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Abstract

We discuss reactor antineutrino oscillations with non-standard interactions (NSIs) at the neutrino pro-
duction and detection processes. The neutrino oscillation probability is calculated with a parametrization 
of the NSI parameters by splitting them into the averages and differences of the production and detection 
processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their 
true values, and the difference parts can generate the energy (and baseline) dependent corrections to the 
initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable 
in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO) as an 
example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can 
constrain the NSI parameters.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

After the observation of non-zero θ13 from recent reactor [1–5] and accelerator [6,7] neutrino 
experiments, we have established a standard picture of three active neutrino oscillations with 
three mixing angles and two independent mass-squared differences [8]. Therefore the remain-
ing neutrino mass ordering and CP-violating phase, which manifest themselves as the generic 
properties of three neutrino oscillations, constitute the main focus of future neutrino oscillation 
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experiments. On the other hand, the probe of new physics beyond the Standard Model (SM) is 
another motivation for future precision oscillation measurements.

Experiments using reactor antineutrinos have played important roles in the history of neutrino 
physics, which can be traced back to the discovery of neutrinos [9], to establishment [10] of 
the Large Mixing Angle (LMA) Mikheyev–Smirnov–Wolfenstein (MSW) solution of the long-
standing solar neutrino problem, and more recently to the discovery of non-zero θ13 [1,2,4,5]. 
Moreover, future reactor experiments would keep their competitive roles in the determination 
of the neutrino mass hierarchy, precision measurement of oscillation parameters, and search for 
additional neutrino types and interactions. The survival probability for the reactor antineutrino 
νe → νe oscillation in the three neutrino framework can be written as

Pee = 1 − c4
13 sin2 2θ12 sin2 �21 − c2

12 sin2 2θ13 sin2 �31 − s2
12 sin2 2θ13 sin2 �32, (1)

with cij = cos θij , sij = sin θij , and �ji = �m2
jiL/(4E) where L is the baseline distance be-

tween the source and detector, E is the antineutrino energy, and �m2
ji = m2

j − m2
i is the mass-

squared difference between the ith and j th mass eigenstates. Because there is a large hierarchy 
between different mass-squared differences,

30�m2
21 ∼ ∣∣�m2

31

∣∣ ∼ ∣∣�m2
32

∣∣, (2)

different reactor antineutrino experiments may measure different oscillation terms of �12 or 
(�31, �32), which can be categorized into three different groups:

• Long baseline reactor antineutrino experiments, such as KamLAND [10,11]. The aim of 
these experiments is to observe the slow oscillation with �21 and measure the corresponding 
oscillation parameters �m2

21 and θ12.
• Short baseline reactor antineutrino experiments, such as Daya Bay [1–3], Double CHOOZ 

[4], RENO [5]. They are designed to observe the fast oscillation with �31 and �32 (or 
equivalently, �ee [3]) and measure the corresponding oscillation parameters �m2

ee, θ13.
• Medium baseline reactor antineutrino experiments. They stand for the next generation ex-

periments of reactor antineutrinos, with typical representatives of Jiangmen Underground 
Neutrino Observatory (JUNO) [12] and RENO-50 [13]. They can determine the neutrino 
mass ordering (m1 < m2 < m3 or m3 < m1 < m2). In addition, they are expected to provide 
the precise measurement for both the fast and slow oscillations and become a bridge between 
short baseline and long baseline reactor antineutrino experiments.

High-dimensional operators originating from new physics can contribute to the neutrino oscil-
lation in the form of non-standard interactions (NSIs) [14,15]. They induce effective four-fermion 
interactions after integrating out some heavy particles beyond the SM, where the heavy particles 
can be scalars, pseudo-scalars, vectors, axial-vectors, or tensors [16]. For reactor antineutrino 
experiments NSIs may appear in the antineutrino production and detection processes, and can 
modify the neutrino oscillation probability. Therefore, the neutrino mixing angles and mass-
squared differences can be shifted and the mass ordering (MO) measurement will be affected. 
There are some previous discussions on NSIs in reactor antineutrino experiments [17–19] and 
other types of oscillation experiments [20]. In this work, we study the NSI effect in reactor an-
tineutrino oscillations in both specific models and also the most general case. Taking JUNO 
as an example, we apply our general framework to the medium baseline reactor antineutrino 
experiment. We discuss how NSIs influence the standard 3-generation neutrino oscillation mea-
surements and to what extent we can constrain the NSI parameters.
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The remaining part of this work is organized as follows. Section 2 is to derive the analytical 
formalism. We develop a general framework on the NSI effect in reaction antineutrino oscil-
lations, and calculate the neutrino survival probability in the presence of NSIs. In Section 3, 
we give the numerical analysis for the JUNO experiment. We analyze the NSI impacts on the 
precision measurement of mass-squared differences and the determination of the neutrino mass 
ordering, and present the JUNO sensitivity of the relevant NSI parameters. Finally, we conclude 
in Section 4.

