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Abstract

Let G be a graph on n vertices, and let λ1, λ2, . . . , λn be its eigenvalues. The Estrada index of G is a
recently introduced graph invariant, defined as EE = ∑n

i=1 eλi . We establish lower and upper bounds for
EE in terms of the number of vertices and number of edges. Also some inequalities between EE and the
energy of G are obtained.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a graph without loops and multiple edges. Let n and m be, respectively, the number
of vertices and edges of G. Such a graph will be referred to as an (n, m)-graph.

The eigenvalues of the adjacency matrix of G are said to be [1] the eigenvalues of G and to form
the spectrum of G. A graph of order n has n (not necessarily distinct, but necessarily real-valued)
eigenvalues; we denote these by λ1, λ2, . . . , λn, and assume to be labelled in a non-increasing
manner:

λ1 � λ2 � · · · � λn.

The basic properties of graph eigenvalues can be found in the book [1].
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A graph-spectrum-based invariant, recently put forward by Estrada [2–7], is defined as

EE = EE(G) =
n∑

i=1

eλi . (1)

We propose to call it the Estrada index.
Although invented in year 2000 [2], the Estrada index has already found numerous applica-

tions. It was used to quantify the degree of folding of long-chain molecules, especially proteins
[2–4]; for this purpose the EE-values of pertinently constructed weighted graphs were employed.
Another, fully unrelated, application of EE (this time of simple graphs, like those studied in the
present paper) was put forward by Estrada and Rodríguez-Velázquez [5,6]. They showed that
EE provides a measure of the centrality of complex (communication, social, metabolic, etc.)
networks. In addition to this, in a recent work [7] a connection between EE and the concept of
extended atomic branching was considered.

Until now only some elementary and easy general mathematical properties of the Estrada index
were established. Of these, worth mentioning are only the following three:

1◦ [5] Denoting by Mk = Mk(G) the kth spectral moment of the graph G,

Mk =
n∑

i=1

(λi)
k

and bearing in mind the power-series expansion of ex , we have

EE(G) =
∑
k�0

Mk(G)

k! . (2)

As well known [1], Mk(G) is equal to the number of self-returning walks of length k of the
graph G.

2◦ [8] As a direct consequence of (2), for any graph G of order n, different from the complete
graph Kn and from its (edgeless) complement Kn,

EE(Kn) < EE(G) < EE(Kn).

3◦ [6] If the graph G is bipartite, and if n0 is the multiplicity of its eigenvalue zero, then

EE(G) = n0 + 2
∑
+

ch(λi), (3)

where ch stands for the hyperbolic cosine [ch(x) = (ex + e−x)/2 ], whereas
∑

+ denotes
summation over all positive eigenvalues of the corresponding graph.

In order to contribute towards the better understanding of the properties of the Estrada index
EE(G) and, in particular, of its dependence on the structure of the graph G, in this paper we
establish lower and upper bounds for EE in terms of n and m. An additional motivation for this
was the fact that for an analogous graph-spectrum-based invariant, namely for the graph energy

E = E(G) =
n∑

i=1

|λi | (4)

(n, m)-type estimates have been known for a long time [9]:

2
√

m � E � 2m; 2
√

n − 1 � E �
√

2mn. (5)
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2. (n, m)-Type estimates of the Estrada index of general graphs

Theorem 1. Let G be an (n, m)-graph. Then the Estrada index of G is bounded as√
n2 + 4m � EE(G) � n − 1 + e

√
2m. (6)

Equality on both sides of (6) is attained if and only if G ∼= Kn.

Proof. In the proof of both Theorem 1 and the subsequent estimates we shall frequently use the
following well known results for the first few spectral moments of an (n, m)-graph [1]:

M0 = n; M1 = 0; M2 = 2m; M3 = 6t,

where t is the number of triangles.

Lower bound. Directly from the definition of the Estrada index, Eq. (1), we get

EE2 =
n∑

i=1

e2λi + 2
∑
i<j

eλi eλj . (7)

In view of the inequality between the arithmetic and geometric means,

2
∑
i<j

eλi eλj � n(n − 1)

⎛
⎝∏

i<j

eλi eλj

⎞
⎠

2/[n(n−1)]

= n(n − 1)

⎡
⎣( n∏

i=1

eλi

)n−1
⎤
⎦

2/[n(n−1)]

= n(n − 1)(eM1)2/n = n(n − 1). (8)

By means of a power-series expansion, and bearing in mind the properties of M0, M1, and M2,
we get

n∑
i=1

e2λi =
n∑

i=1

∑
k�0

(2λi)
k

k! = n + 4m +
n∑

i=1

∑
k�3

(2λi)
k

k! . (9)

Because we are aiming at a (as good as possible) lower bound, it may look plausible to replace∑
k�3

(2λi)
k

k! by 8
∑

k�3
(λi )

k

k! . However, instead of 8 = 23 we shall use a multiplier γ ∈ [0, 8], so
as to arrive at

n∑
i=1

e2λi � n + 4m + γ

n∑
i=1

∑
k�3

(λi)
k

k!

