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Whole-genome sequencing to delineate Mycobacterium 
tuberculosis outbreaks: a retrospective observational study
Timothy M Walker*, Camilla L C Ip*, Ruth H Harrell*, Jason T Evans, Georgia Kapatai, Martin J Dedicoat, David W Eyre, Daniel J Wilson, 
Peter M Hawkey, Derrick W Crook, Julian Parkhill, David Harris, A Sarah Walker, Rory Bowden, Philip Monk†, E Grace Smith†, Tim E A Peto†

Summary
Background Tuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological 
data, which can be diffi  cult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium 
tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands 
and to investigate how this measurement might be used to investigate community outbreaks.

Methods In a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from 
an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and 
community. We measured pairwise nucleotide diff erences within hosts and between hosts in household outbreaks and 
estimated the rate of change in DNA sequences. We used the fi ndings to interpret network diagrams constructed from 
11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data.

Findings We sequenced 390 separate isolates from 254 patients, including representatives from all fi ve major lineages 
of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) 
per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is 
rarely higher than fi ve SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households diff ered by 
fi ve or fewer SNPs. More than fi ve SNPs separated isolates from none of 69 epidemiologically linked patients, two 
(15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison 
exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two 
community clusters.

Interpretation Whole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about 
direction of transmission between cases. The technique could identify super-spreaders and predict the existence of 
undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts.

Funding Medical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection 
Agency.

Introduction
Control of Mycobacterium tuberculosis can be 
challenging even in high-income countries. Between 
2001 and 2011, incidence of tuberculosis in the UK rose 
from 11·6 to 14·4 cases per 100 000 people per year,1 
with active disease developing in individuals born 
outside the UK accounting for the increase.2 Detection 
of tuberculosis outbreaks is guided by myco bacterial 
inter spersed repetitive-unit–variable-number tandem-
repeat (MIRU-VNTR) geno typing.1 Although trans-
mission between individuals infected with diff erent 
genotypes can be excluded with this approach, epi-
demiological data are needed to confi rm outbreaks 
when genotypes match.3,4 Collection of such data is 
diffi  cult if patients are unwilling or unable to volunteer 
information, as is commonly the case in some of the 
social groups most at risk of tuber culosis.5,6 Even when 
genotyping does lead to outbreak detection, it off ers no 
insights into the underlying pattern of transmission.

Whole-genome sequencing is an increasingly access ible 
and aff ordable alternative to MIRU-VNTR geno typing that 
can detect microevolution within M tuberculosis lineages as 

they are transmitted between hosts.7–10 Because backwards 
mutations are rare,11 the pattern of accumulated mutations 
can theoretically suggest direction of trans mission during 
an outbreak. Although whole-genome sequencing has a 
greater resolution than does MIRU-VNTR genotyping (as 
established in one specifi c outbreak),12 its full public health 
potential remains to be investigated.

In this study, our main aim was to estimate the genetic 
diversity of related strains of M tuberculosis in the 
Midlands region of the UK and to investigate where and 
how our measure of genetic diversity might be used to 
assess community outbreaks in detail. The region 
includes the cities of Birmingham and Leicester, where 
all fi ve clades (lineages) of M tuberculosis are found in its 
ethnically diverse population.13,14 Annual incidence of 
tuberculosis in these cities is up to 50–70 cases per 
100 000 individuals.1

Methods
Study design
We sequenced isolates of M tuberculosis from an archive 
of more than 13 000 frozen cultures obtained between 

Lancet Infect Dis 2013; 
13: 137–46 

Published Online
November 15, 2012
http://dx.doi.org/10.1016/
S1473-3099(12)70277-3

See Comment page 101

*These authors contributed 
equally

†These authors also contributed 
equally

Nuffi  eld Department of 
Medicine, John Radcliff e 
Hospital (T M Walker MRCP, 
D W Eyre MRCP, D J Wilson DPhil, 
Prof D W Crook FRCPath,  
A S Walker PhD, 
Prof T E A Peto FRCP), and 
Department of Statistics 
(C L C Ip PhD, R Bowden PhD), 
University of Oxford, Oxford, 
UK; West Midlands Public 
Health Laboratory, Health 
Protection Agency 
(R H Harrell PhD, J T Evans PhD, 
G Kapatai PhD, 
Prof P M Hawkey FRCPath, 
E G Smith FRCPath), and 
Heartlands Hospital and 
Birmingham Chest Clinic 
(M J Dedicoat MRCP), Heart of 
England NHS Foundation Trust, 
Birmingham, UK; Oxford 
National Institute of Health 
Research Biomedical Research 
Centre, John Radcliff e Hospital, 
Headington, Oxford, UK 
(Prof D W Crook, A S Walker, 
Prof T E A Peto); School of 
Immunity and Infection, 
University of Birmingham, 
Birmingham, UK 
(Prof P M Hawkey); Wellcome 
Trust Sanger Institute, Genome 
Campus, Hinxton, Cambridge, 
UK (Prof J Parkhill PhD, 
D Harris DPhil); and Health 
Protection Agency, County 
Hall, Glenfi eld, Leicester, UK 
(P Monk FFPHM)