2. NSI-induced neutrino oscillations

2.1. Basic formalism

NSIs may occur in the neutrino production, detection and propagation processes in neutrino 
oscillation experiments. The neutrino and antineutrino states produced in the source and observed 
in the detector are superpositions of flavor states,

∣∣νs
α

〉 = 1

N s
α

(
|να〉 +

∑
β

εs
αβ |νβ〉

)
,

∣∣νs
α

〉 = 1

N s
α

(
|να〉 +

∑
β

εs∗
αβ |νβ〉

)
,

〈
νd
β

∣∣ = 1

Nd
β

(
〈νβ | +

∑
α

εd
αβ〈να|

)
,

〈
νd

β

∣∣ = 1

Nd
β

(
〈νβ | +

∑
α

εd∗
αβ〈να|

)
, (3)

in which the superscripts ‘s’ and ‘d’ denote the source and detector, respectively, and

N s
α =

√∑
β

∣∣δαβ + εs
αβ

∣∣2
, Nd

β =
√∑

α

∣∣δαβ + εd
αβ

∣∣2 (4)

are normalization factors.
In general, NSIs in different physical processes may have distinct contributions. For a certain 

type of neutrino experiments, the same set of effective NSI parameters can be introduced to 
describe the NSI effect. But when one turns to anther type of neutrino experiments, neutrinos 
can have totally different origins and one should use another set of NSI effective parameters to 
parametrize the NSI effect. The parameters εs,d

αβ used here are strongly experiment-dependent, 
and in principle also energy-dependent. However, they are usually considered as the averaged 
effects and treated as constant values.

In order to measure the average and difference between neutrino production and detection 
processes, we introduce two sets of NSI parameters as

ε̃αβ = (
εs
αβ + εd∗

βα

)
/2, δεαβ = (

εs
αβ − εd∗

βα

)
/2, (5)

to rewrite the NSI effect. One should note that the NSI parameters δεαβ are negligibly small 
compared with ε̃αβ when neutrinos are purely left-handed particles [16,20]. However, if neutrinos 
are right-handed particles and the four-fermion interactions are mediated by heavy scalars beyond 
SM, δεeα can reach the percent level [16].

The effective Hamiltonian that describes the vacuum neutrino oscillation is given by

H = 1

2E

[
U∗diag

(
m2

1,m
2
2,m

2
3

)
UT

]
, (6)

where U is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [21] and can be expressed 
in the form [22]
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U = P
†
l

(
c12c13 s12c13 s13

−s12c23e
−iδ − c12s23s13 c12c23e

−iδ − s12s23s13 s23c13
s12s23e

−iδ − c12c23s13 −c12s23e
−iδ − s12c23s13 c23c13

)
Pν, (7)

where sij = sin θij , Pl = diag{eiφ1, eiφ2, eiφ3}, and Pν = diag{1, eiρ, eiσ }. Pl is unphysical since 
charged leptons are Dirac particles. On the other hand, Pν can not be neglected for Majorana 
neutrinos but does not contribute to neutrino oscillations. We write the PMNS matrix in the form 
as in Eq. (7) to keep the first row and the third column of PlUP †

ν real. The mixing angles θ12, θ13, 
θ23 and CP phase δ take the same values as those in the PDG parametrization [8], respectively.

In the presence of NSI effects at the source and detector, the amplitude of the να → να tran-
sition is

Ãαα = 〈
νd

α

∣∣e−iHL
∣∣νs

α

〉 = ∑
βγ

〈
νd

α

∣∣νγ

〉〈νγ |e−iHL|νβ〉〈νβ

∣∣νs
α

〉
= (

δγα + εd∗
γα

)
Aβγ

(
δαβ + εs∗

αβ

)
, (8)

where L is the baseline, and

Aβγ = 〈νγ |e−iHL|νβ〉 =
∑

i

U∗
γ iUβi exp

(
−i

m2
i L

2E

)
(9)

is the amplitude of νβ → νγ without NSIs. It is useful to define

Ũαi = 1

Ñα

∑
β

(
δαβ + ε̃∗

αβ

)
Uβi, δUαi = 1

Ñα

∑
β

δε∗
αβUβi, (10)

where

Ñα =
√∑

β

|δαβ + ε̃αβ |2 =
√

N s
αNd

α +O
(
δε2), (11)

and 
∑

i |Ũαi |2 = 1 is required. Thus we can obtain Ãαα as

Ãαα =
∑

i

(Ũ − δU)∗αi(Ũ + δU)αi exp

(
−i

m2
i L

2E

)
+O

(
δε2), (12)

and the survival probability for να → να is expressed as

P̃αα = |Ãαα|2 = 1 − 4
∑
i<j

|Ũαi |2|Ũαj |2

×
[

sin2 �ji + Im

(
δUαi

Ũαi

− δUαj

Ũαj

)
sin 2�ji

]
+O

(
δε2). (13)

Because of the smallness of δUαi/Ũαi , we can rewrite the above equation as

P̃αα = 1 − 4
∑
i<j

|Ũαi |2|Ũαj |2 sin2 �̃α
ji +O

(
δε2) (14)

with

�̃α
ji = �ji + Im

(
δUαi

˜ − δUαj

˜
)

. (15)

Uαi Uαj
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Note that �̃α
31 = �̃α

32 + �̃α
21 holds, just as the relation in the standard three neutrino case with 

�31 = �32 + �21. For the effective mass-squared differences we have

�m̃2α
ji (E/L) = �m2

ji + Im

(
δUαi

Ũαi

− δUαj

Ũαj

)
4E

L
, (16)

which is an energy/baseline- and flavor-dependent effective quantity.
With Eq. (14) we have obtained a standard-like expression for the antineutrino survival prob-

ability in vacuum in the presence of NSIs. The corresponding NSI effects are encoded in the 
effective mass and mixing parameters. The average parts induce constant shifts for the neutrino 
mixing elements, and the difference parts generate energy and baseline dependent corrections to 
the mass-squared differences. Without prior information on the true mass and mixing parameters, 
we cannot distinguish between the true and effective parameters. Only the energy- and baseline-
dependent feature of the effective parameters can tell us the NSI effects, and correspondingly 
the difference parts of NSIs will be constrained with precise spectral measurements of reactor 
antineutrino oscillations.

