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Secondary mitral regurgitation (MR) is associated with poor outcomes, but its correction does not reverse the underlying

left ventricular (LV) pathology or improve the prognosis. The recently published American Heart Association/American

College of Cardiology guidelines on valvular heart disease generated considerable controversy by revising the definition

of severe secondary MR from an effective regurgitant orifice area (EROA) of 0.4 to 0.2 cm2, and from a regurgitant

volume (RVol) of 60 to 30 ml. This paper reviews hydrodynamic determinants of MR severity, showing that EROA and

RVol values associated with severe MR depend on LV volume. This explains disparities in the evidence associating a lower

EROA threshold with suboptimal survival. Redefining MR severity purely on EROA or RVol may cause significant clinical

problems. As the guidelines emphasize, defining severe MR requires careful integration of all echocardiographic and

clinical data, as measurement of EROA is imprecise and poorly reproducible. (J Am Coll Cardiol 2014;64:2792–801)

© 2014 by the American College of Cardiology Foundation.
I n severe primary mitral regurgitation (MR), “it is
the abnormal valve that makes the heart sick” (1).
Surgical correction of primary MR, ideally by

mitral valve repair, corrects left ventricular (LV) vol-
ume overload, allowing a normal lifespan (2–4).
Conversely, secondary or functional MR is caused by
systolic restriction of mitral leaflet motion by teth-
ering and/or annular dilation. Although secondary
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MR is associated with a poor outcome, it is not clear
that correction of MR reverses the underlying LV
pathophysiology or improves prognosis. Difficulty in
quantifying secondary MR by traditional echocardio-
graphic methods further complicates the issue. The
2014 American Heart Association/American College
of Cardiology (AHA/ACC) guidelines for the Manage-
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AB BR E V I A T I O N S

AND ACRONYM S

AHA/ACC = American Heart

Association/American College

of Cardiology

EROA = effective regurgitant

orifice area

LA = left atrium/atrial

LV = left ventricle/ventricular

LVEDV = left ventricular

end-diastolic volume

MR = mitral regurgitation

PISA = proximal isovelocity

surface area

RF = regurgitant fraction

= regurgitant volume
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highlight the importance of distinguishing primary
from secondary MR and emphasize the need for dis-
ease staging. Accordingly, assessment of MR severity
has changed from mild, moderate, or severe to at
risk for MR (Stage A), progressive MR (Stage B),
asymptomatic severe MR (Stage C), or symptomatic
severe MR (Stage D). “Severe” is defined as the magni-
tude of valve dysfunction that worsens prognosis, and
the guidelines repeatedly emphasize that quantifying
the severity of any valvular lesion requires integration
of multiple parameters, not a single number. The new
guidelines revised the definition of severe secondary
MR from an effective regurgitant orifice area (EROA)
of 0.4 to 0.2 cm2 and a regurgitant volume (RVol) of
60 to 30 ml; regurgitant fraction (RF) remains un-
changed at 50%. This change has already provoked
controversy (6,7). We review the hydrodynamic
determinants of EROA and RVol and evidence sup-
porting the main reasons for redefining severe se-
condary MR: association of a lower EROA threshold
with suboptimal survival and EROA underestimation
due to noncircular orifice geometry. We also discuss
clinical problems that may occur if the revised de-
finition is applied without integrating all echocar-
diographic/Doppler findings into a complete clinical
picture.