Correspondence to:
Dr Timothy M Walker, Nuffi  eld 
Department of Medicine, John 
Radcliff e Hospital, Headley Way, 
Headington, Oxford OX3 9DU, 
UK
timothy.walker@ndm.ox.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82679242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Articles

138 www.thelancet.com/infection   Vol 13   February 2013

1994 and 2011 that is held at the UK Health Protection 
Agency (HPA) Regional Mycobacterial Reference 
Laboratory for the Midlands, South Yorkshire, and 
Humberside (Heartlands Hospital NHS Foundation 
Trust, Birmingham, UK).

We selected isolates to estimate genomic diversity 
within and between hosts and categorised them into four 
groups. First, we estimated within-host cross-sectional 
diversity from paired pulmonary and extrapulmonary 
isolates received within 1 month of each other. Cross-
sectional samples were selected at random until 50 pairs 
had been successfully located, cultured, and prepared for 
whole-genome sequencing. Second, we measured within-
host longitudinal diversity, with two or more pulmonary 
isolates from the same patient sep arated by at least 
6 months. We intended to select 100 longitudinal isolates, 
preferentially those from pa tients with the largest 
intervals between samples. Third, we estimated between-
host diversity in a transmission chain from household 
outbreaks. We selected all isolates from household 
outbreaks identifi ed by the reference laboratory. Fourth, 
we measured diversity within community-based MIRU-
VNTR-defi ned clusters (including school clusters) to 
specifi cally investigate what additional benefi ts whole-
genome sequences might provide as compared with 
MIRU-VTNR. We selected eleven MIRU-VNTR-based 
community clusters (six to 47 patients) identifi ed by 
public health teams as containing some cases in which 
direct case-to-case transmission was supported and 
others where it was uncertain. These clusters were 
matched at 15 or 24 MIRU-VTNR loci according to the 
typing protocol at the time of referral. To relate school 
clusters to their community, we added local 24-locus 
MIRU-VNTR matching cases when available. To 
investigate potential clustering across 24-locus MIRU-
VNTR types, some clusters were extended to include 
isolates that did not match at up to two loci. 

In England and Wales, some diseases have to be 
reported to local authorities (Public Health Act 1984). 
Public health action taken as a result of notifi cation and 
surveillance is one of the HPA’s key roles and the 
2003 HPA Act and the 2002 Statutory Instrument 1438 
provide the legislative cover to undertake necessary 
follow-up. Part of this follow-up is identifi cation of links 
between cases, which is made possible by increasingly 
robust methods. A UK Clinical Research Collaboration 
grant enabled whole-genome sequencing, which off ered 
the potential to detect genetic diff erences with improved 
resolution to further identify possible case links or refute 
such links on the basis of strain divergence. Such 
methods will increasingly be used in the future and the 
purpose of the grant was to see how useful such methods 
would be in practice now. Less robust methods to 
identify genetic diff erences were already in routine use 
in laboratories and it was therefore argued that, as a 
service-delivery assessment, a research ethics committee 
application was not warranted for this work.

Procedures
We took cultures from Löwenstein-Jensen slopes as 
confl uent growth and purifi ed and extracted DNA as 
described previously.15 Samples were sequenced on the 
Illumina HiSeq platform (Illumina, San Diego, CA, 
USA) at the Wellcome Trust Sanger Institute (Hinxton, 
UK) to produce 75 base-pair paired-end reads that were 
mapped with Stampy (version 1.0.13),16 without Burrows-
Wheeler Aligner premapping, with an expected 
substitution rate of 0·01 to the H37Rv (GenBank 
NC000962.2) reference genome. A consensus of more 
than 75% of reads was necessary to support high-
confi dence nucleotide variant calls made with SAMtools 
mpileup,17 which had to be homozygous in a diploid 
model. Only variants supported by at least fi ve reads, 
including one in each direction that did not occur at sites 
with unusual depth and were not within 12 base pairs of 
another nucleotide variant or indel, were accepted.18,19 
Consistency of the sequencing, assembly, and data 
fi ltering process was assessed by resequencing isolates 
from 23 patients and the H37Rv reference genome on 
diff erent fl ow cells to produce 59 technical replicates.