2.2. Parametrization of the effective PMNS matrix Ũ

We have defined the matrix Ũ in Eq. (10), which is considered as an effective PMNS matrix 
compared with the original one U in the standard three neutrino framework. However, the unitary 
conditions for Ũ do not hold any more. Instead, we have∑

i

|Ũαi |2 = 1,

∑
i

ŨαiŨ
∗
βi = ε̃∗

αβ + ε̃βα +O
(
ε̃2) for α �= β,

∑
α

ŨαiŨ
∗
αj = δij +

∑
α,β

UαiU
∗
βj

(
ε̃∗
αβ + ε̃βα

) +O
(
ε̃2) for α �= β. (17)

We plan to perform a similar parametrization for Ũ as in Eq. (7). However, Ũ is not a unitary 
matrix and to perform such a parametrization is not a trivial task. Taking account of the relation 
in Eq. (17) and the detailed configuration of neutrino oscillation experiments, we parametrize Ũ
as follows, with s̃ij = sin θ̃ij and c̃ij = cos θ̃ij for simplicity,

1) We first extract two diagonal phase matrices P̃l = diag{eiφ̃1, eiφ̃2, eiφ̃3} and P̃ν =
diag{1, eiρ̃ , eiσ̃ } to make the first row and third column of P̃lŨ P̃ †

ν real and positive. P̃l in-
cludes unphysical phases to be redefined by rephasing the charged lepton fields, but ρ̃ and 
σ̃ are the effective Majorana CP phases modified by NSIs, which do not contribute to the 
neutrino oscillation but will essentially influence the process of the neutrinoless double beta 
decay.

2) We define θ̃13 and θ̃12 through s̃13 = |Ũe3| and s̃12 = |Ũe2|/c̃13. Using the normalization 
relation |Ũe1|2 + |Ũe2|2 + |Ũe3|2 = 1, we have |Ũe1| = c̃12c̃13. These two mixing angles are 
directly related to the reactor antineutrino oscillation experiments.

3) Using θ̃13 defined in 2), we define s̃23 = |Ũμ3|/c̃13, with the equation |c̃12c̃23e
−iδ̃ −

s̃12s̃23s̃13| = |Ũμ2|, we obtain a definition of the CP-violating phase δ̃. |Ũμ1| = |−s̃12c̃23e
−iδ̃

− c̃12s̃23s̃13| is defined from the normalization relation |Ũμ1|2 + |Ũμ2|2 + |Ũμ3|2 = 1.
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4) Since |Ũe3|2 + |Ũμ3|2 + |Ũτ3|2 �= 1, a fourth mixing angle θ̃ ′
23 is needed via the definition 

of c̃′
23 = |Ũτ3|/c̃13. In addition, we define a second CP-violating phase δ̃′ from the equation 

| − c̃12s̃
′
23e

−iδ̃′ − s̃12c̃
′
23s̃13| = |Ũτ2|. Meanwhile, |Ũτ1| = |s̃12s̃

′
23e

−iδ̃′ − c̃12c̃
′
23s̃13| is obtained 

from the normalization relation |Ũτ1|2 + |Ũτ2|2 + |Ũτ3|2 = 1.
5) Finally, there are 4 additional CP-violating phases α̃μ1, α̃μ2, α̃τ1 and α̃τ2 which are defined 

as follows:

α̃μ1 = arg

(
Ũμ1Ũe3

Ũμ3Ũe1

)
, α̃μ2 = arg

(
Ũμ2Ũe3

Ũμ3Ũe2

)
,

α̃τ1 = arg

(
Ũτ1Ũe3

Ũτ3Ũe1

)
, α̃τ2 = arg

(
Ũτ2Ũe3

Ũτ3Ũe2

)
. (18)

To summarize, we have obtained a parametrization similar to Eq. (7):

Ũ = P̃
†
l

⎛
⎝ c̃12c̃13 s̃12c̃13 s̃13

(−s̃12c̃23e
−iδ̃ − c̃12s̃23s̃13)e

iα̃μ1 (c̃12c̃23e
−iδ̃ − s̃12s̃23s̃13)e

iα̃μ2 s̃23c̃13

(s̃12s̃
′
23e

−iδ̃′ − c̃12c̃
′
23s̃13)e

iα̃τ1 (−c̃12s̃
′
23e

−iδ̃′ − s̃12c̃
′
23s̃13)e

iα̃τ2 c̃′
23c̃13

⎞
⎠ P̃ν .