= n + 4m − γ n − γm + γ

n∑
i=1

∑
k�0

(λi)
k

k! ,

i.e.,
n∑

i=1

e2λi � (1 − γ )n + (4 − γ )m + γEE. (10)
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By substituting (8) and (10) back into (7), and solving for EE we obtain

EE � γ

2
+
√(

n − γ

2

)2 + (4 − γ )m. (11)

It is elementary to show that for n � 2 and m � 1 the function

f (x) := x

2
+
√(

n − x

2

)2 + (4 − x)m

monotonically decreases in the interval [0, 8]. Consequently, the best lower bound for EE is
attained not for γ = 8, but for γ = 0.

Setting γ = 0 into (11) we arrive at the first half of Theorem 1.

Remark. If in Eq. (9) we utilize also the properties of the third spectral moment, we get
n∑

i=1

e2λi = n + 4m + 8t +
n∑

i=1

∑
k�4

(2λi)
k

k!
which, in a fully analogous manner, results in

EE �
√

n2 + 4m + 8t .

Upper bound. Starting with Eq. (2) we get

EE = n +
n∑

i=1

∑
k�1

(λi)
k

k! � n +
n∑

i=1

∑
k�1

|λi |k
k!

= n +
∑
k�1

1

k!
n∑

i=1

[
(λi)

2
]k/2

� n +
∑
k�1

1

k!

[
n∑

i=1

(λi)
2

]k/2

= n +
∑
k�1

1

k! (2m)k/2 = n − 1 +
∑
k�0

(
√

2m)k

k! ,

which directly leads to the right-hand side inequality in (6).
From the derivation of (6) it is evident that equality will be attained if and only if the graph G

has no non-zero eigenvalues. This, in turn, happens only in the case of the edgeless graph Kn [1].
By this the proof of Theorem 1 is completed. �

3. (n, m)-Type estimates of the Estrada index of special types of graphs

Theorem 2. Let G be a bipartite (n, m)-graph. Then the Estrada index of G is bounded as√
n2 + 4m � EE(G) � n − 2 + 2 ch(

√
2m). (12)

Equality on the left-hand side of (12) is attained if and only if G ∼= Kn. Equality on the right-hand
side of (12) is attained for graphs possessing no more than one positive eigenvalue, i.e., for the
graphs of the form Ka,b ∪ Kc, with a, b, c � 0, a + b + c = n, ab = m.

Proof. In view of Theorem 1 we need to verify only the upper bound. For this we start with
Eq. (3) and follow a reasoning fully analogous to that used in the case of the upper bound of
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Theorem 1. By n+ we denote the number of positive eigenvalues of G which is also equal to the
number of its negative eigenvalues. Therefore n0 + 2n+ = n. We thus have

EE = n0 + 2
∑
+

∑
k�0

(λi)
2k

(2k)! = n0 + 2n+ + 2
∑
+

∑
k�1

(λi)
2k

(2k)!

= n + 2
∑
k�1

1

(2k)!
∑
+

[(λi)
2]k � n + 2

∑
k�1

1

(2k)!

[∑
+

(λi)
2

]k

= n + 2
∑
k�1

mk

(2k)! = n − 2 + 2
∑
k�0

(
√

m)2k

(2k)!

i.e.,

EE � n − 2 + 2 ch(
√

m). �

If the graph G is regular of degree r , then its greatest eigenvalue is equal to r . If, in addition,
G is bipartite, then its smallest eigenvalue is equal to −r [1]. Bearing these facts in mind, we can
deduce the results stated in the following two theorems. Their proofs are analogous to those of
Theorems 1 and 2, and only the crucial details thereof will be indicated.

It should be noted that a regular graph of degree r and order n possesses m = nr/2 edges.

Theorem 3. Let G be a regular graph of degree r and of order n. Then its Estrada index is
bounded as

er +
√

n + 2nr − (2r2 + 2r + 1) + (n − 1)(n − 2)e−2r/(n−1)

� EE(G) � n − 2 + er + e
√

r(n−r).