We estimated the molecular clock (ie, the rate of change 
in the whole genome sequence) by use of maximum 
likelihood from longitudinal pairs of isolates within 
individuals and from households with a coalescent 
model,20 assuming a Poisson distribution for the 
accumulation of mutations. We obtained CIs by 
parametric bootstrap. Maximum-likelihood trees were 
constructed from concatenated variable sites across 
clustered genomes with PhyML 3.0 in Seaview,21 and 
were rooted with other isolates in the collection. Uncalled 
sites where variants had been identifi ed in other samples 
were manually inspected and nucleotides initially 
excluded because of excessive (>97·5th percentile) high-
quality read depth were reinserted in an additional 
fi ltering step.22

Clinical, demographic, and microbiological data were 
available for all isolates. We obtained epidemiological 
data in interviews with public health teams and sup-
plemented the data by case-record review. UK guidelines 
for contact tracing recommend screening household 
contacts for every new index case, at-risk individuals, 
and any other named contacts in the community when 
the index case is thought to be infectious.23 Epidemio-
logical relations within clusters were graded as linked 
(ie, patients had shared time and space with each other 
or a third party), possibly linked (ie, known to have 
shared space, but not at the same time), or no known 
link (ie, no known shared space). We summarised epi-
demiological relations, diff erences in single nucleotide 
polymorphisms (SNPs), and diff erences in isolation 
date in network diagrams representing patients 
(through their sequences) as nodes. In each cluster, 
starting with the fi rst patient to be diagnosed, 
epidemiologically linked patients (or nodes) were joined 
by edges. The most parsimonious number of connecting 
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edges (ie, number of nodes minus one) needed to 
represent the most plausible transmission network 
within each cluster was chosen. To minimise the SNP 
distance between any one patient’s isolates and those of 
other patients in the cluster, we used one isolate per 
patient when subsequent isolates were the same or a 
greater distance away. We used two isolates from one 
patient when some patients were closer to the fi rst and 
others to the second. When more than one 
epidemiologically linked case was identifi ed, and after 
all epidemiologically linked cases in the network had 
been connected, edges were chosen to minimise SNP 
diff erence and then time interval between isolates.

Although school outbreaks are often caused by 
particularly infectious individuals leading to many 
secondary cases,24 one important question is whether 
so-called super-spreaders are also the source of many 
community outbreaks.12 Because M tuberculosis evolves 
by descent,25,26 there is an a-priori expectation that a star-
like phylogenetic topology with several secondary cases 
branching directly from a common node would be 
apparent when an individual with several contacts 
remains infectious for some time. We used this 
approach to investigate whether super-spreaders were 
evident in our community clusters.

Role of the funding source
The sponsors of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had 
full access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results
We successfully sequenced 390 sep arate isolates from 
254 patients (fi gure 1), including rep resentatives from all 
global lineages (European-American and central Asian 
lineages occurred most frequently; appendix) and those 
infected with Mycobacterium bovis and Mycobacterium 
africanum.14 Mean reference genome coverage was 88·5% 
(range 86·5–89·5%). No discrep ancies between base-
calls for the 59 technical replicates were recorded.

The mean number of isolates from each of the 
30 patients for whom we had sequences of longitudinal 
isolates available for analysis was 3·7 (range 2–9). The 
mean length of time between the fi rst and last isolate was 
30 months (6–102). For the household isolates, 
25 households each provided a mean of 3·4 isolates 
(2–19) to the analyses from a mean of 2·5 patients (2–5). 
The household outbreaks lasted a mean of 20 months 
(0–125). Of community clusters, three were characterised 

277 paired pulmonary and extrapulmonary 
         isolates (277 patients) identified in 
         archive database

  74 paired isolates randomly selected for 
        culture and WGS

24 pairs excluded before WGS†
      10 not located
      14 failed to grow

50 pairs had WGS

   1 isolate (therefore 1 pair) 
       failed quality control

49 pairs (98 isolates) had sequences 
       available for analysis

586 longitudinal pulmonary isolates 
         (181 patients) identified in archive 
         database

157 isolates (36 patients) with maximum 
         intervals selected for culture and WGS

42 isolates excluded before WGS‡
         8 not located
         1 from patient whose 
             other isolates could not 
             be located 
      29 isolates failed to grow§
         4 from patients whose other 
             isolates failed to grow