(19)

Fifteen parameters are included in Ũ and ten of them (θ̃12, θ̃13, θ̃23, θ̃ ′
23, δ̃, δ̃

′, α̃μ1, α̃μ2, α̃τ1, α̃τ2) 
are related to neutrino oscillations. In the case of ε̃ → 0, we can restore the original PMNS matrix 
of three active neutrinos as

θ̃13 → θ13, θ̃12 → θ12, θ̃23, θ̃
′
23 → θ23,

δ̃, δ̃′ → δ, α̃μ1, α̃μ2, α̃τ1, α̃τ2 → 0. (20)

One should notice that although the effective PMNS matrix takes a simple form as in Eq. (19), 
the corresponding parameters are in general dependent on the type of experiments. We should 
use different Ũ to characterize different realizations of the effective PMNS matrix for reactor and 
accelerator neutrino experiments. This is different from the non-unitary effect of the PMNS ma-
trix, where ε̃ is used to parametrize the universal mixing between the active and sterile neutrinos 
and δε = 0 by definition. In this case, Ũ is an effective PMNS matrix for all neutrino oscillation 
experiments.

2.3. Reactor antineutrino oscillation probabilities

In reactor antineutrino oscillations, only the electron antineutrino survival probability is rel-
evant because of the high threshold of the μ/τ production. With the parametrization of Ũ in 
Eq. (19), we can rewrite Pee with these effective mixing parameters as

P̃ee = 1 − c̃4
13 sin2 2θ̃12

[
sin2 �21 + (δε1 − δε2) sin 2�21

]
− c̃2

12 sin2 2θ̃13
[
sin2 �31 + (δε1 − δε3) sin 2�31

]
− s̃2

12 sin2 2θ̃13
[
sin2 �32 + (δε2 − δε3) sin 2�32

] +O
(
δε2)

= 1 − c̃4
13 sin2 2θ̃12 sin2 �̃21 − c̃2

12 sin2 2θ̃13 sin2 �̃31 − s̃2
12 sin2 2θ̃13 sin2 �̃32 +O

(
δε2)
(21)

with
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�̃ji = �ji + δεi − δεj ,

δε1 = Im(δUe1)

c̃12c̃13
, δε2 = Im(δUe2)

s̃12c̃13
, δε3 = Im(δUe3)

s̃13
, (22)

where the superscript α = e in �̃e
ji has been ignored.

The average part ε̃ can be treated as constant shifts to mixing angles θ12 and θ13, and the 
difference part δε leads to energy- and baseline-dependent shifts to the mass-squared differences 
�m2

ji as

�m̃2
ji(E/L) = �m2

ji + (δεi − δεj )4E/L . (23)

However, only two combinations of the three parameters δεi contribute to the oscillation proba-
bility thanks to the relation (δε2 − δε3) = (δε1 − δε3) − (δε1 − δε2). It is notable that one cannot 
distinguish the effect of mixing angle shifts from the scenario of three neutrino mixing using 
reactor antineutrino oscillations. This degeneracy can only be resolved by including different 
types of neutrino oscillation experiments, where the NSI parameters and their roles in neutrino 
oscillations are totally distinct. On the other hand, the shifts of mass-squared differences are 
clearly observable due to the baseline- and energy-dependent corrections in the reactor antineu-
trino spectrum.

Different kinds of reactor antineutrino oscillation experiments have their own advantages in 
measuring the NSI parameters. The long baseline reactor antineutrino experiment (e.g., Kam-
LAND) can measure the slow oscillation term �21 and thus are sensitive to the measurement of 
δε1 − δε2. Since the fast oscillation terms �31 and �32 are averaged out, the oscillation proba-
bility P̃ee is reduced to

P̃ee = s̃4
13 + c̃4

13

{
1 − sin2 2θ̃12

[
sin2 �21 + (δε1 − δε2) sin 2�21

]}
. (24)

The short baseline reactor antineutrino experiments (e.g., Daya Bay) are designed to measure the 
fast oscillation terms �31 and �32 (or equivalently, �ee), and are effective to constrain δε1 −δε3. 
Since the slow oscillation term �21 is negligible, the oscillation probability P̃ee can be simplified 
as

P̃ee = 1 − sin2 2θ̃13 sin2 �ee − η
[
c̃2

12(δε1 − δε3) + s̃2
12(δε2 − δε3)

]
sin2 2θ̃13 cos 2�ee.

(25)

For the reactor antineutrino oscillation at the medium baseline (e.g., 52.5 km), we can generalize 
the formalism given in Ref. [23] to see how the mass ordering measurement can be influenced 
by the NSI effect. The oscillation probability in Eq. (21) can be rewritten as

P̃ee = 1 − 1

2
sin2 2θ̃13 − c̃4

13 sin2 2θ̃12
[
sin2 �21 + (δε1 − δε2) sin 2�21

]
+ 1

2
sin2 2θ̃13(C cos 2�ee − ηS sin 2�ee), (26)

where

�ee = �m2
eeL

4E
, �m2

ee = c̃2
12

∣∣�m2
31

∣∣ + s̃2
12

∣∣�m2
32

∣∣, (27)

and
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C = c̃2
12 cos

(
2s̃2

12�21
) + s̃2

12 cos
(
2c̃2

12�21
)

− 2(δε1 − δε3)c̃
2
12 sin

(
2s̃2

12�21
) + 2(δε2 − δε3)s̃

2
12 sin

(
2c̃2

12�21
)
,

S = c̃2
12 sin

(
2s̃2

12�21
) − s̃2

12 sin
(
2c̃2

12�21
)

+ 2(δε1 − δε3)c̃
2
12 cos

(
2s̃2

12�21
) + 2(δε2 − δε3)s̃

2
12 cos

(
2c̃2

12�21
)
, (28)

with η = ±1 for the normal mass ordering (NMO) and inverted mass ordering (IMO), respec-
tively. As a function of δε1 − δε3 and δε2 − δε3, S varies with the NSI parameters, which can 
further alter the difference of oscillation probabilities between NMO and IMO. Since NSIs are 
constrained to the percent level [24], we expect that NSIs will not significantly affect the mass 
ordering measurement.