QUANTIFYING SEVERE MR

In 2003, the American Society of Echocardiography
published guidelines for evaluation of valvular re-
gurgitation (8), which highlighted the inherent limi-
tations of all echocardiographic measures of MR
severity, necessitating use of a matrix of qualitative
and quantitative findings, rather than relying on any
single measurement. With that important caveat,
quantification of MR severity, rather than inaccurate,
“eyeball” grading of color Doppler jets, was encour-
aged. Quantitative parameters for severe MR in-
cluded RF $50%, RVol $60 ml, and EROA $0.4 cm2.
These values were derived from a single-center
observational study comparing RVol and EROA
calculated by the proximal isovelocity surface area
(PISA) method, quantitative Doppler, or the average
of both methods to angiographic grading in 180
consecutive patients (9). LV angiography and echo-
cardiography were performed within 3 months of
each other. Primary MR was present in 96 patients,
secondary MR in 84, and 39 were in atrial fibrillation.
EROA, RVol, and RF values overlapped considerably
between angiographic 1, 2, and 3þ MR (Figure 1).
Because both groups were combined, whether over-
laps in primary and secondary MR are similar or
different is unclear. Statistical analysis revealed the
optimum cutoff value for 4þ MR was
EROA $0.4 cm2, RVol $60 ml, and RF $50%.
Until recently, these recommended values
remained unchanged. The 2014 AHA/ACC
guidelines contain a new table redefining
severe secondary MR as EROA $0.2 cm2 or
RVol $30 ml or RF $50%, with important, but
easily missed footnotes (5). The first footnote
states that, “categorization of MR severity as
mild, moderate, or severe depends on data
quality and integration of these parameters in
conjunction with other clinical evidence.”
The second footnote states, “measurement of
[PISA] by 2D [transthoracic echocardiogra-
phy] in patients with secondary MR un-
derestimates the true EROA due to the

crescentic shape of the proximal convergence.” While
the AHA/ACC guidelines did not elaborate the ratio-
nale for changing the definition, it appears to be on
the basis of: 1) association of secondary MR with a
worse prognosis; and 2) underestimation of EROA by
PISA. Importantly, theoretical considerations support
the concept that lesser degrees of MR could have
an adverse hemodynamic effect in secondary MR
wherein the LV is already damaged.

HEMODYNAMIC CONSIDERATIONS

In primary MR, LV dysfunction/remodeling is due to
MR itself and is easier to define. Defining “severe”
secondary MR is more problematic because the LV
is already damaged. RF >50% is reasonably assumed
to be severe MR because more than one-half the total
LV stroke volume is lost backward into the left atrium
(LA). The Central Illustration plots the relationship
between EROA and left ventricular end-diastolic
volume (LVEDV; top panel) and between RVol and
LVEDV (bottom panel) with severe MR (RF ¼ 50%). An
important, underappreciated dependence of both
EROA and RVol on LVEDV is evident, such that an
EROA of 0.2 cm2 can be associated with RF >50%
when LVEDV is normal, but is typically 0.3 cm2 at
moderately dilated LVEDV values (220 to 240 ml)
typical of most clinical trials in heart failure. Only at
very large LVEDV values is EROA 0.4 cm2 associated
with RF >50%. Furthermore, the relationship be-
tween EROA and LVEDV is influenced by the mean
systolic pressure gradient between the LV and LA,
with higher EROA values in decompensated HF pa-
tients with hypotension and elevated LA pressure
compared with hypertensive patients with normal LA
pressure. An EROA >0.6 cm2 is nearly impossible in
secondary MR (unless the LV is extremely large)
because MR cannot exceed 100% of total LV stroke

RVol



FIGURE 1 Relationship Between EROA and RVol Compared With Angiographic Severity of MR
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Both primary and secondary mitral regurgitation (MR) patients are grouped together. (Left) effective regurgitant orifice area (EROA); (right)

regurgitant volume (RVol). Optimal cutoff points were EROA 0.4 cm2 for severe MR and 0.2 cm2 for mild MR; and RVol 60 ml for severe MR and

30 ml for mild MR. Individual values for both EROA and RVol show substantial overlap. Reprinted from Dujardin et al. (9) with permission.
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volume. Left ventricular ejection fraction (LVEF) in-
fluences the relationship between RVol and LVEDV
(bottom panel) such that it is virtually impossible to
have a 60 ml RVol unless LVEF is 40% or more and
the LV is significantly dilated. Conversely, even
RVol <30 ml can be associated with RF >50% in
smaller ventricles or very low LVEF values. As shown
in the Central Illustration, severe MR (RF >50%) at
lower levels of EROA and RVol than previously
considered is possible, but values defining severe MR
in individual patients depend on multiple factors,
including LVEDV, LVEF, and the pressure gradient
between the LV and LA.
ASSOCIATION OF SECONDARY MR WITH ADVERSE

