfaces if there exist nonnegative 
constants dl, d2, d3 such that 

AA1 - AA2 = k'ldl + k2d2 + d3, 

AA2 - AA3 = dl + k~2de + k3d3. 

Proof. To prove the proposition it suffices to show that we can choose the vectors bl, b2 

of Proposition 5.1. Recalling that t(-3 = Id, the only domain that can be bounded by the 
union of images 

(K  + b , ) (p (H, ) )  U (K ~ + b2)(p(H~)) U K3(p(H~)) ,  

is a triangle with vertices at b, = (a, 0), b2 = (0,--a)~ (0~ 0) for some a E IlL To 

achieve this we need that after thickening all of the mismatches in the corresponding 
areas become equal. (They will all be equal to a.) 

Consider thickening along the surfaces S,i, S~ by amounts 5i, 5~ > 0 (not necessarily 

the same as the amounts by which we thinned!). Then the symplectic area Ai changes to 

A~ +27r~+ l +27rkigi and A~ changes similarly. Letting di = 27r(6i +5~) and equating the 

differences in the corresponding areas of the surfaces after thickening yields AA~ -AA2 = 
I 

k~idl + k2d2 + d3 and AA2 - AA3 = dj + k2d2 + k3d3. 
It only remains to check that we can thicken by appropriate amounts 6i, 5~ such that 

6i + (5~ = d i  and that the modified areas are all positive. To do this we can choose d~ = 5~ 

whenever ki /> 0 and d i =  5~ whenever k~ < 0. [] 

6. Applications 

In this section we consider applications of the generalized symplectic sum to the prob- 

lems of summing along immersed submanifolds and of defining a symplectic analog of 
algebraic desingularization. We consider only generalized symplectic sums in which 3/0, 

the singular part of the gluing locus X, is a disjoint union of Lagrangian tori whose 

preimages are disjoint unions of three intersection tori. Then in the neighborhood of 

each connected component of X0, the sum has the structure of a 3-fold sum: the neigh- 
borhood is symplectomorphic to three hinges glued together. The gluing construction on 

the complement of these neighborhoods is just the matching of trivial circle fibrations 
over punctured surfaces that have the same area and the same number of punctures. 

The 3-fold sum itself may be a source for new examples of symplectic 4-manifolds 
since it is distinct from previously understood symplectic constructions when performed 

along a collection C c (M, ~c) such that C does not contain any surfaces that are proper 
transforms or exceptional spheres. When a 3-fold sum is preceded by blowing up a 
point, the same manifold can be constructed via a sequence of symplectic sums. The 
equivalence up to diffeomorphism of the two procedures was shown by Gompf [7] 
and the relations between the induced symplectic structures was examined by the au- 
thor [22]. 
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6.1. Immersed surfaces 

We consider here the possibility of performing a symplectic surgery along a symplectic 

surface Sl  that has one orthogonal self-intersection, say at the point Xl. Then a neigh- 

borhood of xl C S1 consists of a two disks Dj,  D~ C $ l  that intersect orthogonally 
at xl. 

Notice that we cannot perform a generalized symplectic sum along a collection that 

consists of a pair of surfaces, each of which has one orthogonal self-intersection. The 

reason once again is that the map ~ : M ~ M is an immersion. However, the connected 

boundary component ~ must be glued to a boundary component a~l that contains 

two intersection toil. Therefore the corresponding surface S]  must intersect two other 

surfaces at points x2, x3. If  we choose these two surfaces to be symplectomorphic, say 

$2, Z~ then we can apply a generalized symplectic sum which near 3/0 looks like a 

3-fold sum. Indeed, let D2 D x2, D '  1 D z3 be neighborhoods of x2, x3 in S I and let 
D~ D x2, D3 D x3 be their neighborhoods in ~ ; ,  ~2. See Fig. 10 in which both the 
configuration of surfaces and their correspondences in the 3-fold sum are shown. 