Finally, one should keep in mind that there is an additional correction from terrestrial matter 
effects during the neutrino propagation inside the Earth. In addition to the Hamiltonian in Eq. (6), 
there is a matter potential term written as

Hmat = 1

2E
diag(−ACC,0,0), (29)

where −ACC characterizes the contribution of charged-current interactions between antineutri-
nos and electrons in matter and ACC = 2

√
2GF NeE, with Ne being the electron number density. 

For reactor antineutrino experiments, ACC is sufficiently small compared with the kinetic term 
�m2

ji where the matter corrections to oscillation parameters of the solar sector are given by

sin2 2θM
12 
 sin2 2θ12

(
1 − 2

ACC

�m2
21

cos 2θ12

)
,

�m2M
21 
 �m2

21

(
1 + ACC

�m2
21

cos 2θ21

)
, (30)

and the magnitude of these corrections is estimated as

ACC

�m2
21

cos 2θ12 
 0.5% × E

4 MeV
× ρ

3 g/cm3
, (31)

with ρ being the matter density along the antineutrino trajectory in the Earth. In comparison, 
the correction to parameters of the atmospheric sector is only the order of 10−5. In our follow-
ing studies, matter effects during the neutrino propagation will be neglected in the analytical 
calculation but effectively included in our numerical analysis.

The NeE suppression leads to negligible NSI effects in the propagation process. The scenario 
is very different from other types of neutrino oscillation experiments, where NSIs during prop-
agation lead to much larger corrections to oscillation probabilities than those at the source and 
detector. In reactor antineutrino oscillations NSIs during propagation can be safely neglected.

3. Numerical simulation

In this section, following the JUNO nominal setup in Ref. [12], we will numerically show the 
NSI effect in the medium baseline reactor antineutrino experiment. We will illustrate how the 
NSI effect shifts the mass-squared differences, how it influences the mass ordering measurement 
and to what extent we can constrain the NSI parameters.
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3.1. Nominal setups

We employ the true power and baseline distribution in Table 1 of Ref. [12]. The weighted 
average of the baseline is around 52.5 km with baseline differences less than 500 m. We use 
the nominal running time of 1800 effective days for six years, and detector energy resolution 
3%/

√
E(MeV) as a benchmark. An NMO is assumed to be true otherwise mentioned explicitly. 

The relevant oscillation parameters are θ̃12, θ̃13, �m2
21 and �m2

ee and the NSI parameters are 
δε1 − δε2, δε1 − δε3.

We directly employ the mixing angles measured in recent reactor antineutrino experiments as 
our effective mixing angles, which can be shown as

sin2 2θ̃13 = sin2 2θD
13 = 0.084, tan2 θ̃12 = tan2 θK

12 = 0.481. (32)

The measured mixing angles θD
13 and θK

12 are from Daya Bay [25] and KamLAND [26], respec-
tively. For some recent discussions on how the true mixing angles are modified by the average of 
the NSI effect in a simplified version, see [18,27]. However, the measured mass-squared differ-
ences �m2 D

ee from Daya Bay [25] and �m2 K
21 from KamLAND [26] can be viewed as the true 

parameters rather than effective oscillation parameters, i.e.,

�m2
ee = �m2 D

ee = 2.44 × 10−3 eV2, �m2
21 = �m2 K

21 = 7.54 × 10−5 eV2. (33)

The reason is that although the mass-squared differences have energy/baseline-dependent cor-
rections as shown in Eq. (23), these shifts are sufficiently small compared with the current level 
of uncertainties. In details, δεi may be in the percent level and the ratio E/L for Daya Bay 
is around (E/L)D 
 2 MeV/km 
 4 × 10−4 eV2, and for KamLAND is around (E/L)K 

0.02 MeV/km 
 4 × 10−6 eV2. Therefore the shifts are still below the sensitivity of Daya Bay 
[25] and KamLAND [26], and the measured parameters can be approximate to the true values 
for �m2

ee and �m2
21, respectively.

In our following numerical analysis, two different treatments for the NSI parameters will be 
explored:

• The first treatment is a class of specific models with democratic entries for δεαβ , and for 
simplicity we assume that these models have identical magnitude in Im(δUei) but differ-
ent relative signs. The configurations of {Im(δUe1), Im(δUe2), Im(δUe3)} for these specific 
models are defined as

S1: (δU,+δU,+δU), S2: (δU,+δU,−δU),

S3: (δU,−δU,+δU), S4: (δU,−δU,−δU), (34)

respectively. Therefore from Eq. (22), δε2 can be roughly larger than δε1 due to θ12 < 45◦
and both of them are the same order of δU. δε3 can be several times larger due to the small-
ness of θ13.