OUTCOMES. Several studies evaluated the relation-
ship between MR severity and prognosis in secondary
MR (10–18) (Table 1). All are observational, most
include a mixture of ischemic and nonischemic eti-
ologies, and different methods were used for grading
MR. These studies suggest that any degree of MR
is associated with increased risk of mortality on
multivariate analysis. Of the 5 quantitative studies,
3 showed that a vena contracta width >0.4 cm,
or EROA $0.2 cm2 were associated with higher
mortality (10,13,17), 1 showed no association of MR
severity with mortality, but did show that vena con-
tracta width $0.4 cm predicted the combined
endpoint of mortality, heart failure hospitalization,
and transplantation (16), and 1 showed no effect of
EROA on mortality (14). The latter was a study of
558 patients from an advanced heart failure clinic at
the Mayo Clinic. There was no difference in mortality
between patients with or without EROA $0.2 cm2,
suggesting that the prognostic influence of MR
severity is more important early, and less important
later in the course of the disease, when LV dilation
is extreme and advanced heart failure is established.
However, hemodynamic considerations easily ex-
plain differences between the studies (Figure 2). Most
studies did not report LVEDV and none reported
MR peak velocity. However, if LVEDV is estimated
from the reported LV end-diastolic dimension and
peak velocity is estimated from the reported systolic
blood pressure, each study can be plotted on the
hydraulic orifice equation graph, which reveals that
all fall closely along the physiologic range. It seems



CENTRAL ILLUSTRATION Relationship Between EROA and RVol and LVEDV

(Top) Relationship between effective regurgitant orifice area (EROA; y-axis) and left ventricular end-diastolic volume (LVEDV; x-axis), assuming left ventricular ejection

fraction (LVEF) 30% and severe mitral regurgitation (MR; regurgitant fraction [RF] 50%). EROA is determined by either MR velocity or the square root of the mean

systolic pressure gradient between the left ventricle (LV) and left atrium (LA) and the systolic ejection period (assumption 300 ms). Lines are for patients in 3 different

hemodynamic states: 1) hypertensive patient with compensated heart failure, LV peak systolic pressure 160 mm Hg and LA pressure 16 mm Hg, peak MR velocity 6 m/s;

2) normotensive patient with compensated heart failure, LV peak systolic pressure 120 mm Hg, LA pressure 20 mm Hg, peak MR velocity 5 m/s; and 3) hypotensive

decompensated patient, LV peak systolic pressure 90 mm Hg, LA pressure 26 mm Hg, peak MR velocity 4 m/s. EROA only reaches 0.4 cm2 at very large LV volumes

(>350 ml in the hypertensive patient, 275 ml in the normotensive compensated patient, and 250 ml in the decompensated patient). EROA is dependent on the pressure

gradient between the LV and LA at a fixed RF. In most heart failure clinical trials, mean LVEDV is 230 ml, such that RF 50% occurs at EROA w0.3 cm2 in a normotensive,

compensated patient, but can be 0.2 cm2 at LVEDV 150 ml or in hypertensive compensated patients. Black circles represent the studies showing that EROA >0.2 cm2

predicts mortality (10,13,17). The open circle represents the study showing that EROA >0.2 cm2 did not predict mortality. (Bottom) Regurgitant volume (RVol) versus

LVEDV at a regurgitant fraction of 50%. Unlike EROA, RVol is not dependent on pressure gradient, but changes with LVEF. RVol never exceeds 60 ml in patients with

LVEF 20% or 30%, and only exceeds 60 ml in patients with LVEF 40% at very dilated LVEDV (>300 ml). At normal LV size, RVol can be below 30 ml, even when RF is

50%. With an LVEDV of 230 ml (mean for heart failure clinical trials), severe MR by RF criteria occurs at 45 ml for LVEF 40%, 35 ml for LVEF 30%, and <25 ml for LVEF

20%. The black circle represents the single study (17) showing that RVol >30 ml predicts mortality. LAP ¼ left atrial pressure; LVSP ¼ left ventricular systolic pressure.
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obvious that EROA should be indexed for LVEDV to
determine MR severity.