Proof. In order to obtain the lower bound we consider (EE − er )2 and proceed in the same
manner as in Theorem 1. In this case, however, we encounter the term 2

∑
2�i<j eλi eλj , whose

lower bound (the geometric mean) is

(n − 1)(n − 2)

(
n∏

i=2

eλi

)2/(n−1)

= (n − 1)(n − 2)e−2r/(n−1)

because the sum of the eigenvalues λi, i = 2, . . . , n is equal to −r .
The upper bound is obtained by estimating EE − er in the same way as in Theorem 1. �

Remark. The lower bound in Theorem 3 can be improved by including into the consideration
also the third spectral moment of the graph G:

EE(G) � er +
√

n + 2nr − (2r2 + 2r + 1) + (n − 1)(n − 2)e−2r/(n−1) − 4

3
(r3 − 6t).

In the case of bipartite regular graphs we have to start the considerations with (EE − er − e−r )2

and EE − er − e−r . This time the lower bound is significantly simpler, thanks to the fact that the
sum of the eigenvalues λi, i = 2, . . . , n − 1 is equal to zero.
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Theorem 4. Let G be a bipartite regular graph of degree r and of order n. Then its Estrada index
is bounded as

2 ch(r) +
√

(n − 2)2 + 2nr − 4r2 � EE(G) � n − 4 + 2 ch(r) + 2 ch

(√
nr/2 − r2

)
.

4. Bounds for the Estrada index involving graph energy

In the proof of Theorem 1 we arrived at the inequality

EE � n +
n∑

i=1

∑
k�1

|λi |k
k! . (13)

Taking into account the definition of graph energy, Eq. (4), we obtain

EE � n + E +
n∑

i=1

∑
k�2

|λi |k
k!

which, in a way fully analogous to what was used to obtain the upper bound in Theorem 1, leads to

EE(G) − E(G) � n − 1 − √
2m + e

√
2m. (14)

This inequality holds for all (n, m)-graphs. Equality is attained if and only if G ∼= Kn.
A similar formula is deduced for regular graphs

EE(G) − E(G) � n − 2 + er − r −√
r(n − r) + e

√
r(n−r).

Another route to connect EE and E, starting with the inequality (13), is the following:

n +
n∑

i=1

∑
k�1

|λi |k
k! � n +

∑
k�1

1

k!

(
n∑

i=1

|λi |
)k

= n +
∑
k�1

Ek

k! = n − 1 +
∑
k�0

Ek

k!
implying

EE(G) � n − 1 + eE(G). (15)

Also in this formula equality occurs if and only if G ∼= Kn.
The lower and upper bounds for both the graph energy and the Estrada index of (n, m)-graphs,

Eqs. (5) and (6), are increasing functions of the parameters n and m. This fact, together with the
inequalities (14) and (15), may give the impression that EE and E depend on the structure of a
graph in a similar manner. In particular, one may be tempted to expect that for two graphs G1 and
G2, the relation E(G1) > E(G2) implies EE(G1) > EE(G2) and vice versa. This, however,
seems to be far from being generally true, as seen from the following two conjectures.

Let Sn and Pn denote, respectively, the n-vertex star and the n-vertex path. Let Tn be any
n-vertex tree, different from Sn and Pn. It is known that [9]

E(Sn) < E(Tn) < E(Pn).

It seems that just the opposite holds for the Estrada index.

Conjecture A. Among n-vertex trees, the path has minimum and the star maximum Estrada
index:

EE(Sn) > EE(Tn) > EE(Pn).

Among connected graphs of a given order the star has the minimum energy [9].

Conjecture B. Among connected graphs of order n, the path has minimum Estrada index.



76 J.A. de la Peña et al. / Linear Algebra and its Applications 427 (2007) 70–76

Acknowledgments

This work was done during the stay of the second and third authors at UNAM. All three authors
acknowledge the support of CONACyT, México. This work was in part supported also by the
Serbian Ministry of Science and Environmental Protection, through Grant no. 144015G, and by
CDCHT-ULA, Project No. C-13490505B.

References
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[7] E. Estrada, J.A. Rodríguez-Velázquez, M. Randić, Atomic branching in molecules, Int. J. Quantum Chem. 106 (2006)

823–832.
[8] I. Gutman, E. Estrada, J.A. Rodríguez-Velázquez, On a graph spectrum based structure descriptor, Croat. Chem. Acta

80 (2007) 151–154.
[9] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.),

Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196–211.


	Introduction
	(n,m)-Type estimates of the Estrada index of general graphs
	(n,m)-Type estimates of the Estrada index of special types of graphs
	Bounds for the Estrada index involving graph energy 
	Acknowledgments
	References