To analyze the sum, we work with two model neighborhoods which are symplectically 

embedded in M via maps f l ,  f2. The model neighborhood of $1 is built out of a 

strip S1 which is a product neighborhood of Z1 - (D 7 tA D'~-), and a hinge H1 with 
fl (HI) D DI, D~. Meanwhile the model neighborhood of Z~ U Z2 tA S ;  is a union of 

three strips SI, $2, S~ joined by two hinges H2, //3 such that f2(H2) D D2, D~ and 

f2(H3) D D3, D '  1 • 
The Euler classes of the normal bundles of $1, S~ are determined by the twists 

introduced by the transition maps on collar neighborhoods of DI,  D~ and D2, D~. The 

transition maps for each pair of disks Di, D~ should have contributions that sum to - 1, 
as for the 3-fold sum. The self-intersection number of Sl  is 2 greater than the Euler 

class of the normal bundle because of the double point. Therefore, the conditions on the 

self-intersection numbers for performing this generalized symplectic sum are kl + klj = 0 

and k2 + k~ = - 1 .  

E2 
D3D'   - 

Fig. 10. 3-fold sum involving an immersed surface. 
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Example 6.1. Let the manifold (M, ~) be a disjoint union M1 U M2 in which M1 is 
an elliptic surface with positive Euler characteristic and M2 = ( S  × S2)#C--fi 2 where 

S is a surface. The homology of M2 is generated by IS], [$2], [E] where E is the 

exceptional sphere. In the class of the fiber of  Mi,  choose an immersed sphere S having 

one transverse double point (a fish-tail fiber). Also choose a section S ,  a proper transform 

in the class [S  1 - [E], and a fiber F : S 2 in M2. (In the notation used to describe 

this type of  sum, this means choosing Sj  = S, $11 -- F, $2 = S ,  and Z~ = ~ . )  

The self-intersections of  these surfaces are such that we can try to sum MI, M2 along 

S, F, S ,  ~ using a generalized symplectic sum. 

Notice however that no matter how we deform the symplectic structure of  Mz, the 

area of  S is less than the area of S .  But we can glue thanks to Proposition 5.1, choosing 

vectors bl = (0, a), b2 = ( -a , ,0)  where 27ra = AA1 = AA2 = AA3. In this context 

AA~ - AA2 -- 0 is the difference in area between S and F.  The difference AA3 is 

determined by the size of  the blow up. 

If  we choose S to be a sphere, the result of  the construction is to recover the original 

manifold with a deformation of  the symplectic structure in the neighborhood of the 

immersed sphere. 

Our choice for M2 in the above example is dictated by the following theorem: 

Theorem 6.2 (Gromov [9], McDuff  [17]). Suppose (M,w) is a closed symplectic 4- 

manifold which contains an embedded symplectic 2-sphere of  nonnegative self-inter- 

section. Then (hf ,  w) is symplectomorphic to a blow up at ~ points (• >~ O) of  either 

C P  2 with its standard Kgihler structure or a ruled symplectic 4-manifold. 

Indeed, to perform a generalized symplectic sum along an immersed sphere, the corre- 

sponding surface in the collection must be an embedded sphere. If  the immersed sphere 

has self-intersection zero and we want the sum to have a gluing locus with only one 

singular component that looks locally like a 3-fold sum, then the embedded sphere must 

also have self-intersection zero. This forces M2 to be a blowup of  a ruled surface. 

6.2. Algebraic: desingularization 

We return now to the question that motivated the definition of  the 3-fold sum: whether 

one can define a symplectic surgery which replicates algebraic desingularization when 
performed along algebraic hypersurfaces. The simplest example of  algebraic desingular- 

ization in dimension 4 is passage from the locus of  zl z2 = 0 in C P  3, two intersecting 

planes, to the locus of  zl z2 = czoz3, a quadric surface. This looks like a good candidate 

for the symplectic sum: considering the original planes abstractly, they each contain a line 

along which we need to perform the surgery. However, the sum of the self-intersection 

numbers of  these lines is 2, so we first need to blow up two points on these lines. 