Another problem with these studies is inherent
selection bias: EROA measurement by PISA cannot be
done in the absence of a defined proximal conver-
gence zone, such that patients with mild MR were
often excluded. In the Rossi et al. (17) study, EROA
was measureable in 81% of patients with severe MR



TABLE 1 Studies Evaluating MR Severity and Prognosis*

Study (Ref. #) N Type of Study
LVEDV,

ml
LVEF
Cutoff

Etiology
of MR

Echo
Core Lab

Method of
Grading MR

MR as Independent
Predictor of Mortality

Grigioni et al. (10) 303 Single center, observational NR NR Post-MI No QD, PISA ERO $0.2 cm2 and ERO
0.01–0.19 cm2

Koelling et al. (11) 1,421 Single center, observational NR <35% Secondary MR
59% ischemic

No Jet area Moderate/severe vs.
none/mild

Trichon et al. (12) 2,057 Single center, observational NR <40% 59% ischemic No LV angiogram Graded worsening for
all degrees of MR

Lancellotti et al. (13) 98 Single center, observational 146 � 18 <45% Ischemic No PISA ERO $0.2 cm2

Patel et al. (14) 558 Single center, observational NR <35% Secondary MR
54% ischemic

No PISA No difference for ERO
$ or #0.2 cm2

Cioffi et al. (15) 175 Single center, observational NR† <40% Secondary MR
51% ischemic

No Jet area Moderate/severe vs.
none/mild

Grayburn et al. (16) 336 Substudy of multicenter RCT 229 � 77 <35% Secondary MR
57% ischemic

Yes VCW, QD, PISA MR not predictive of
death; VCW $0.4 cm
predicted combined
endpoint of death, HF
hospitalization, and
transplant

Rossi et al. (17) 1,256 Multicenter, observational NR NR Secondary MR
62% ischemic

No VCW, PISA VCW >0.4 cm and ERO
>0.2 cm2

Deja et al. (18) 1,209 Substudy of multicenter RCT 222 � 69 <35% Ischemic No ASE grading Graded worsening for
all degrees of MR

*Excluding acute myocardial infarction (MI) studies. †Left ventricular end-diastolic volume (LVEDV) index reported as 93 � 28 ml for absent/mild mitral regurgitation (MR) and 121 � 44 ml
for moderate/severe MR.

ASE ¼ American Society of Echocardiography; ERO ¼ effective regurgitant orifice; HF ¼ heart failure; LV ¼ left ventricular; LVEF ¼ left ventricular ejection fraction; NR ¼ not reported; PISA ¼ proximal
isovelocity surface area; QD ¼ quantitative Doppler; RCT ¼ randomized clinical trial; VCW ¼ vena contracta width.
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but only in 34% with mild or moderate MR. In the
Patel et al. (14) study, EROA was measureable in 72%
with moderate or severe MR, but in only 14% with
mild MR. Missing data in patients with mild MR could
have confounded the results. In a recent large
ship Between EROA and LVEDV at Different Hemodynamic
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multicenter trial of ischemic heart failure (19), the
echocardiography core laboratory graded MR severity
in 1,852 patients (92.3% of available echocardio-
grams), but EROA by PISA was only measureable in
169 (8%). Reasons include failure to properly perform
PISA and inability to measure PISA when there is
no or only mild MR. While the studies in Table 1 are
generally accepted evidence that secondary MR is
associated with poor prognosis, they do not consti-
tute sufficiently strong evidence for a guideline
document to change the definition of severe MR.
Further studies are needed to evaluate whether
indexing EROA or RVol for LVEDV would improve
prognostic value.

The guidelines all emphasize the lack of strong
evidence that MR repair or replacement improves
prognosis in secondary MR, despite the apparent
prognostic significance of lower EROA and RVol
values. Beigel and Siegel (7) elaborate, invoking the
Cardiac Arrhythmia Suppression Trial as the quin-
tessential example of failure of treatment of an
established risk factor (frequent ventricular ectopy
post-acute MI) to improve mortality. Unlike ventric-
ular ectopy, which is easily and accurately quantified,
quantification of MR severity is an imperfect art, most
commonly done by calculating EROA and RVol using
the PISA method by 2D echocardiography. However,
PISA has many limitations (Table 2) and should not be
the sole criterion for determining MR severity.



FIGURE 3 Example of EROA Underestimation by PISA Due to Crescentic Orifice Shape

(A) Proximal isovelocity surface area (PISA) radius (left) and continuous-wave Doppler

(right) resulting in a calculated EROA of 0.18 cm2. (B) Direct measurement of the EROA in

the same patient at 0.35 cm2 by 3D color Doppler (left). EROA is crescentic on 3D imaging,

with its major and minor axes shown at right. Abbreviations as in Figure 1.

