Concurrent session 5: Systems and network biology

Program/Abstract # 23
Mapping spatiotemporal gene regulatory networks in the Arabidopsis root stele
Mallorie Taylor-Teeples a, Allison Gaudinier b, Lifang Zhang b, John Reece-Hoyes c, Sebastian Ahnert b, Marian Walhout c, Doreen Ware c, Siobhan M. Brady e
a Davis, CA, USA
b Cold Spring Harbor, USA
b Worcester, USA
c Cambridge, UK
e UC Davis Plant Biology, Davis, CA, USA

Arabidopsis root development provides a remarkably tractable system to delineate tissue-specific, developmental gene regulatory networks and to study their functionality in a complex multicellular model system over developmental time. Tightly controlled gene expression within tissues is a hallmark of multicellular development and is accomplished by transcription factors (TFs) and microRNAs (miRNAs). We present an automated, enhanced yeast one hybrid (eY1H) assay using a tissue-specific TF resource to comprehensively map gene regulatory networks in the Arabidopsis root stele. These gene regulatory networks are robust and highly combinatorial in nature. Using these methods and computational modeling, we have additionally modeled a gene regulatory network that regulates distinct transcriptional events in developmental time. Distinct regulatory modules were identified that temporally drive the expression of genes involved in xylem specification and in the subsequent synthesis of secondary cell wall metabolites associated with xylem differentiation.

doi:10.1016/j.ydbio.2011.05.036

Program/Abstract # 24
Web based algorithms EvoPrinter and cis-Decoder reveal functional sequences in enhancers and complex networks of transcription factor interactions required for gene regulation
Thomas Brodya, Alexander Kuzin b, Mukta Kundua, Jermaine Ross a, Doreen Warreb, Siobhan M. Brady e
a NINDS, NIH Neural Cell-Fate Determinants Sect, Bethesda, USA
b Cold Spring Harbor, USA
c Worcester, USA
d Cambridge, UK
e UC Davis Plant Biology, Davis, CA, USA

A hierarchical system of activators and repressors operates to establish temporally derived pan-neural cell layers that constitute the embryonic CNS. We have developed web-accessed algorithms EvoPrinter and cis-Decoder and a Drosophila genome-wide conserved sequence cluster database to identify functionally related enhancers for temporal determinants. The comparative genomics tool EvoPrinter shows that enhancers consist of clusters of conserved sequence blocks that are essential for their function. Using the enhancer search and alignment program cis-Decoder, we have identified early and late CNS neuroblast temporal network enhancers that reveal the following properties: 1) most developmental enhancers contain multiple binding sites for a signature factor(s) that defines enhancers of a particular temporal window, and they also contain repeated or unique sites for additional factors; sequences of many of these sites are not novel but instead are variants of either the signature and/or repeat elements, 2) different combinations of transcription factors bind to sites overlapping of the target sites of the signature site-binding determinants or are positioned independently of these sites, 3) Coordinate regulated enhancers can often be identified by possessing shared sites in the same proportionate balance, 4) in many cases multiple sub-pattern enhancers are found associated with developmental genes that drive expression in overlapping, non-identical subsets of cells, 5) many enhancers are multipurpose, functioning in embryo, larva and/or adult, suggesting that it might be that it is easier to incorporate novel functions into a pre-existing enhancer than to create developmentally specific enhancers anew.

doi:10.1016/j.ydbio.2011.05.035
suggest a model for Shh-directed transcription where the Gli-bound cis-regulatory domain acts as a toggle switch to impose Gli-dependent control over genes with multiple cis-regulatory domains.

doi:10.1016/j.ydbio.2011.05.037

Program/Abstract # 26
Hedgehogome: Hedgehog signaling proteome analysis for understanding craniofacial and brain development
Kazushi Aoto, Paul Trainor
Stowers Institute for Medical Research, Kansas City, MO, USA
Loss and gain of Hedgehog (Hh) function in humans cause craniofacial and brain abnormalities such as holoprosencephaly and Gorlin and Grieg syndromes respectively. Holoprosencephaly is associated primarily with mutations in SHH, while Gorlin and Grieg syndromes have been mapped to mutations in PATCHED1 and GLI3. Hh signaling therefore is critically required for proper craniofacial and brain development and must be tightly regulated, however our understanding of the gene and protein networks governing Hh signaling remains incomplete. To identify new Hh protein signaling complexes (“Hedgehogome”) we performed proteomic analyses of mammalian Hh signaling proteins using (1) flag tagged Hh proteins expressed in human Hek293 and stable mouse NIH3T3 cell line and (2) cell-free protein synthesis together with mouse embryo lysates. These approaches have successfully identified novel candidate proteins that are important for mediating Hh signaling. Here we describe the function of A kinase anchoring protein (AKAP11) which associates with the Hh receptor, Patched1 and Hh transducer, smoothened to modulate cell death, proliferation and dorso-ventral patterning of neural tube via PKA signaling activity.

doi:10.1016/j.ydbio.2011.05.039

Program/Abstract # 28
Modulation of hindlimb gene expression patterns by Pitx1
Sungdae Park a, Carlos Infante a, Alexandra Mihala a, Douglas B. Menke b
a University of Georgia, Athens, GA, USA
b University of Georgia Genetics, Athens, GA, USA
Despite the characterization of numerous genes required for limb development, remarkably little is known about the mechanisms determining forelimb vs. hindlimb identity. Pitx1 is a homeodomain transcription factor that is differentially expressed in hindlimbs and implicated in the specification of hindlimb morphology. Earlier studies suggest that the hindlimb transcription factors Tbx4, HoxC10, and HoxC11, are likely direct transcriptional targets of Pitx1, but definitive evidence for this regulatory interplay is lacking. We sought to pinpoint the binding sites that mediate Pitx1 function and to identify additional genes that Pitx1 may directly regulate. Using a ChIP-seq approach in embryonic mouse hindlimbs, we identified thousands of putative Pitx1 binding sites and found these to be significantly enriched near genes involved in limb morphogenesis, including Tbx4, HoxC10, and HoxC11. Analysis of Pitx1-enriched ChIP sequences shows significant overlap of Pitx1 binding sites with functionally verified limb enhancers. Notably, we identified a known hindlimb-specific enhancer in the Tbx4 gene as a binding site for Pitx1. Cell culture studies demonstrate that this hindlimb enhancer is up-regulated in the presence of Pitx1, and in vivo studies show that mutation of the highly conserved Pitx1 binding site in this Tbx4 enhancer results in substantially reduced enhancer activity in mouse embryos. Our findings validate the biological relevance of a Pitx1 binding site in the regulation of Tbx4 expression and provide proof of the direct regulation of Tbx4 by Pitx1. Future work will focus on a subset of putative Pitx1 binding sites that exhibit extreme conservation and that are located near key limb-patternning genes.

doi:10.1016/j.ydbio.2011.05.040