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Ene-reductases  from  the  ‘Old  Yellow  Enzyme’  family  of flavoproteins  catalyze  the  asymmetric  reduction
of various  �,�-unsaturated  compounds  at the  expense  of  a nicotinamide  cofactor.  They  have  been  applied
to  the  synthesis  of  valuable  enantiopure  products,  including  chiral  building  blocks  with  broad  indus-
trial  applications,  terpenoids,  amino  acid derivatives  and  fragrances.  The  combination  of these  highly
stereoselective  biocatalysts  with  a  cofactor  recycling  system  has allowed  the  development  of  cost-
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effective  methods  for the  generation  of  optically  active  molecules,  which  is  strengthened  by  the
availability  of stereo-complementary  enzyme  homologues.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
. Introduction

The increasing demand for small enantiopure molecules as
hiral building blocks for the synthesis of biologically active com-
ounds (most notably active pharmaceutical ingredients – API)
as contributed to the development of highly specific synthetic
trategies. The reduction of alkenes, for instance, is a powerful
ool in modern asymmetric synthesis and various approaches are
ow available on industrial scale. Transition-metal based homoge-
eous catalysis has reached high standards (Knowles, 2002; Noyori,
002), and related fields of catalysis are now becoming competitive

n this area. Metal-free organocatalysis uses general acid-type cata-
ysts to perform stereoselective transfer hydrogenation, but suffers
rom low atom economy due to the requirement for molar amounts
f the ‘Hantzsch ester’ used as reductant (List and Yang, 2006;
ang et al., 2005). Nature, on the other hand, provides an attractive
ustainable and cost-effective alternative. The biocatalytic analog
elies on ene-reductases to perform the reduction of activated C C
onds. These enzymes belong to the ‘Old Yellow Enzyme’ family
f nicotinamide-dependent flavoproteins and have been intensely

nvestigated over the past five years in view of their applica-
ility in preparative-scale biotransformations (Hall et al., 2010;
tuermer et al., 2007; Toogood et al., 2010). They catalyze the highly

∗ Corresponding author. Tel.: +43 316 380 5332; fax: +43 316 380 9840.
E-mail address: Kurt.Faber@Uni-Graz.at (K. Faber).

168-1656     © 2012 Elsevier B.V.  
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Open access under CC BY-NC-ND license.
stereoselective reduction of a broad variety of �,�-unsaturated
compounds, affording excellent yields and enantiomeric excess,
while working under mild conditions of pH and temperature. A
whole set of homologous enzymes has been developed and several
industrially relevant molecules could be obtained in nonracemic
form. This review focuses on this new enzyme platform, present-
ing pertinent examples while stressing on general rules that should
help chemists incorporate ene-reductases in the design of asym-
metric synthetic routes.

2. System

2.1. Reaction mechanism

The mechanism of the ene-reductase-catalyzed reduction of
�,�-unsaturated compounds has been studied in great detail (Kohli
and Massey, 1998). The reaction was  shown to proceed via the
stereoselective transfer of a hydride (derived from the reduced
flavin-cofactor) onto C�, while a Tyr-residue adds a proton (ulti-
mately derived from the solvent) onto C� from the opposite side

(Fig. 1). The overall addition of [2H] onto a C C bond resem-
bles a Michael-type addition of a complex hydride and results
with exclusive relative trans-stereospecificity.1 Reduction of the

1 Rare cases for cis-addition were observed with plant cell cultures and flavin-
independent reductases: Shimoda, K., Ito, D.I., Izumi, S., Hirata, T., 1996. Novel

https://core.ac.uk/display/82678615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.jbiotec.2012.03.023
http://www.sciencedirect.com/science/journal/01681656
http://www.elsevier.com/locate/jbiotec
mailto:Kurt.Faber@Uni-Graz.at
dx.doi.org/10.1016/j.jbiotec.2012.03.023
http://creativecommons.org/licenses/by-nc-nd/3.0/
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Fig. 1. Asymmetric bioreduction of

xidized flavin cofactor at the expense of NAD(P)H closes the cat-
lytic cycle (Fig. 1). Ene-reductases often show relaxed specificities
or NADH or NADPH as cofactor, which allows to choose the recy-
ling system on a case-to-case basis. The enzymes have been shown
o tolerate organic co-solvents very well, especially water immis-
ible ones, in up to 50%, v:v (Stueckler et al., 2010a; Yanto et al.,
011).