TABLE 2 Limitations of the PISA Method

Limited accuracy in eccentric jets

Difficult to judge precise location of mitral valve orifice

Errors in measurement are squared, resulting in large variance in
effective regurgitant orifice area

Must be angle-corrected in nonplanar flow convergence geometry

Assumes hemispheric flow convergence geometry, which is rarely the
case in secondary mitral regurgitation

Regurgitant flow changes during systole

Assumes that measured proximal isovelocity surface area radius
corresponds temporally to peak velocity of the mitral regurgitation
jet by continuous Doppler

Not validated for multiple jets

Shape is affected by aliasing velocity and adjacent structures

Interobserver variability and poor agreement among experienced
observers

PISA ¼ proximal isovelocity surface area.
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Moreover, very little data supports isolated use of or
reproducibility of 2D PISA for differentiating mild,
moderate, or severe MR.

Marwick et al. (6) argue that the redefinition of
severe MR is problematic because the increased risk
of secondary MR is not clearly “purely attributable
to MR severity.” Although increasing MR severity is
associated with mortality, even when adjusted for
comorbidities, this may be related to secondary MR
patients being older and having larger ventricles,
more fibrosis/infarction, other major comorbidities,
or unmeasured variables.

PROBLEMS WITH THE USE OF PISA FOR

GRADING MR SEVERITY

EROA shape in secondary MR is usually crescentic
(20–26) (Figure 3). Calculation of EROA by PISA as-
sumes a round orifice through a flat surface, such that
the proximal flow convergence region is hemispheric
and flow can be calculated from the product of the
aliasing velocity and the surface area of a hemisphere
(2pr2). If the shape of the proximal flow convergence
region were a symmetric hemiprolate ellipsoid (i.e.,
football shaped), calculation of a corrected EROA
would be possible; however, the geometry of the
proximal convergence zone in secondary MR is com-
plex and often asymmetrical. Fortunately, 3D echo-
cardiography allows direct measurement (20–26). The
product of EROA and the velocity-time integral of the
MR jet by continuous-wave Doppler is the RVol. One
study comparing RVol by 3D echocardiography to
magnetic resonance imaging in patients with sec-
ondary MR showed a �8 ml 95% confidence interval
(23). Three-dimensional echocardiography, whe-
ther by transthoracic or transesophageal imaging,
potentially allows more accurate EROA and RVol
calculations (26); however, the new guidelines, which
appear to partially rely on systematic underestimation
of EROA (and hence RVol) by the PISA method, do not
address the abundant literature that 3D echocardiog-
raphy may avoid this problem.

Secondary MR has a characteristic biphasic pattern
during systole. MR is generally greatest in early sys-
tole, has a nadir in midsystole, and then increases just
before mitral valve opening (27). As the PISA method
only uses a single time point, overestimation of MR
can occur if the operator picks the largest radius at
early systole. Conversely, if PISA is measured during
midsystole EROA will be underestimated. Moreover,
the hydrodynamic concept of EROA refers to the
mean EROA occurring over the MR time course, which
is not always holosystolic. Single-frame EROA mea-
surements by either traditional 2D PISA or 3D imaging
do not necessarily reflect the mean EROA.

PISA radius measurement is difficult because
although the aliasing line is clear, the exact point of
flow convergence on the anatomical orifice is not.
Figure 4 shows the same imaging frame from a patient
with nonischemic dilated cardiomyopathy and left
bundle branch block 3 months after cardiac resynch-
ronization therapy and optimization of medical



FIGURE 4 4-Chamber View From a Patient With Secondary MR

Identical images taken 3 months after optimization of guideline-directed medical therapy

and cardiac resynchronization. (Left) PISA radius is measured at 7 mm, giving a calculated

EROA of 0.16 cm2 and RVol of 30 ml. (Right) PISA radius is measured at 8 mm, giving a

calculated EROA of 0.26 cm2 and RVol of 42 ml. This patient had an A-wave-dominant

mitral filling pattern, normal pulmonary venous flow velocities, and a normal left atrial

volume of 24 ml/m2. If the definition is changed, a small error in radius measurement by