Up to a deformation of  the symplectic forms, it does not matter on which of  the lines 

one blows up [22]. (That this choice does not affect the diffeomorphism type of  the 
result is due to Gompf  [6].) The result of  the gluing is S 2 × S 2. Any symplectic form 
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o n  S 2 )< S 2 is isotopic to a Kahler form [9,17], so up to isotopy we have realized the 

algebraic desingularization of two complex planes in C P  3. Recall that two symplectic 

forms 0.)0, ~.~31 are isotopic if there is a path of  symplectic forms ~t such that for every 

0 ~< t ~< 1 the cohomology class of  ~ot equals that of  ~0. Note that if two symplectic 

forms w0, ~ are isotopic, then by Moser ' s  argument [21] there is a path of  diffeomor- 

phisms Zbt : M  ~ M with ~0 = Id such that ~ - l ( ~ t )  = w0; in particular (M, w0) and 
(M, wl) are symplectomorphic. 

The next example brings us to the 3-fold sum. Consider the locus of  zlz2z3 = 0 in C P  3, 
3 namely three intersecting planes. Considering the three planes abstractly as {Pi}i=l ,  in 

each plane Pi there is a pair of  orthogonal lines Li, L~+ 1 such that L~ C Pi, L~ C P i - i  
coincide when the planes are embedded in C P  3. 

This collection of lines is admissible for a 3-fold sum. In order to make the corre- 

sponding self-intersection numbers sum to - 1 ,  we need to blow up three times on each 

pair of  lines. After doing so, does performing a 3-fold sum yield a cubic surface with a 
Kahler structure? The answer is yes, up to symplectomorphism. 

To apply the 3-fold sum we let M = M1UMzUM3 where each M~ = C P 2 # 3 ~  2 with 

three exceptional spheres El,i ,  E~,2, E~,3. Let C = {S~, S~}3=1 where S i ,  Z~ are the 

proper transforms of Li, L~ with [Si] = [Li] - [Ei,, ] and [Z~] = [L~] - [Ei-,,2] - [Ei-i,3]. 
Choosing the areas of  the exceptional curves so that Zi ,  S~ have the same area, we can 

glue. 
To relate the symplectic structure to a K~ihler structure we appeal to a recent result of  

McDuff: 

T h e o r e m  6.3 (McDuff  [18]). Let (M,w)  be a symplectic 4-manifold which does not 
have simple SW type. Then any deformation between two cohomologous symplectic 
forms on M may be homotoped through deformations with fixed endpoints to an isotopy. 

A deformation between two symplectic forms is a path of  symplectic forms connecting 

them. 

Proposition 6.4. Let M be a disjoint union of three complex planes Pi, i = 1,2, 3, 
and consider a pair of lines L~, Ui+ 1 in each. (As usual, the subscripts are understood 
mod 3.) Blowing up three points on each pair Li, L~ and taking the 3-fold sum along the 
collection of surfaces yields a manifold ( M,  ~) symplectomorphic to cPZ#6C--fi 2 with a 
Kiihler form. 

Proof. The manifold M has no 1-dimensional homology and has second Betti number 
be = 7. By Lemma 6.5, M contains a symplectically embedded sphere of  self-intersection 
zero. Therefore, by Theorem 6.2 the 3-fold sum M is symplectomorphic to C p 2 # 6 C f f  2 
(and also S 2 × $2#5C--ff2). Since there is a Kahler form in each cohomology class on 
CP2#6C--fi 2, ~ is cohomologous to a Kiihler form. Because Cp2#6C--fi 2 is of  simple SW 
type, the proposition follows from Theorem 6.3 and Moser ' s  argument. [] 
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Lemma 6.5. The 3-fold sum M contains an embedded symplectic sphere o f  self- 

intersection zero. 