.2. Substrates

Only C C-bonds that are electronically activated by a
onjugated electron-withdrawing group (EWG) are reduced,
on-activated (isolated) alkenes are unreactive. The following func-
ional groups may  serve as ‘activators’:

(i) �,�-Unsaturated carboxaldehydes (enals) are good substrates
and yield the expected saturated aldehydes as products when
pure ene-reductases are used (Stueckler et al., 2010a).  How-
ever, in whole-cell biotransformations (using e.g. baker’s
yeast), carbonyl reduction is a dominant side reaction form-
ing saturated prim-alcohols via over-reduction of the product
or allylic alcohols by depleting the substrate (Hall et al., 2006;
Mueller et al., 2006).

(ii) �,�-Enones are usually well accepted, competing carbonyl

reduction is less dominant as with enals.

iii) Conjugated nitroalkenes are highly activated and are thus
readily reduced. Whereas chiral centers in the �-position of the

eductase participation in the syn-addition of hydrogen to the C C bond of enones
n  the cultured cells of Nicotiana tabacum. J. Chem. Soc., Perkin Trans. 1. 355–358;
ougioukou, D.J., Stewart, J.D., 2008. Opposite stereochemical courses for enzyme-
ediated alkene reductions of an enantiomeric substrate pair. J. Am.  Chem. Soc. 130,

655–7658.
ated alkenes using ene-reductases.

nitroalkanes thus formed are stable, �-analogs are somewhat
labile due to the acidity of the �-H.

(iv) Depending on their degree of activation, �,�-unsaturated
carboxylic acids or esters behave as ‘borderline’-substrates:
whereas simple �,�-unsaturated mono-carboxylic acids
or -esters are not easily reduced by ene-reductases, they
are good substrates for ‘enoate-reductases’ from anaerobic
organisms, which possess an additional (oxygen-sensitive)
ferredoxin Fe4S4-cofactor (Ferraboschi et al., 1987; Tischer
et al., 1979). However, mono-acids or -esters can be activated
by an additional electron-withdrawing group, such as a second
acid- or ester-group, a halogen or a nitrile (Brenna et al., 2011c;
Kitazume and Ishikawa, 1984). Consequently, di-carboxylic
acids and -esters are well accepted. Cyclic imides, bearing two
activating carbonyl groups next to the C C bond are good
substrates in general.

(v) �,�-Unsaturated nitriles are only slightly activated and also
count as ‘borderline’-substrates, although complex nitrile-
containing molecules have been successfully reduced (Kosjek
et al., 2008).

2.3. Enzymes

Enzymes from the ‘Old Yellow Enzyme’ family are widely dis-
tributed in microorganisms and in plants. Some of them occur in
well-defined pathways, e.g. in the biosynthesis of jasmonic acid
or the metabolism of morphine (Barna et al., 2002; Schaller et al.,
2000), others are involved in the detoxification of xenobiotics
(Williams et al., 2004), such as trinitrotoluene (TNT, Barna et al.,

2001). Over recent years, a great variety of new homologues has
been identified and their potential as biocatalysts was  investigated.
Table 1 gives a summary of ene-reductases used in isolated form in
asymmetric bioreduction reactions.
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Table 1
Ene-reductases from the ‘Old Yellow Enzyme’ family.