PISA (7 mm vs. 8 mm) makes the difference between mild (Stage B) and severe

(Stage C or D) secondary MR. Abbreviations as in Figures 1 and 3.
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therapy. LVEF improved from 30% to 50%, LV and
LA volumes improved, and the patient became
asymptomatic. In the left panel, PISA radius was
measured at 7 mm, giving a calculated EROA
ber Echocardiographic Images From a Patient With

R

month later, after optimizing medical therapy (right). (Top) Changes

al regurgitation (MR) jet. (Bottom) Change from systolic flow reversal

normal (blue arrow, right). This case illustrates secondary MR’s

ch improves or worsens substantially depending on volume status,

t failure exacerbation, ischemia, or medication changes.
0.16 cm2 and RVol 30 ml, consistent with other find-
ings of mild MR, including an A-wave–dominant
mitral inflow pattern, normal pulmonary venous flow
velocities, and LA volume index 24 ml/m2. The right
panel shows that an 8 mm radius would result in
EROA of 0.26 cm2 and RVol of 42 ml, which could be
considered severe MR under the new guidelines.
Because typical baseline-shifted aliasing velocities
are around 30 cm/s and typical peak mitral velocities
are around 500 cm/s, the difference between an
EROA above or below the new 0.2 cm2 threshold is
strictly on the basis of the PISA radius being 7 mm
versus 8 mm. Biner et al. (28) showed that expert
observers disagree substantially on classification of
MR severity by PISA, largely because of small differ-
ences in radius measurement. Given this issue,
confirmation of MR severity by other parameters
is needed when EROA and RVol are determined
using PISA.

CLINICAL DILEMMAS CREATED

BY THE NEW GUIDELINES

DISPARATE RESULTS FROM 2D AND 3D ECHO-

CARDIOGRAPHY. A patient with an EROA of 0.25
cm2 by PISA will commonly have EROA $0.4 cm2 on
3D echocardiography. Such patients usually have
severe MR substantiated by other echocardiographic
findings and clinical decision making is straightfor-
ward; however, discrepancies between 2D- and 3D-
derived EROA can be problematic. For example, if
the EROA by PISA is 0.15 cm2 and the patient is
determined to have mild MR on the basis of the
totality of echocardiographic and clinical findings,
what happens if the EROA is 0.25 cm2 by 3D imag-
ing? Unfortunately, the new AHA/ACC guidelines
could be misinterpreted to classify the patient as
having severe MR. Although increasingly used to
measure EROA and RVol in secondary MR without
assuming round orifice geometry, it is typically a
single-frame measurement of a dynamic orifice
and is subject to overestimation of EROA because
the pulsed-Doppler color flow technique includes
lower velocity signals from turbulent eddies outside
of the high-velocity jet core emerging from the
orifice (29). Note that the studies in Table 1 showing
a mortality risk for any degree of MR used either
subjective grading or PISA. The ability of 3D
planimetry of EROA to predict outcomes has not
been validated.

THE DYNAMIC NATURE OF SECONDARY MR. Figure 5
is from a patient seen for evaluation of severe
secondary MR due to an underlying nonischemic
cardiomyopathy. The patient has New York Heart
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Association functional class III heart failure symp-
toms and a recent admission for heart failure exac-
erbation. EROA by PISA was 0.35 cm2 with a
restrictive mitral filling pattern and systolic flow
reversal in the right upper pulmonary vein. Blood
pressure was 138/78 mm Hg. The patient was
determined to have severe MR, but was not on
optimal medical therapy. Losartan was increased
from 25 to 50 mg and furosemide from 20 to 40 mg
daily. One month later, the patient was asymptomatic
and clinically euvolemic. Blood pressure was now
108/64 mm Hg. Two-dimensional Doppler echo-
cardiography demonstrated an EROA by PISA of
0.15 cm2; the mitral inflow pattern showed impaired
relaxation, and the right upper pulmonary vein flow
pattern was normal. This patient illustrates the dy-
namic nature of secondary MR. EROA also varies
notoriously with loading conditions (30), commonly
seen during hypertensive crises and heart failure ex-
acerbations. Functional MR severity changes over
time with medical therapy (31–33), revascularization
(34), and cardiac resynchronization therapy (35,36).
The guidelines do not address how to approach the
dynamic nature of secondary MR. It seems prudent
not to label patients as having severe MR until they
are on optimally tolerated doses of guideline-directed
medical therapy, and, if clinically indicated, have
undergone revascularization and/or cardiac resynch-
ronization therapy.