• The second one is the general treatment for the NSI parameters. As shown in Eq. (21), only 
two combinations of the NSI parameters δεi are independent, thus we can treat (δε1 − δε2)

and (δε1 −δε3) as free parameters to cover the full parameter space. Note that the non-unitary 
effect is identical with NSIs for the case of δεαβ = 0. If we can observe the splittings of �̃α

ji

compared with �ji , we may distinguish NSIs from the non-unitary effect.
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3.2. Antineutrino spectrum

To calculate the expected reactor νe spectrum in the presence of NSIs, we need first deal with 
the standard case without the NSI effect. The energy spectrum of detected events S(Evis), as a 
function of the visible energy Evis of the inverse β-decay νe +p → e++n (IBD), is parametrized 
as

S(Evis) =
∞∫

me

dEe

[ ∞∫
ET

dE

(∑
i

NiΦi(E)Pee(E/Li)

)
dσ(E, Ee)

dEe

]
r(Ee + me,Evis), (35)

where Φi(E) is the antineutrino flux with i standing for different reactor cores and E the an-
tineutrino energy, Ni is the corresponding normalization and conversion factor, Pee(E/Li) is the 
oscillation probability of νe → νe with different baseline Li from the νe source i to the detec-
tor, dσ(E, Ee)/dEe is the IBD differential cross section with Ee being the true positron energy, 
r(Ee +me, Evis) is the Gaussian energy resolution function with a standard deviation σE defined 
as

σE

Ee + me

= 3%√
(Ee + me)/MeV

. (36)

In the presence of NSIs, we can use the following replacements to show the NSI effect during 
the antineutrino oscillation, production and detection processes, respectively

Pee → P̃ee, Φi → Φ̃i = (
N s

e

)2
Φi, σ → σ̃ = (

Nd
e

)2
σ. (37)

Therefore, we can obtain the NSI-modified reactor νe spectrum as

S̃(Evis) = (Ñe)
4

∞∫
me

dEe

[ ∞∫
ET

dE

(∑
i

NiΦi(E)P̃ee(E/Li)

)
dσ(E,Ee)

dEe

]

× r(Ee + me,Evis) +O
(
δε2), (38)

where N s
e , Nd

e and Ñe are defined in Eqs. (4) and (11), and can be absorbed by redefining the 
couplings of nuclear matrix elements in the reactor νe production and detection processes. From 
Eq. (11), Ñe is related to the average parts of NSIs, and contributes to the normalization factor 
of the reactor antineutrino flux. In this work we take Ñe = 1.0 for simplicity, as we mainly stress 
on the difference parts of NSIs and the experimental spectral measurements.

We show the effect of NSIs in the reactor νe spectra at a baseline of 52.5 km in Fig. 1, 
where the influences of δε1 − δε2 and δε1 − δε3 are presented in the upper panel and lower 
panel, respectively. The oscillation parameters are taken as in Eqs. (32) and (33). The scenario 
of 3-generation neutrino oscillations with δU = 0 is also shown for comparison. In the upper 
panel, we fix δε1 − δε3 = 0 and find that non-zero δε1 − δε2 introduces the spectral distortion 
to the slow oscillation term �21. For δε1 − δε2 = 0.02, the spectrum is suppressed in the high 
energy region with E > 3 MeV and enhanced for the low energy range 2 MeV < E < 3 MeV. In 
comparison, negative δε1 − δε2 gives the opposite effect on the spectrum distortion. In the lower 
panel, we set δε1 − δε2 = 0 and observe that δε1 − δε3 can affect the spectral distribution for the 
fast oscillation term �31. Non-trivial NSI effect will contribute a small phase advancement or 
retardance to the fast oscillation depending upon the sign of δε1 − δε3.
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Fig. 1. The effect of NSIs in reactor νe spectra at a baseline of 52.5 km. For visualization, we set δε1 − δε2 = 0, ±0.02 in 
the upper panel and δε1 − δε3 = 0, ±0.4 in the lower panel. δε1 − δε3 is fixed at zero in the upper panel, and δε1 − δε2
is fixed at zero in the lower panel. The oscillation parameters are taken as in Eqs. (32) and (33). The NMO is assumed 
for illustration.

3.3. Statistical analysis

In this part, we shall implement the standard χ2 statistical method to do the numerical analysis 
with the above setup. A general χ2 function using the spectrum calculated in Eq. (38) can be 
defined as

χ2 =
Nbin∑
i=1

[M̃i(p
M, δεM) − T̃i (p

T , δεT )(1 + ∑
k αikεk)]2

M̃i(pM, δεM)
+

∑
k

ε2
k

σ 2
k

, (39)

where M̃i and T̃i are the measured and predicted (with oscillation) reactor νe fluxes in the ith
energy bin respectively. The definition of bin sizes is identical to that assumed in Ref. [12]. The 
systematic uncertainties σk together with the corresponding pull parameters εk for the nominal 
setups are also the same as those in Ref. [12], which include the correlated (absolute) reactor 
uncertainty (2%), the uncorrelated (relative) reactor uncertainty (0.8%), the flux spectrum uncer-
tainty (1%) and the detector-related uncertainty (1%). The sets of p and δε are for the standard 
oscillation parameters and NSI parameters respectively with p = {θ̃12, θ̃13, �m2 , �m2

ee} and, 
12
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Fig. 2. The NSI-induced shifts for �m2
21 and �m2

31 in the four specific models defined in Eq. (34) with δU = 0.01. The 
red stars stand for the true values of �m2

21 and �m2
31, and contours are the 68.3% (1σ ), 95.5% (2σ ), 99.7% (3σ ) allowed 

regions for �m2
21 and �m2

31 when the NSI effect is neglected. The NMO is assumed for illustration. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

δε = {δU/c̃12c̃13, ±δU/s̃12c̃13, ±δU/s̃13} for specified models, or δε = {δε1 − δε2, δε1 − δε3}
for the general model defined in Section 3.1.