Enzyme Organism

Fungi
Old yellow enzyme 1 (OYE1) Saccharomyces pastorianus (formerly S. carlsbergensis) (Saito et al., 1991)
Old  yellow enzyme 2 and 3 (OYE2 and 3) Saccharomyces cerevisiae (Karplus et al., 1995)
Old yellow enzyme (OYE) Candida macedoniensis AKU4588 (Kataoka et al., 2002, 2004)
Estrogen binding protein (EBP1) Candida albicans (Buckman and Miller, 1998)
Kluyveromyces lactis yellow enzyme 1 (KYE1) Kluyveromyces lactis (Chaparro-Riggers et al., 2007)
Old  yellow enzyme 2.6 (OYE 2.6) Pichia stipitis CBS 6054 (Padhi et al., 2009)

Bacteria
YqjM Bacillus subtilis (Fitzpatrick et al., 2003)
NAD(P)H-dependent 2-cyclohexen-1-one reductase (NCR) Zymomonas mobilis (Mueller et al., 2007)
Xenobiotic reductase A (XenA) Pseudomonas putida II-B (Blehert et al., 1999)
Xenobiotic reductase B (XenB) Pseudomonas fluorescens I-C (Blehert et al., 1999)
Pentaerythritol tetranitrate reductase (PETNr) Enterobacter cloacae PB2 (French et al., 1996)
TOYE Thermoanaerobacter pseudoethanolicus E 39 (Adalbjornsson et al., 2010)
SYE1-4 Shewanella oneidensis (Brige et al., 2006)
GkOYE Geobacillus kaustophilus DSM 7263 (Schittmayer et al., 2010)
Chromate reductase (CrS) Thermus scotoductus SA-01 (Opperman et al., 2008, 2010)
Morphinone reductase (MR) Pseudomonas putida M10  (French and Bruce, 1994)
YersER Yersinia bercovieri (Chaparro-Riggers et al., 2007)
Gluconobacter oxidans ene-reductase Gluconobacter oxidans DSM 2343 (Richter et al., 2011)
N-ethylmaleimide reductase (NemR) Escherichia coli (Miura et al., 1997)
Glycerol trinitrate reductase (NerA) Agrobacterium radiobacter (Snape et al., 1997)

Plants
12-Oxophytodienoate reductase 1–3 (OPR1-3) Arabidopsis thaliana (Biesgen and Weiler, 1999; Costa et al., 2000; Schaller and Weiler, 1997)
12-Oxophytodienoate reductase 1–3 (LeOPR1-3) Solanum lycopersicum (formerly Lycopersicon esculentum) (Strassner et al., 1999, 2002)
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.4. Cofactor regeneration

A major limitation to the broad application of nicotinamide-
ependent enzymes for synthetic purpose lies in the prohibitive
ost of these natural cofactors, especially the reduced form
∼500 D /g NADH and 1400 D /g NADPH, from chemical suppli-
rs). Fortunately, advances in cofactor regeneration techniques
ow allow the use of catalytic amounts of NAD(P)H and various
ystems have been exploited with ene-reductases for in situ recy-
ling (Fig. 1) (Faber, 2011; Hall and Bommarius, 2011), while often
erving as driving force to overcome thermodynamic equilibrium
imitations (Park et al., 2011).

A common strategy for the regeneration of NADH is the formate
ehydrogenase (FDH)-catalyzed oxidation of formate to CO2. FDH
as been successfully employed with ene-reductases, although
ubstrate and product depletions were observed with an enal (cit-
onellal), resulting from carbonyl reduction caused by prim-ADH
mpurities in the commercial FDH preparation; likewise, racemi-
ation of �-substituted cycloalkanones was observed (Hall et al.,
008a).  Recently, alcohol dehydrogenase ADH-‘A’ was  successfully
ombined with several ene-reductases, using only 2 equivalents of
-propanol as H-donor, thereby producing acetone. As above, alde-
ydes are not suitable substrates due to over-reduction of the CH O
oiety (Tauber et al., 2011). Glucose-6-phosphate dehydrogenase

G6PDH) and glucose dehydrogenase (GDH) are commonly used
s cofactor recycling systems for ene-reductases (Hall et al., 2007,
008b). While G6PDH only accepts NADP+, GDH can be employed
ith both nicotinamide cofactors.