IMPLICATIONS FOR SURGICAL MANAGEMENT

Current European Society of Cardiology (37) and AHA/
ACC guidelines (5) are consistent in management
recommendations for secondary MR. Mitral valve
surgery is indicated for a patient with severe MR
undergoing cardiac surgery for coronary revasculari-
zation or other reasons; however, mitral valve sur-
gery purely to address secondary MR is generally a
Class IIb recommendation because the preponder-
ance of current evidence has not shown a mortality
benefit (18,38–44). The recent Cardiothoracic Surgery
Network trial of severe MR randomized patients to
mitral valve repair with a rigid complete annuloplasty
ring versus chord-sparing mitral valve replacement
(45). The primary outcome of LV end-systolic volume
reduction was no different, but 30-day and 1-year
survival were similar, and moderate or greater MR
had a 32% recurrence rate at 1 year. Under the new
definition, this would be a 32% rate of severe MR
at 1 year. A Cardiothoracic Surgery Network trial of
moderate MR randomized to bypass surgery alone
or without annuloplasty showed no benefit in terms
of mortality or LV remodeling at 1 year (46).
According to the new guidelines, the patients in this
trial could now be redefined as having “severe” MR.

Although the new guidelines recommend mitral
valve surgery for severe symptomatic secondary
MR only at a Class IIb level, the definition change
poses problems. Clinical trial sites of new mitral
valve device therapies may now advocate enrolling
patients on the basis of PISA-derived EROA of
0.2 cm2. Lower entry thresholds could dilute any
observed benefit by making improvements in LV or
LA remodeling, or quality-of-life measures more
difficult to identify. Interesting, recent data from
the MitraClip device clinical trials show significant
LV and LA remodeling in secondary MR when MR
is reduced from severe (as previously defined) to
either mild or moderate (“severe” under the new
guidelines) (47). If a patient undergoes a surgical or
percutaneous mitral valve procedure that reduces
EROA from 0.4 to 0.2 cm2, and hemodynamics,
heart failure symptoms, quality-of-life scores, and
LV and LA remodeling improve, does this patient
still have severe MR? The conundrum raised by
changing the EROA cutoff value from 0.4 to 0.2 cm2

for severe secondary MR highlights the importance
of an integrative approach to assessing MR severity,
which all published guidelines continue to advo-
cate. An integrated approach incorporates mul-
tiple Doppler parameters without relying on any
single parameter, thereby minimizing the limita-
tions inherent in each.

CONCLUSIONS

Proposed changes to the partial definition of severe
secondary MR from an EROA of 0.4 to 0.2 cm2 and an
RVol of 60 to 30 ml should be applied cautiously in
clinical practice. The evidence for changing these
cutoffs comes from retrospective analyses of obser-
vational studies using a flawed method that un-
derestimates EROA and RVol in secondary MR.

Redefining severe MR may create confusion in
clinical practice. Although not intended to do so,
guidelines can and often do influence reimbursement
decisions, quality metrics, and medicolegal issues.
Thus, a major change should require strong evidence,
explanation of its necessity and ideally, broad expert
consensus substantiated by Level of Evidence: A.
Table 16 in the expert guidelines (5) appears to
recommend a change in definition of secondary MR
severity; however, careful reading of the entire
document supports continuing an integrative
approach that discounts poor quality data (e.g., EROA
underestimation by PISA) and incorporates clinical
judgment.
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Specifically, we propose the following:

1. The integrative approach using multiple echocar-
diographic and clinical variables should continue
to be used to grade secondary MR severity;

2. The new definition of severe secondary MR with
RVol $30 ml and EROA $0.2 cm2 depends on LV
size and on the LV-LA pressure gradient and must
be used in that context;

3. The quantification method must be specified (2D
PISA, 3D planimetry, volumetric);
4. Classification of a patient as having severe
secondary MR (Stage C or D) should be de-
ferred until guideline-directed medical therapy,
resynchronization, and revascularization are
optimized.
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