115 isolates (30 patients) had WGS 

5 isolates failed quality 
    control

110 isolates (30 patients) had sequences 
         available for analysis

93 isolates (70 patients in 27 households) 
       identified in archive database

93 isolates selected for culture and WGS 

0 isolates excluded before WGS

93 isolates had WGS

7 isolates (from 7 patients in 
    3 households) failed quality 
    control¶

86 isolates (63 patients in 25 households) 
       had sequences available for analysis 

516 isolates (454 patients in 11 clusters)*

Cross-sectional isolates Longitudinal isolates Household isolates Community isolates

253 isolates (191 patients) selected for 
         culture and WGS

32 isolates (from 27 patients, 
      19 of whom were excluded 
      entirely) excluded before 
      WGS

221 isolates (172 patients) had WGS

4 isolates (4 patients) failed 
    quality control

217 isolates (168 patients from 11 clusters) 
         had sequences available for analysis

Figure 1: Sample selection
The cross-sectional and community analyses datasets overlapped by 14 isolates (eight patients); the longitudinal and community analyses by 23 (fi ve); the longitudinal, household, and community 
analyses by 26 (seven); and the household and community analyses by 32 (29). WGS=whole-genome sequencing. *Cluster 9 is a large, previously described cluster defi ned by mycobacterial 
interspersed repetitive-unit–variable-number tandem-repeat genotyping that we did not attempt to sequence completely because of its size (>280 patients);27 18 patients from this cluster were 
included because 46 isolates from them had been sequenced as cross-sectional, longitudinal, or household isolates; in the remaining ten community clusters, we attempted to culture and sequence all 
207 isolates (173 patients), successfully sequencing 171 isolates (150 patients). †Mean time since original isolation was 8 years for missing isolates and 9 years for isolates that failed to regrow, 
compared with 5 years for successfully cultured isolates. ‡Mean time since original isolation was 10 years for missing isolates and 8 years for isolates that failed to regrow, compared with 6 years for 
successfully cultured isolates. §One patient excluded because all his or her isolates failed to grow. ¶Only two households were excluded. 

See Online for appendix
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by school outbreaks, six by community-based substance 
misuse, one by a regionally dispersed ethnic group, and 
one by M bovis infection (table). Mean duration of 
community outbreaks was 81 months (range 9–144).

The greatest genomic diversity expected within indi-
viduals was estimated by sequencing paired (pulmonary 
vs non-pulmonary) isolates from 49 patients and 
110 longitudinal isolates from 30 patients (fi gure 2). In 
three cases, the large numbers of SNPs that separated 
isolates (475, 1032, and 1096; fi gure 2) suggested that 
patients had been secondarily infected with a diff erent 
strain rather than within-host evolution. In one patient 
with tuberculous meningitis and normal chest CT, paired 
cerebrospinal fl uid and sputum isolates diff ered by 
11 SNPs (fi gure 2). In four individuals who developed 
drug resistance during 7–10 years of persistent pul-
monary infection, maximum genetic distance ranged 
from six to ten SNPs (fi gure 2). All 71 other pairwise 
comparisons (ie, cross-section and longitudinal isolates) 
diff ered by up to fi ve SNPs (fi gure 2). Cross-sectional 
isolates had signifi cantly fewer SNPs than did 

longitudinal isolates (37 [79%] of 47 vs 11 [46%] of 24 had 
no SNPs; rank-sum p=0·009; fi gure 2).

We estimated the genetic distances between individ uals 
in known recent transmission chains from the sequences 
of 86 isolates from 63 individuals in 25 house hold-defi ned 
outbreaks. All 38 links (number of patients minus number 
of outbreaks) between patients were fi ve or fewer SNPs. 
We recorded no evidence that the distribution of SNPs 
below this threshold diff ered from that of longitudinal 
isolates (38 [100%] of 38 vs 24 [80%] of 30; rank-sum 
p=0·16; fi gure 2). Overall, with exclusion of diff erences of 
more than 400 SNPs, 109 (96%) of 114 paired isolates from 
within individuals and household outbreaks diff ered by 
fi ve or fewer SNPs, 108 (95%) by four or fewer SNPs, and 
103 (90%) by three or fewer SNPs.