Occasionally, the nature of the substrate had a dramatic influ-
nce on the efficiency of the recycling system. For instance, FDH,
DH and G6PDH were inactive in presence of a cis-configurated
,�-unsaturated dicarboxylic acid (citraconic acid), which acts as
trong chelator for divalent metal ions. The addition of metals (e.g.
a2+, Mg2+ or Zn2+) to the reaction medium proved necessary to

vercome deactivation of the recycling enzymes and to make this
ubstrate amenable to bioreduction (Stueckler et al., 2007).

While FDH produces CO2 and ADH forms highly volatile ace-
one, GDH and G6PDH furnish gluconolactone/gluconic acid and
vailable (Kosjek et al., 2008)

6-phosphogluconate respectively, both unstable compounds that
hydrolyse spontaneously. This renders all four systems practically
irreversible and thereby shifts the equilibrium towards reduction.
Phosphite dehydrogenase (PTDH) (Vrtis et al., 2002; Woodyer et al.,
2003) has also been applied to the reduction of �,�-unsaturated
nitriles, which provides in situ pH-control as phosphate is being
produced throughout the reaction (Kosjek et al., 2008).

While all these systems represent coupled-enzyme approaches
requiring two  proteins, the first example of a coupled-substrate
single-enzyme approach applied to ene-reductases was  recently
published, where advantage was  taken of the disproportionation
of enones catalyzed by a single ene-reductase. With the enone
substrate being reduced to the corresponding saturated ketone, a
sacrifial enone co-substrate served as artificial H-donor and was
oxidized, thereby rendering the reduced flavin for a subsequent
catalytic cycle. 2-Enones and 1,4-diones were particularly good co-
substrates as their oxidized forms spontaneously tautomerized to
phenol and hydroquinone derivatives, respectively, thus driving
the reaction to the desired product side (Stueckler et al., 2010b).

Nonconventional regeneration methods are also being devel-
oped (Hollmann et al., 2010). A light-driven system was designed
with YqjM, where irradiation with white light in the presence
of external free flavin and EDTA allowed the full conversion of
4-ketoisophorone to levodione. The system, however, was plagued
by the non-stereoselective background reaction catalyzed by free
flavin, leading to reduced product enantiopurity (Taglieber et al.,
2008).

3. Applications

3.1. Synthesis of amino acid derivatives

Natural and non-natural amino acids are valuable building
blocks and key intermediates for a number of pharmaceuticals,

heterocycles or modified peptides (Goodman et al., 2007; Hughes
and Moody, 2007; Trabocchi et al., 2005). Ene-reductases have
been successfully used for the synthesis of various �- and �-amino
acid analogs. In a process developed by Swiderska and Stewart
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Fig. 3. Reduction of �,�-dehydroamino acid derivatives by ene-reductases.

2006),  �-nitroacrylates 1a–4a were stereoselectively reduced by
YE1 to the corresponding �-nitro carboxylic acid esters as the
ey step in the asymmetric synthesis of optically active �2-amino
cids (Fig. 2). Since the bioreduction of the C C bond proceeded
hemoselectively, the nitro group was subsequently reduced with
aney-Ni. Ethyl �-alkyl-�-nitroacrylates were reduced with high
tereoselectivity (ee ≥ 87%) and �2-amino acids were isolated as
heir hydrochloride salts (1b–4b) in good overall yield (57–73%).
-Alkyl-�-nitroacrylates (�3-amino acid precursors) on the other
and were reduced with low stereoselectivities, most likely due to
he �-protonation occurring after product release from the active
ite.