3.3.1. Shifts of mass-squared differences
Neglecting the existing non-zero NSIs, we may get biased best-fit oscillation parameters. In 

this part we shall evaluate the sizes and properties on the shifts of mass-squared differences 
due to the NSI effect. In the numerical simulation, we use the spectrum with non-zero NSIs 
as the true spectrum, and the spectrum of the standard neutrino oscillation without NSIs as the 
predicted spectrum. In other word, the true spectrum is defined in Eq. (38) with the oscillation 
probability given in Eq. (21), and the predicted spectrum is given in Eq. (35) with the oscillation 
probability in Eq. (1). Then we minimize the χ2 function and find out the best-fit mixing angles 
and mass-squared differences.

The effects of mass shifts are shown in Figs. 2 and 3, corresponding to the first and second 
treatments, respectively, where NMO has been assumed. In the first treatment, the mass-squared 
differences have different shift sizes and directions in each specific models, dependent upon the 
sign of δU . The best-fit value of �m2 decreases from its true value in the models of S1, S2 or 
21
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Fig. 3. The best-fit (b.f.) mass-squared differences for �m2
21 (left panel) and �m2

31 (right panel) as the functions of the 
true values of δε1 − δε2 or δε1 − δε3 respectively in the generic treatment of the NSI parameters. The best-fit values 
of �m2

21 and �m2
31 are obtained by the minimization of the χ2 function without the NSI effect. The horizontal dashed 

lines are for true values of the mass-squared differences, and the NMO is assumed for illustration.

increases for S3, S4, and the best-fit value of �m2
31 decreases in S1, S3 or increases in S2, S4. 

A simple explanation can be found in the following estimation. The NSI parameters in these 
models are numerically given by

S1: δε1 − δε2 = −0.54δU, δε1 − δε3 = −5.60δU,

S2: δε1 − δε2 = −0.54δU, δε1 − δε3 = +8.06δU,

S3: δε1 − δε2 = +3.00δU, δε1 − δε3 = −5.60δU,

S4: δε1 − δε2 = +3.00δU, δε1 − δε3 = +8.06δU, (40)

where δU is fixed at 0.01 in Fig. 2. The sign of δε1 − δε2 is “−” in S1, S2 and “+” in S3, S4, 
which reduces or increases the measured value of �m̃2

21 in the LHS of Eq. (23), respectively. 
Similar analysis is also valid for explaining the shift of �m2

31 as shown in Fig. 2. Moreover, due 
to the smallness of the coefficients of δε1 − δε2 in models S1, S2, the shift of �m2

21 in S1, S2 
is much smaller than that in S3, S4. The relative mass shift for �m2

21 is around 0.4% in S1, S2 
and 2% in S3, S4. Although the magnitude of δε1 − δε3 is in general larger than δε1 − δε2, the 
absolute value of �m2

31 is much larger than �m2
21, and thus the relative shift of �m2

31 is not 
significant, just roughly around 0.2% for the best-fit data in four models.

The effects of NSI-induced mass shifts in the general case are presented in Fig. 3, without any 
assumptions on the relation of NSI parameters. Our simulation results can be understood using 
the relation in Eq. (23) that the fitted mass-squared differences �m2 J

21 and �m2 J
31 in JUNO are 

linearly dependent upon δε1 − δε2 and δε1 − δε3, respectively. With the JUNO nominal setup, 
we can simplify Eq. (23) into the following formulae

�m2 J
21 = �m̃2

21

(
(E/L)J) = �m2

21 + (δε1 − δε2)4(E/L)J,

�m2 J
31 = �m̃2

31

(
(E/L)J) = �m2

31 + (δε1 − δε3)4(E/L)J, (41)

where 4(E/L)J 
 5 ×10−5 eV2 roughly holds. The relative mass shift of �m2
21 is about 2

3 (δε1 −
δε2), in the same level of δε1 − δε2, i.e., in the same order as Im(δUei) and δεαβ . The relative 
mass shift of �m2 is about 0.02(δε1 − δε3). Keeping in mind δε3 = Im(δUei)/s̃13, we obtain 
31
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Fig. 4. The MO sensitivity for different true values of the NSI parameter δU in the four different specific models defined 
in Eq. (34). The NMO is assumed for illustration.

Fig. 5. The iso-�χ2 contours for the MO sensitivity in the generic NSI model as a function of two effective NSI param-
eters δε1 − δε2 and δε1 − δε3. The NMO is assumed for illustration.

that the relative mass shift of �m2
31 is one order smaller than Im(δUei) and δεαβ . In the case of 

the IMO, as �m2
31 = −|�m2

31| holds, the shift of |�m2
31| will go in the opposite direction to the 

NMO.