We estimated the rate of microevolution of M tuber-
culosis from the fi rst and last sequenced isolates of the 
longitudinally sampled patients and from the household 
outbreaks. A rate of change in DNA sequences of 
0·5 SNPs per genome per year (95% CI 0·3–0·7) was 
inferred by maximum likelihood (fi gure 2). However, 

Dominant MIRU-VNTR profi le Phylotype* Description Patients linked to cluster WGS 
isolates

Time 
span of 
WGS 
isolates 
(months)

Known links 
between patients†

Possible links 
between patients†

No known links 
between patients†

By 
MIRU-
VNTR 
15

By 
MIRU-
VNTR 
24

By 
discordant 
MIRU-
VNTR 
(22-23 
loci)

≤5 
SNPs

6–12 
SNPs

>12 
SNPs

≤5 
SNPs

6–12 
SNPs

>12 
SNPs

≤5 
SNPs

6–12 
SNPs

>12 
SNPs

Cluster 
1

32433.2332514327.223423352 European-
American

School 0 8 0 9 13 7 0 0 0 0 0 0 0 0

Cluster 
2

32333.2512515324.234433363 European-
American

School 6 3 0 9 92 6 0 0 1 0 0 1 0 0

Cluster 
3

42234.2742511324.432423254 Central Asian School 0 6 0 6 59 4 0 0 0 0 0 0 0 1

Cluster 
4

32433.232515322.224423542 European-
American

Substance 
misuse

15 31 1 54 88 8 0 0 0 0 0 38 0 0

Cluster 
5

32433.2432515323.241433273 European-
American

Substance 
misuse

7 2 0 9 138 1 0 0 6 0 0 1 0 0

Cluster 
6

32433.2432515324.443443153 European-
American

Substance 
misuse

3 19 4 29 144 20 0 0 1 1 0 1 2 0

Cluster 
7

–2234.2742511334.432422254 Central Asian Substance 
misuse

0 8 2 17 104 7 0 0 1 1 0 0 0 0

Cluster 
8

42435.2332517333.346443584 Beijing Substance 
misuse

0 6 0 6 9 1 0 0 1 0 0 3 0 0

Cluster 
9

32333.2432515314.434443183 Unknown‡ Substance 
misuse

0 16 2 46 83 7 0 0 0 0 0 7 3 0

Cluster 
10

42234.2742511334.432423254 Central Asian Ethnic 
group

2 21 0 26 102 6 0 0 0 0 0 10 0 6

Cluster 
11

75553.2222415322.234323241 Mycobacterium 
bovis

·· 1 5 0 6 60 2 0 0 1 0 0 1 1 0

Total ·· ·· ·· 34 125 9 217 ·· 69 0 0 11 2 0 62 6 7

Data are numbers unless otherwise stated. MIRU-VNTR=mycobacterial interspersed repetitive-unit–variable-number tandem-repeat. WGS=whole-genome sequencing. *Phylotypes based on the schema 
approved by the Health Protection Agency.14 †Total number of links in a cluster=total number of patients in cluster sequenced minus one. ‡Spoligotyped as European-American.27

Table: MIRU-VNTR-based community clusters
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within the variation we recorded, some rates were con-
sistent with latent infection. All longitudinally sampled 
patients received antituberculosis drug treatment. HIV 
testing was not systematically done until 2011 (only eight 
results were available, all negative); however, UK rates of 
co-infection are fairly low, declining steadily from 9·0% 
in 2003, to 4·9% in 2010.28 We recorded weak evidence 
that the initial genetic diversity and rate of change in 
DNA sequences might vary be tween household 
outbreaks and longitudinally sampled individuals (joint 
vs separate models, p=0·08). However, the mu tation rate 
was lower in individuals followed up longitudinally 
(0·3 SNPs per genome per year [95% CI 0–0·6]) than in 
those in household outbreaks (0·6 SNPs per genome per 
year [0·3–0·9]), and the initial diversity was higher 
(1·2 SNPs [0·3–1·9] vs 0·2 SNPs [0·008–0·7]).

We used these results to construct two thresholds 
against which to assess the MIRU-VNTR-based 
community clusters. We expected epidemiological link-
age consistent with transmission to exist between isolates 
diff ering by fi ve or fewer SNPs, and not to exist between 
isolates diff ering by more than 12 SNPs. We deemed 
pairs diff ering by six to 12 SNPs to be indeterminate.