Recently, �,�-dehydroamino acid derivatives have been iden-
ified as novel substrates for members of the OYE family
Fig. 3) (Stueckler et al., 2011). While an �-amino acid
recursor having an additional methyl group at C� (methyl 3-
ethyl-2-acetamidoacrylate) and an �-alanine precursor (methyl

-acetamidoacrylate) were unreactive, N-acyl derivative of alanine
5a) and aspartic acid ester (8a) were reduced by YqjM to the
orresponding (S)-enantiomers (5b, 41% conv., 97% ee;  8b, up to
uantitative yield and 99% ee).  A switch of stereopreference in the
eduction of aspartic acid derivatives 6a–11a could be induced with
YE3 via substrate engineering by variation of the size of the N-
cyl protective group. While 6a,  7a and 10a were reduced to the

S)-amino acid derivatives (23% to >99% ee),  the (R)-enantiomers
ere obtained from 8a,  9a and 11a (61% up to 92% ee). 2H-labelling

xperiments in D2O revealed that the opposite stereochemical

O

(2R,5 R)- (2 R,5 S)- 12bor

O

(R)- (S)- 12aor

PETNR
NADPH

Fig. 4. Total asymmetric synthesis of striatenic and pechueloic acid via ene-reduct
hnology 162 (2012) 381– 389

outcome by OYE3 was  due to a flipped “bottom/top” orientation
of the substrate, resulting in an exchange of the activating ester as
docking group in the active site. This switch of the activating group
opens new perspectives for the asymmetric synthesis of �-amino
acids.

3.2. Terpenoids

Terpenoids are one of the largest classes of natural products
offering a great variety of biologically active compounds and chi-
ral intermediates. Enantiomers of dihydrocarvone (12b) are minor
components of essential oils produced by plants and have been used
as chiral starting compounds in the synthesis of natural products
(e.g. striatenic acid, pechueloic acid) (Aubin et al., 2006; Blay et al.,
2007; Harrowven et al., 2005), antimalarial drugs (Dong et al., 2010)
and valuable chiral synthons (de Rouville et al., 2009; Krawczyk
et al., 2007). In the course of exploring the substrate specificity of
PETN reductase (Fryszkowska et al., 2009), (5R)- and (5S)-carvone
(12a) were quantitatively reduced into the diastereomeric products
(12b) with the same absolute (R)-configuration on the newly gener-
ated centre at C2 in 95% and 88% diastereomeric excess, respectively
(Fig. 4).

Both enantiomers of citronellal (13b), a key intermediate in
menthol synthesis, have been prepared with excellent ee values
(> 95%) starting from (E/Z)-citral (13b) using various OYEs (Fig. 5)
(Bougioukou et al., 2010; Fryszkowska et al., 2009; Hall et al., 2007,
2008a,b; Mueller et al., 2010). While (S)-citronellal [(S)-13b] could
be produced quantitatively, (R)-citronellal [(R)-13b] was  obtained
with 69% conversion. It was observed that the (E/Z)-configuration
of citral played a crucial role in the stereoselectivity of OYEs 1–3
(Mueller et al., 2007). Whereas whole cells generally led to over-
reduction of the product to the corresponding saturated alcohol
(Hall et al., 2006; Mueller et al., 2006), isolated OYE-enzymes fur-
nished the aldehyde 13b as single product.

3.3. Fragrance compounds

�-Methyl dihydrocinnamaldehyde derivatives (14b and 15b)
are of commercial importance (Brenna et al., 2003), with 14b
being the olfactory principle of the lily-of-the-valley odor (Enders
and Dyker, 1990), marketed under the trade name LilialTM or
LysmeralTM, while 15b, marketed as HelionalTM or TropionalTM,
is the active ingredient of various perfumes (Enders and Backes,
2004). A convenient enzymatic strategy for the synthesis of 14b
and 15b was developed (Stueckler et al., 2010a)  via bioreduc-
tion of �-methyl cinnamaldehydes (14a and 15a) with OYEs. The
(S)-antipodes were produced with OYE1-3 in an aqueous-organic
biphasic system (containing 20% t-BuOMe) in >95% ee and quanti-
tative yield (Fig. 6).