3.3.2. Impacts on the MO measurement
When fitting the χ2 function in Eq. (39) with both NMO and IMO, we can take the difference 

of the minima to measure the sensitivity of neutrino mass ordering, where the discriminator is 
defined as

�χ2(MO) = ∣∣χ2
min(NMO) − χ2

min(IMO)
∣∣. (42)

For these specific models defined in Eq. (34), we illustrate in Fig. 4 the NSI effect on the MO 
measurement by showing the dependence of the MO sensitivity on the true value of the NSI 
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Fig. 6. The experimental constraints on the generic NSI parameters δε1 − δε2 and δε1 − δε3, where the true values are 
fixed at δε1 − δε2 = δε1 − δε3 = 0, and the contours are the 68.3% (1σ ), 95.5% (2σ ), 99.7% (3σ ) allowed regions. The 
NMO is assumed for illustration.

parameter δU , where the NMO is assumed for illustration. The NSI effect with a negative δU
in S1, S3 or positive δU in S2, S4 will decrease the �χ2(MO) value and thus degrade the 
sensitivity of the MO determination. However in the other half possibilities, the NSI effect can 
increase the �χ2(MO) value and enhance the MO sensitivity. Moreover, the NSI effect shows 
stronger influence on the MO measurement in models S2, S3 than S1, S4. On the other hand, 
we illustrate in Fig. 5 the iso-�χ2 contours for the MO sensitivity in the generic NSI model 
as a function of two effective NSI parameters δε1 − δε2 and δε1 − δε3. The NMO is assumed 
for illustration. We can learn from the figure that the smaller δε1 − δε2 and larger δε1 − δε3

will reduce the possibility of the MO measurement. If δε1 − δε2 decreases by 0.03 or δε1 − δε3

increases by 0.05, �χ2 will be suppressed by 2 units.

3.3.3. Constraints on NSI parameters
In this part we shall discuss the constraints on the NSI parameters with the JUNO nominal 

setup. In our numerical calculation, the true oscillation parameters are taken as in Eqs. (32)
and (33), and the true NSI parameters are taken as δε1 − δε2 = δε1 − δε3 = 0. In the fitting 
process, we fix the oscillation parameters but take the NSI parameters as free. With the above 
simplification, we can obtain the constraints on the considered NSI parameters. In Fig. 6, we 
show the limit on these two parameters at the 1, 2, 3σ confidence levels. For δε1 − δε2, the 
precision is much better than 1%. However, the precision for δε1 − δε3 is around the 10% level. 
JUNO is designed for a precision spectral measurement at the oscillation maximum of �m2

21. 
From Eq. (21), the precision for δε1 − δε2 can be compatible with that of sin2 2θ12, where a 
sub-percent level can be achieved [28]. On the other hand, the precision for sin2 2θ13 is also at the 
10% level, also consistent with that of δε1 − δε3 in our numerical simulation. Because δε1 − δε3

is suppressed by sin θ̃13, the above two constraints are actually compatible if we consider the 
physical NSI parameters δεαβ defined in Eq. (5). Notice that different assumptions (e.g., the 
uncertainties of oscillation parameters) on the experimental systematics may alter the quantitative 
precision of the NSI parameters, but our qualitative conclusion is reasonable in any realistic 
systematical assumptions.
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4. Conclusion

In this work we have presented a complete and new derivation on the generic NSI effects 
in reactor antineutrino oscillations, where the NSI parameters are divided into the average and 
difference parts of the antineutrino production and detection processes. The average part can 
induce an effective non-unitary PMNS matrix and shift the true values of the mixing angles. 
On the other hand, the difference part of the NSI effect can be parametrized with only two 
independent parameters (i.e., δε1 − δε2, δε1 − δε3), and give the energy- and baseline-dependent 
corrections to the mass-squared differences. Eq. (21) is our key formula for the reactor νe → νe

survival probability, where

• we define the mixing angle shifts as the deviations of measured mixing angles θ̃12, θ̃13 from 
their true values θ12, θ13. However, we stress that these constant shifts are undetectable in 
reactor antineutrino experiments.

• the two NSI parameters δε1 − δε2 and δε1 − δε3 can be absorbed into the mass-squared 
differences and the corresponding E/L-dependent effective parameters �m̃2

12 and �m̃2
31

can be defined as the shifts of mass-squared differences. These shifts are detectable in the 
spectral measurement of reactor antineutrino oscillations.

Our analytical formalism is applied to the future medium baseline reactor antineutrino ex-
periment JUNO. Two different treatments (a class of specific models and the most general case 
with the full parameter space) of the NSI parameters are employed in our numerical analysis. 
We analyze the NSI impact on the precision measurement of mass-squared differences and the 
determination of the neutrino mass ordering, and present the JUNO sensitivity of the relevant 
NSI parameters. Numerically,

• we find that the relative mass shift of �m2
21 is around 2

3 (δε1 − δε2), in the same order of the 
original NSI parameters δεαβ ; and the relative shift of �m2

31 is around 0.02(δε1 − δε3), one 
order smaller than the magnitude of δεαβ . However, cancelations may appear in δε1 − δε2
and suppress the mass shift of �m2

21 (see the models S1 and S2);
• a positive δε1 − δε2 or negative δε1 − δε3 may enhance the sensitivity of the neutrino MO 

measurement at JUNO;
• due to the specific configuration of JUNO, the constraint on δε1 − δε2 can be better than 1%, 

but δε1 − δε3 can only be measured at the 10% precision level.

Compared with long baseline and short baseline reactor antineutrino experiments (e.g., Kam-
LAND and Daya Bay), the medium baseline reactor antineutrino experiment JUNO is more 
suitable for constraining the NSI effect because both the slow and fast oscillation terms are mea-
surable in the reactor antineutrino spectral measurement. Taking into account the complementary 
properties of reactor antineutrino experiments at different baselines, it is desirable to present a 
sophisticated global analysis of all the reactor antineutrino experiments and therefore, we may 
obtain the most complete and precision testing of the NSIs or other new physics beyond the SM.
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