The 11 community clusters were defi ned by their MIRU-
VNTR profi le (or up to two locus mismatches; table). 
Starting from the fi rst case in each cluster, we constructed 
11 networks (one for each cluster), accounting for 
157 potential transmissions (edges; appendix). Within the 
three clusters centred on schools, 17 (85%) of 20 patients 

could be epidemiologically linked (table), with no link 
confi rmed in three MIRU-VNTR-matched community 
isolates (the community-based case in cluster three was 
35 SNPs away from the school isolates). In clusters six 
and seven, 27 (79%) of 34 patients could also be 
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31–150

>400
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Cross-sectional
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(49 patients)
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No known
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(75)

0 20 40 60 80 100 120
Months

SN
Ps

0

2

4

6

8

10

Minimum diversity
within households

Maximum diversity
within individuals

Minimum diversity between patients in
MIRU-VTNR community clusters

A B
Individuals
Households
Stepwise 95% prediction interval
Mean rate of change
95% CI

*

Figure 2: Genetic diversity of related isolates of Mycobacterium tuberculosis
(A) Time-unadjusted pairwise genetic distances in SNPs. 22 of the 38 links within the 25 household clusters also occur within community clusters (ie, known linkage) but are shown with household 
isolates and not with community isolates. Top horizontal dashed line indicates the threshold above which direct transmission can be judged to be unlikely; bottom horizontal dashed line indicates the 
threshold below which transmission should be investigated. (B) Rate of change in DNA sequences estimated by coalescent-based maximum likelihood from the fi rst and last isolates from individuals 
with persistent open tuberculosis and from households. SNP=single nucleotide polymorphism. MIRU-VNTR=mycobacterial interspersed repetitive-unit–variable-number tandem-repeat.*Isolates had 
substantially diff erent MIRU-VNTR profi les. †Pair of Mycobacterium africanum isolates are represented two SNPs apart.
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Figure 3: SNPs between MIRU-VNTR types by number of locus diff erences
Comparison of all isolates with complete 24-locus MIRU-VNTR profi les. As each isolate was compared to each 
other isolate, the number of SNPs and MIRU-VNTR loci at which they diverge was recorded. Results are plotted on 
a log scale. Circle sizes are proportionate to the number of pairs diverging by a specifi c number of loci and SNPs. 
Dashed red box includes isolates that diff er by fi ve or fewer SNPs. SNP=single nucleotide polymorphism. 
MIRU-VNTR=mycobacterial interspersed repetitive-unit–variable-number tandem-repeat.
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epidemiologically linked (table). However, in the 
remaining six clusters, including one associated with an 
African immigrant community (cluster ten), only 25 (24%) 
of 103 patients could be epidemiologically linked (table).

None of 69 epidemiologically linked and two (15%) of 
13 possibly epidemiology linked patients were separated 
by more than fi ve SNPs (seven and 12 SNPs respectively); 
conversely, 13 (17%) of 75 epidemiologically un linked 
patients were separated by more than fi ve SNPs and seven 
(9%) by more than 12 SNPs (three-way comparison exact 
p<0·0001; table). However, 22 potential transmissions of 
the 69 known to be epidemiologically linked featured in 
both household and community outbreaks. Excluding 

those, the number of epidemiologically linked patients 
diff ering by fi ve SNPs or fewer was 47 (p=0·003).

The ability to identify cryptic outbreaks was most evident 
in cluster four, in which fi ve SNPs or fewer separated 
38 individuals with a background of substance misuse for 
whom contact tracing had been diffi  cult (table). The ability 
to rule out transmission was par ticularly evident in cluster 
ten, in which more than 30 SNPs separated fi ve individuals 
from a recent immigrant community and one British-
born individual from the next nearest patient. In this 
cluster, isolates from ten patients from two cities 45 miles 
apart, with no known epidemiological links, could be 
genetically linked by fi ve or fewer SNPs.
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To explore the potential for 24-locus MIRU-VNTR typing 
to miss genuine transmission, we assessed the proportion 
of sequenced isolates matching only at 22 or 23 MIRU-
VNTR that were genetically linked by fi ve or fewer SNPs. 
Of 195 isolates typed at 24 loci, 14 pairs were matched at 
22–23 loci. Three pairs of isolates were from individuals 
and three from households, all within one SNP of each 
other. Of four mismatching isolates in com munity 
clusters, two had possible epidemiological links to the 
cluster (four and 12 SNPs) and two had no known link to 
the cluster (none and fi ve SNPs). The remaining four pairs 
had no known epidemiological links and were separated 
by 25, 94, 96, and 275 SNPs (exact p=0·03 comparing six of 
six known links [individuals and households] vs three of 
eight other links of fi ve or fewer SNPs). No isolates 
matching at up to 21 MIRU-VNTR loci were genetically 
linked by fi ve or fewer SNPs (fi gure 3, appendix).