3.4. Chiral building blocks
(6R)-Levodione (16b), obtained by asymmetric bioreduction of
4-ketoisophorone (16a), represents an important industrial inter-
mediate for carotenoide synthesis (e.g. zeaxanthin, cryptoxanthin,

COOH

acid(+)-striatenic

O

H

HOOC

H

acidpechueloic

ase catalyzed reduction of carvone 12a producing the key intermediate 12b.
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Fig. 6. Fragrance production with ene-reductases.

anthoxin) (Demole and Enggist, 1974). So far, all OYE family
embers have yielded strictly the (R)-enantiomer (up to >99% ee)

Toogood et al., 2010). A one-pot two-step enzymatic cascade was
eveloped leading to (4R,6R)-actinol (16c). The first ene-reduction
as catalyzed by OYE2, expressed in E. coli and used as cell extract,

o furnish (6R)-levodione (16b) as intermediate. The latter was
ubsequently reduced at the carbonyl group to actinol (16c) with
evodione reductase from Corynebacterium aquaticum M-13, also
xpressed in E. coli. Glucose dehydrogenase was  used for the regen-
ration of NADH, which allowed the quantitative formation of
4R,6R)-actinol (16c) in 94% ee (Fig. 7) (Wada et al., 2003).

Due to its broad acceptance as a substrate by a large number of
YE homologues, 4-ketoisophorone (16a) emerged as a standard

est-substance for the characterization of ene-reductases [(OPR1
nd OPR3 (Hall et al., 2007, 2008a),  YqjM (Hall et al., 2008a),  OYE1-

 and NCR (Hall et al., 2008b), PETNr (Fryszkowska et al., 2009;
ueller et al., 2010), NemR, MR  and EBP1 (Mueller et al., 2010), Glu-

onobacter oxidans ER (Richter et al., 2011), XenA (Chaparro-Riggers
t al., 2007; Yanto et al., 2010), TOYE (Adalbjornsson et al., 2010),
rS (Opperman et al., 2010), YersER and KYE1 (Chaparro-Riggers
t al., 2007), OYE from Candida macedoniensis (Kataoka et al., 2004)],
he screening for novel ene-reductase activity in organisms (Goretti
t al., 2011; Raimondi et al., 2010) and the development of novel
ofactor regeneration systems (Taglieber et al., 2008, 2010; Tauber

t al., 2011).

Chiral acyloins (17b–21b) are important building blocks in
symmetric synthesis (Adam et al., 1999; Demir et al., 2007;
atel, 2006). They can be converted into nonracemic diols,

O O

O O

ene-reductase
levodio
reducta

GDH/glucose/NAD+

      16a                                        (R)-16b                       
4-ketoisophorone                          levodione                    

GDH/glucos

Fig. 7. Ene-reductase catalyzed reduction of 4-ketoisophorone
3a) to citronellal (13b).

epoxides, aminoalcohols, hydroxylamines, and haloketones (Fig. 8).
In addition to the classical asymmetric synthesis involving N-
sulfonyloxaziridines (Davis and Chen, 1992; Davis et al., 1986;
Hughes et al., 2005), and several biocatalytic systems (Adam et al.,
1999; Demir et al., 2007; Patel, 2006), an additional biocatalytic
alternative was  recently provided through the asymmetric reduc-
tion of �,�-unsaturated alkoxy ketones (Winkler et al., 2010).
Stereocomplementary routes to O-protected acyloins were devel-
oped via substrate engineering through variation of the size of the
O-protecting group. Both enantiomers of �-alkoxy enones could be
obtained in up to >99% ee, while �-analogs were not converted. The
O-protected acyloins thus obtained can be used in further synthetic
steps; particularly allyl- or benzyl-moieties can be easily removed
under mild conditions.