Proof. We begin by being more explicit in the construction of the M. Let Ei,1, Ei,2, E,:,3 
be exceptional spheres introduced by blowing up three points on each pair of corre- 
sponding lines Li C Pz, L'~ C P~-t. Let Zi, Z~+I be the proper transforms of the 
lines Li, L~+ I, with Zi = Li if Li is not blown up. Choose symplectomorphisms 
~i " Z~ ~ Z~ such that they do not identify any two points that both lie on exceptional 
spheres. (Of course, we also require ~ i ( ~  A Zi - i  A ~÷1) ~- ~ . )  Then there are six 

, l , . I  I ! points {xi,j, Xi,2 , Xi,3} C ~ i ,  {Xi ,  I , Xi,2; Xi, 3 } C ~ i  such that ~i(x~,j) = xi, j and either 

xi,j  or x'i,j belongs to E l ,  j . Construct M by identifying 0-~, 0Z~ via diffeomorphisms 
that cover the symplectomorphisms g'i. 

Let {yi,j 3 S~ A Ei then ffi,j is }i-1 be points in the lines Li such that if Xi, j = 

the point that was blown up to create E i and otherwise Yi , j  ~- X i , j .  Define points 
similarly. Choose other points x, x ~ C Sl ,  SI such that ~l (x) = x ~ and let y, y' Yi,j 

be the corresponding points in L l, U1. Let S be a symplectic sphere in P3 through 
y3,t and y~ such that S intersects L3 and Ltl orthogonally. (For instance, choose S 
to be a perturbation of a line throughthose two points.) Let S ~ be a similar sphere 
in Pj through the points Y2,2,t y. In M we find one of the following four symplectic 
spheres of selfqntersection zero (depending upon which surfaces we chose to blow up): 

S#S',  S#(S'#/~2,2), (S#E3,1)#S', or (,_q'#E3,1)#(St#E2,2) where S, S' are the proper 
transforms of S, 5; ~. Fig. 11 shows the first possibility. [] 

Note that in both Figs. 11 and 12 the open circles represent the points x~,j. 

Because the manifold M is a cubic surface, it must contain 27 spheres of self- 
intersection -1 .  Using the same description of lines and exceptional spheres as in the 
above proof, it is not hard to see these 27 spheres. 

E2,2 

Ea,1 

C 0 
0 0 

Fig. 11. Sphere S#S'  of self-intersection O. 
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s,,,:f  Tooo ! 

E~ 

E3,3 $3,33 

~3 

Fig. 12. Spheres $3,33 and SI,13#El,I#E3,3 of self-intersection -1. 

Let Si,jk, 1 <~ i , j , k  ~< 3, be the 27 lines in the three planes P,i that pass through the 

points yi, j  and Y~+l,k, perturbed so that their intersections with Li, L'i+ l are orthogonal. 
Blowing up nine points as prescribed, each Si , jk  will either be blown up or summed to 
an exceptional curve at the points y~,j, Yi+l,k, yielding - 1  spheres. For instance, Fig. 12 

shows the sphere yielded by the line $3,33 if y3,3 and yt 1,3 are blown up, and the sphere 
yielded by SI,13 if Y~l,1 and Y2,3 are blown up. 

Moving on to more planes, we could ask whether a symplectic surgery along d planes 
in C P  3 yields a symplectic manifold that is symplectomorphic to a K~hler degree d 
algebraic surface. On each plane the intersection locus is a union of ( d -  1) lines which 
intersect in ( d -  1 ) ( d -  2)/2 points. Each of these intersection points belongs to a set of 
three that are identified under the embedding in C P  3 as the mutual intersection of three 
planes. The lines in the planes are admissible for a generalized symplectic sum in which 
the structure of the sum near any singular part of the gluing locus would be that of a 

3-fold sum. 

Conjecture 6.6. Given d planes and an arrangement of lines in each that corresponds to 
the intersection locus for d planes in C P  3, blow up d points on each pair of lines and make 
the intersections orthogonal. Construct (M, ~) by performing a generalized symplectic 
sum in which each connected component of X0 is the image of three intersection tori. 
Then (M, ~) is symplectomorphic to a degree d complex surface with a Kahler form. 
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