The star-like pattern that would be expected with a 
super-spreader was apparent in all non-school outbreaks 
except for cluster eight (fi gure 4). The possible presence 

of a super-spreader was supported clinically and epi-
demiologically in clusters fi ve and seven. In cluster fi ve, 
the nine isolates were sequenced in two separate HiSeq 
runs. Phylogenetic analysis of the fi rst six isolates 
identifi ed a vacant central node in the genetic tree, which 
is consistent with a potentially still unsequenced com-
mon root (isolate). One of the three isolates from the 
subsequent HiSeq run matched this predicted sequence 
precisely (fi gure 4). The isolate belonged to a treatment 
non-compliant drug dealer with cavitating, pulmonary, 
smear-positive tuberculosis. This probable super-
spreader had been diagnosed early in the outbreak, had 
interacted with many contacts, and was eventually 
detained under public health law in the interests of 
public safety. In cluster seven, the centrally placed 
individual was treatment non-compliant for 4 years, and 
had cavitating, pulmonary, smear-positive disease and 
known or possible epidemiological links to all other 
infected individuals. Notably, variants in other patients’ 
sequences were present as mixed base-calls in this 
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individual’s four sequenced genomes (fi gure 5). Insuf-
fi cient epidemiological data for the presence of a super-
spreader were available for other clusters.

In addition to identifying super-spreaders, phylogenetic 
topology was indicative of the sampling density within 
MIRU-VNTR clusters. For example, fewer vacant black 
nodes can be seen in cluster four, where isolates from 
47 (90%) of 52 patients clustered by MIRU-VNTR were 
sequenced, than in cluster nine, where only 18 (6%) of 
280 were sequenced (fi gure 4).

Discussion
Whole-genome sequencing can delin eate the margins 
and structure of tuberculosis outbreaks with 
unprecedented resolution (panel). We established that 
most M tuberculosis isolates were within fi ve SNPs of 
another isolate taken from the same individual or from a 
household contact. This fi nding provides essential 
context for interpretation of the diversity expected from 
closely related isolates in trans mission chains. In a 
setting with low HIV prevalence, we estimated that the 
rate of genetic changes was 0·5 SNPs per genome per 
year, which is similar to estimates in macaques.29 We 
predicted that the max imum number of genetic changes 

at 3 years would be fi ve SNPs and at 10 years would be 
ten SNPs. We then showed that all epidemiologically 
linked patients could be genetically linked by fi ve or 
fewer SNPs. Our results suggest that within MIRU-
VNTR-defi ned clusters, whole-genome sequencing off ers 
suffi  cient resolution to identify or discount outbreaks.

The greatest public health benefi t is expected from 
tracing the contacts of the most infectious individuals. 
Within eight non-school community clusters, we iden-
tifi ed two possible super-spreaders by inspecting the 
genetic trees for nodes from which several lineages 
diverged and by comparing this phylogenetic signal 
with epidemiological data. Although often hypothesised, 
direct genetic evidence for such super-spreaders has 
previously been elusive. In the two clusters with potential 
super-spreaders, the individual or isolate located in the 
centre of the tree was also epidemiologically the most 
probable source of secondary cases. The situation in 
cluster fi ve is of particular interest. Patients who remain 
undiagnosed cannot be detected by current typing 
methods, have many opportunities to cause secondary 
infections, and, as the natural history of disease suggests, 
might never seek medical attention.30 Although in our 
specifi c examples the central node or source case was 
diagnosed early in each outbreak, public health teams 
could use data from whole-genome sequencing in real 
time to target active cases when the existence of 
undiagnosed individuals is predicted by the evolving 
genetic topology of the outbreak. As interpretation of the 
topology of genetic trees becomes increasingly robust, it 
might become not only a useful instrument for iden-
tifi cation of potential super-spreaders, but also for 
assessment of the completeness of outbreak inves-
tigations and likelihood of continuing transmission.

Although MIRU-VNTR typing has been an eff ective way 
to identify outbreaks of tuberculosis,3,4,27,31 the genomic 
diversity within some MIRU-VNTR geno types11,32 can 
leave public health teams uncertain about how intensively 
to investigate clusters when epidemio logical links are not 
apparent. Our results, which support the evidence that 
microevolutionary events can change a MIRU-VNTR 
genotype within a host,33 add to this uncertainty. The 
eff ects are that long and costly contact tracing eff orts could 
ultimately be futile. By contrast, the reliability of whole-
genome sequencing can provide impetus for targeted 
contact tracing and interventions. For example, these data 
informed investigations into cluster seven, helping to 
identify additional contacts who then received isoniazid 
and rifampicin prophylaxis after testing positive for latent 
disease by interferon-γ release assays (unpublished).