Enantiopure lactones are valuable synthetic precursors. For
instance, �-butyrolactone (22c) has been utilized as building block
in the synthesis of natural products such as milbemycin �3, jas-
plakinolide and amphidinolides (Fig. 9) (Korpak and Pietruszka,
2011). Two  of its four possible stereoisomers were recently
obtained via an enzymatic two-step one-pot cascade. In the first
step, OYE1 was  employed for the generation of the first stereocen-
ter, where reduction of the two  (E/Z)-isomers of starting material
22a was stereoconvergent and yielded the (R)-enantiomer 22b. In
the second step, various alcohol dehydrogenases (ADH) were used
for carbonyl reduction leading to the �-hydroxy ester, followed by
spontaneous lactonization to 22c (Korpak and Pietruszka, 2011).
The carbonyl reduction proceeded with enzyme-based stereocon-
trol, where proper choice of the catalyst allowed both (2R,4S)-22c
(with Prelog-type ADH-T from Thermoanaerobacter species) and
(2R,4R)-22c (with anti-Prelog-type ADH-LK from Lactobacillus kefir)
in good yields (up to 80%) and perfect stereoselectivity (>99% ee).

(R)-3-Hydroxy-2-methylpropanoate (23b), commonly denoted
as ‘Roche-Ester’, is a popular chiral building block for the syn-
thesis of vitamins (vitamin E), fragrance compounds (muscone),
antibiotics (rapamycin) and natural products (Stueckler et al.,

2010c). Prominent routes for its preparation include enzymatic
oxidation of prochiral diols (Molinari et al., 2003) or the tran-
sition metal-catalyzed asymmetric hydrogenation of acrylate
esters using Rh- (Holz et al., 2008; Qiu et al., 2009; Wassenaar

O

OH

Carotenoids:
Zeaxanthin
Cryptoxanthin
Xanthoxin

ne 
se

                (4R,6 R)- 16c

                   actinol

e/NAD+

 (16a) to (R)-levodione (16b) and (4R,6R)-actinol (16c).
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Fig. 8. Production of chiral acyloins via ene-reductases using OYE1-3, YqjM, NerA, OPR1, OPR3, XenA, XenB, EBP1 and NCR.
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Fig. 9. A two-step one-pot casca

t al., 2008) or Ru-catalysts (Pautigny et al., 2008). A biocat-
lytic equivalent was shown using ene-reductases. The reaction
roceeded via strict (R)-stereoselective reduction of methyl 2-
ydroxymethylacrylate derivatives (>99% ee in almost all cases;
ig. 10), with ene-reductases showing overall broad acceptance
or this type of compounds (Stueckler et al., 2010c). Substrate
ngineering via hydroxyl-group protection (allyl-, benzyl- or
BDMS-ethers) enhanced the reaction rate significantly (up to
99% conversion) and hence allowed direct access to protected
R)-‘Roche-Ester’ (23b), a convenient intermediate for further syn-
hesis.

Chiral �-halogenated carboxylic acids and esters are useful
ynthons since they can be transformed into a broad range of
erivatives by stereospecific nucleophilic substitution reactions
ith nitrogen (Righi et al., 2006), oxygen (Hesek et al., 2009;
ang et al., 2001) and sulfur (Narendra et al., 2010; Seki et al.,
000) nucleophiles. Enantiopure �-haloesters in particular are
aluable chiral synthons for the synthesis of several therapeu-
ic agents used for the treatment of non-insulin dependent type

 diabetes mellitus (T2DM) (Brenna et al., 2011c). Brenna and
o-workers investigated the bioreduction of various methyl �-
alo-�-substituted acrylates using isolated OYE1-3 and baker’s
east (Fig. 11)  (Brenna et al., 2011b). OYE3 furnished the cor-

esponding (S)-products in good to excellent stereoselectivity
ee ≥ 88%). The conversion strongly depended on the substitution
attern of the aromatic ring. In general, electron-donating groups
n the ring lowered the reaction rate (31a and 33a, conversion

RO OMe

O        R
23   H
24   allyl
25   benzyl
26   TBDMS 23a-26a                                     

ene-reductase
NADH

Fig. 10. Roche ester production via ene-reductases using
ding to �-butyrolactones (22c).

up to 20%), while electron-withdrawing groups increased con-
version levels (28a–30a, conversion 58–91%) in comparison with
the non-substituted derivatives (27a and 32a, conversion 37–38%).
The latter can be explained by the varying degree of polarization
of the C C bond. Both chloro- and bromo-substituents at the �-
position were accepted by the enzyme. (S)-�-Chlorocinnamates
28b and 30b were recovered from baker’s yeast fermentation
and subsequently transformed into non-natural d-phenylalanine
derivatives (28c and 30c), thus offering a new route to enan-
tiomerically pure non-natural �-amino acid derivatives. A library of
�,�-unsaturated �-halo esters bearing various alkyl chains was also
tested (34–37a,  Fig. 11)  (Brenna et al., 2011c).  Most interestingly,
in contrast to the opposite stereopreference observed in baker’s
yeast-mediated reduction of (E/Z)-isomers of �,�-unsaturated �-
chloroesters [(Utaka et al., 1989), also confirmed with isolated
OYE1-3 acting on methyl 2-chloro-4-methylpent-2-enoate (Brenna
et al., 2011a)], both (E/Z)-isomers of the �-bromo-analogs were
converted to the (S)-product (ee up to 97%).

Enantiopure nitriles are versatile chiral building blocks due
to their chemical reactivity, allowing further transformation into
numerous functional groups (e.g. carboxylic acids, amines or
aldehydes). For instance, nitrile 42b contains a spiropiperidine
backbone and is relevant for pharmaceutical research (Fig. 12)  (Jia

et al., 2007; Limanto et al., 2008; Lu et al., 2007). In a study with
commercially available ene-reductases, the C C bond of a series
of �,�-unsaturated nitriles were reduced in high yields and stere-
oselectivities (up to 99% ee,  Fig. 12)  (Kosjek et al., 2008). While all

RO OMe

O Vitamin E
Rapamycin
Muscone

       (R)-23b -26b

 OYE1-3, YqjM, NCR, NerA, OPR1, OPR3 and XenA.
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Fig. 11. Ene-reductase-catalyzed reduction of �-halo-esters and further transformation into chiral products.
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nzymes showed (R)-selectivity for substrates 38a–41a, the abso-
ute configuration of 42b was not assigned.

. Concluding remarks

Ene-reductases from the ‘Old Yellow Enzyme’ family of flavo-
roteins have attracted increasing interest from synthetic chemists
ver the last years due to their exquisite chemo-, regio-, and
tereoselectivities. Their use in the reduction of various �,�-
nsaturated compounds has been successfully developed to allow
he synthesis of enantiopure molecules with high synthetic value
nd industrial potential. The implementation of a nicotinamide
ofactor regeneration renders the process cost-effective and highly
ompetitive, while the availability of numerous OYE-homologues
ith stereocomplementary activities provides access to both enan-

iomeric forms of many synthons. Substrate engineering also
evealed to be a powerful tool to control the stereoselectivity of
he reaction.

With the advances of molecular biology tools, it can be expected
hat protein engineering applied to ene-reductases will further
roaden their applicability. Structure-guided approaches com-
ined with directed evolution have been recently used to enhance
heir catalytic properties, where few mutations were sufficient
o reverse the stereopreference and/or increase reaction rates
Bougioukou et al., 2009, 2010; Hall and Bommarius, 2011). The
emaining challenges to promote ene-reductases for large-scale
pplications are the improvement of enzyme stability under oper-
tional conditions – TTNs are still limited to 103–104 (Yanto et al.,

010) – and the creation of successful ‘designer bugs’, where co-
xpression of ene-reductases and a suitable cofactor regeneration
ystem will definitely establish these biocatalysts as robust and
ersatile synthetic tools for large-scale applications.
duction of enantiopure nitriles.
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