As well as the molecular clock, our thresholds of fi ve or 
fewer or more than 12 SNPs are relevant beyond the 
setting from which they were derived. Because our study 
popu lation was ethnically diverse and produced isolates 
of all fi ve M tuberculosis clades, and many people 
originated from high-transmission countries, we believe 
these results will be valid in high-incidence settings 

Panel: Research in context

Systematic review
We searched PubMed with the key words “tuberculosis”, “whole genome sequencing”, 
“outbreak”, and “cluster” for reports published in English before June 15, 2012. When our 
study began, only one report of the application of whole-genome sequencing to analysis 
of Mycobacterium tuberculosis outbreaks had been published.8 Schürch and colleagues8 
presented data from a small subset of isolates belonging to a larger cluster and showed 
the step-wise accumulation of single nucleotide polymorphisms between transmitting 
individuals with time. A second, larger study was reported in 2011,12 and detailed the use 
of whole-genome sequencing in combination with a social network analysis for the 
investigation of an entire cluster. Gardy and colleagues12 showed that resolution of 
whole-genome sequencing was greater than was that of mycobacterial interspersed 
repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing by delineating two 
outbreaks with a MIRU-VNTR-defi ned cluster. A third key report was published later in 
2011,29 describing the molecular clock in macaques and giving the fi rst indication of a 
mutation rate for M tuberculosis. Ford and coworkers29 presented data that suggested that 
the rate of change in DNA sequences was constant at 0·5 single nucleotide 
polymorphisms per genome per year in latent, active and re-activated disease.

Interpretation
Our study expands on previous fi ndings to provide a framework for the analysis of 
whole-genome sequencing data as applied to fi eld epidemiology. By assessing the genetic 
diversity within and between individuals, we have provided essential information for 
investigators attempting to apply this technology to real outbreaks. A key component of 
our analysis was an estimation of the molecular clock in people. We have shown how 
whole-genome sequencing technology can be used to distinguish between patients who 
are probably part of a recent transmission chain and those who are not. This ability to link 
patients to an outbreak before epidemiological data have been gathered could have 
substantial implications for contact tracing in the future. The apparent potential for 
whole-genome sequencing data to identify super-spreaders could aff ect these practices 
still further.
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outside of the Midlands, UK. However, the usefulness of 
these fi ndings in these settings still needs to be formally 
assessed. Patients who remain undiagnosed or receive 
inadequate treatment could transmit tuberculosis as 
super-spreaders, leading to increased cluster sizes. Public 
health teams could derive more benefi t from ruling out 
recent transmission (>12 SNPs) than they do from 
relating cases to each other by fi ve or fewer SNPs, 
because the number of intermediary cases within 3 years 
of evolution might still be large. Nevertheless, iden-
tifi cation of phylogenetic signals for potential super-
spreaders should be possible in such settings. As 
indicated by the mixed base-calls recorded in cluster 
seven, several mycobacterial subpopulations could arise 
within inadequately treated patients, potentially aiding 
the identifi cation of super-spreaders. Although charac-
terisation of the dynamics of cluster nine (>280 patients) 
would therefore have been informative, we did not have 
the resources to sequence it in its entirety. However, the 
phylogenetic topology in cluster four is consistent with 
more than one super-spreader, although the epidemio-
logical history of this outbreak was insuffi  ciently char-
acterised to allow us to draw any further conclusions.

A potential limitation of our study is that we did not 
sequence all isolates from the community-based clusters 
because some were unavailable. However, when we 
sequenced isolates that diverged by fi ve or fewer SNPs, 
any missing intermediate cases would make trans-
mission more not less plausible. Additionally, real-time 
contact investigations have to deal with missing data, 
using existing information to judge the plausibility of 
additional, intermediary cases. Another limitation is that 
we could accurately map only about 88% of each genome, 
excluding the repetitive segments within the reference 
genome that include the regions defi ning MIRU-VNTR. 
Although additional diversity could therefore be masked 
from our analysis, how much additional resolution this 
diversity would provide is unclear.

In view of the rapidly declining costs of whole-genome 
sequencing and advances that have substantially im-
proved turnaround-times,7 the HPA is considering its 
introduction for routine tuberculosis public health prac-
tice in England  (unpublished). Costs are approaching 
GBP£50 per sequence, which are similar to those of 
MIRU-VNTR typing. Whole-genome sequencing will 
probably be of greatest benefi t in complex community 
outbreaks when epidemiological data are diffi  cult to 
obtain and the potential for targeted and eff ective public 
health surveillance and intervention is substantial. Our 
fi ndings are therefore an early indication of the potential 
for whole-genome sequencing to transform tuberculosis 
prevention and control.
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