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Abstract

We show that the£1 representation that contains the space—time translation generators also contains the rank two and five
totally anti-symmetric representations afio. By studying the behaviour of these lattérg representations under SL(32),
which we argue is contained in the Cartan involution invariant sub-algebfg pfwe find that the rank two and five totally
anti-symmetric representations must be identified with the central charges of the eleven dimensional supersymmetry algebra.
0 2003 Published by Elsevier B.@pen access under CC BY license.

1. Introduction

It has been shown that the entire bosonic sector of eleven-dimensional supergravity, can be formulated as non-
linear realisation [1]. The algebra, denoi@gh, used for this non-linear realisation was not a Kac—Moody algebra.
However, it has been suggested [2] that this theory can be reformulated, or extended, in such a way that it can be
described as a non-linear realisation based on a Kac—Moody algebra. Assuming this to be the case, it was shown [2]
that this Kac—Moody symmetry should contain very extenklgd.e., E11. Substantial fragments of this symmetry,
as well as other evidence for it, has been presented [2—4]. Analogous results were also found for IIA [2] and 1IB
supergravity [5] where the corresponding Kac—Moody algebras were also foun&tq bbeeach case. An account
of work on symmetries in dimensionally reduced supergravity and string theories is given in Ref. [15].

The algebraG1 contained the usual translation generators whose role was to introduce space—time into the
theory, however, these generators did not play any role in subsequent discussi@hs. dn this Letter we
will explain how the translation generators can be incorporated into a non-linear realisation baSed ©he
translation generators carry one lower index and transform in the corresponding representatigrsaiceE11
containsA1p we will enlarge thisA1o representation to one belonging Fa1. We will find that the translations
occur in thisE1j representation together with a second rank and fifth rank anti-symmetric tensor representations
of A10 as well as an infinite number of other tensors.

The gravity sector of eleven-dimensional supergravity arises as the non-linear realisation of the IGL(11) sub-
algebra ofG131, the | being the translations. Taking the non-linear realisation of IGL(11) with the Lorentz algebra
S0O(1,10) as the local sub-algebra does not uniquely lead to gravity. However, if one takes the simultaneous non-
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linear realisation of IGL(11) and the conformal group SO(2,11) one finds to Einstein’s theory of gravity [1,6]
essentially uniquely. In Ref. [1] the non-linear realisation based gnused for eleven-dimensional supergravity

was combined with a simultaneous non-linear realisation of the conformal algebra and this did lead to the unique
bosonic field equations of eleven-dimensional supergravity, up to one undetermined constant [1]. Subsequent
papers did not address the question of how this conformal algebra combinedwithlowever, it was argued

in Ref. [1] that the presence of the fermionic extension of bosonic sector of eleven-dimensional supergravity
considered above implied that the full theory would possess aiil@&p). This algebra contains GL(32) which
rotates the spinor index on the supercharges and so this must also be a symmetry of M theory. In fact, the
algebra GL(32) had previously been proposed as a symmetry of M theory as part of it occurred as a symmetry
of the fivebrane equations of motion [8]. It was explained [8] that the SL(32) symmetry was a brane rotating
symmetry and was the natural generalisation of the local spin or Lorentz algebra when branes were present.

The local sub-algebra used in formulating tBg; non-linear realisation was taken to be the one which is
invariant under the Cartan involution. We will argue that SL(32) is indeed part of this local sub-algebra and we
calculate the transformations of the second and fifth rank anti-symmetric tensor representations mentioned above
under SL(32). We will find that these objects transform in such a way that they should be identified with central
charges of the eleven-dimensional supersymmetry algebra.

2. Eq1 at low levels

We invite the reader to draw the Dynkin diagram#f; by drawing ten dots in a horizontal line labeled from
one to ten from left to right and connected by a single line. Then place another dot, labeled eleven, above the third
node (labeled eight) from the right. We consid&r as a member of the class of Kac—-Moody algebras discussed
in Section 3 of Ref. [7], namely, an algebra whose Dynkin diagram possess at least one node such that deleting it
leads to a finite-dimensional semi-simple Lie algebra. If we delete node eleven in the Dynkin diagtain tbie
remaining algebra igl19. The preferred simple root g1 and the simple roots kg arew;, i =1,...,10. We
may write [7]

011 = —Ag + X, (2.1)

wherex is a vector in a space orthogonal to the rootd @f andx; are the fundamental weight vectors4x{p. The
simple roots have length squared two and$e=2 — 22 = —l%.
A roota of E11 can be written as

o =la11+2miai =lIx —l)»g-l—ZA{k)»k, (2.2)
i ik

whereAfk is the Cartan matrix ofi1o. We define the level, denotéd[4] of the roots ofE1; to be the number of

times the rootr11 occurs in its decomposition into simple roots given in the equation above. The generdigys of

can also be classified according to their level which is just the level of the root associated with the generator.
The E11 algebra contains the generatdf$, at level 0 and the generators

Ralazag’ Ralaz...as’ Ralaz...ag,b (23)
at levels zero, 1, 2 and 3, respectively [2,4], as well as the generators

Ra1a2a3 , Ralaz‘..ae , Ralaz...ag,b (2-4)

at levels—1, —2, —3. The generators df11 at higher levels are listed in Refs. [4,16].
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The corresponding Borel sub-algebra up to, and including, level 3 obeys the commutation relations [2]

[Kab,KCd]z(SZKad—SZKCb, (2.5)
[Kab, Rcl...ce] — 321Ra02...ce 4+ [Kab, Rcl...c;:,] — 5;1Raczc3 + .- (26)
[Kab, Rcl...cg,d] — (521Ra02...cg,d 4. ) + 5ZR01...cg,a’ (2_7)
[Rcl...cg, RC4...66] — 2RC1---06’ [Ral---aﬁ’ Rbl...bg] — :))Ral...a6[17ll72,l73]7 (28)

where 4+ -.." means the appropriate anti-symmetrisation. The level 0 and negative level generators obey the
relations

[K“. Rey..c5] = =88 Rocyes — -+ [K. Rey..cq] = =8¢ Rbcpco — (2.9)

[K“. Rey...cod] = —(8%, Rocy...co.d + ) — 83 Rey...ca.bs (2.10)

[Rey...car Reg.cs] = 2Rey...cq [Ray...as Rbr...bs] = 3Ray...aglbrb.bal- (2.11)
Finally, the commutation relations between the positive and negative generators of up to level three are given by

[R5, Ry 1] = 364Ky~ S5LD, [ Ray i R 0] == Stz esnd, (222
where

1
D=3 K’y 852 = (58, — 5,705) = 8,57

with similar formulae when more indices are involved.
The above commutators can be deduced, using the Serre relations and from the identification of the Chevalley
generators oF 11 which are given by [2]

E,=K%41, a=1,...,10,  Ej = R
F, = Ka+1a, a=1,...,10, F11= Rog1011 (2.13)

H,=K% — K1, a=1,...,10,

Hi= :—i(Kgg + K0+ Khy) — :—13(1(11 +--+ KB). (2.14)
The sub-algebra which is invariant under the Cartan involution, namely,

Eq— —Fs, Fo—> —E;, Hs— —Hg, (2.15)

plays an important part in the non-linear realisation of Ref. [2] as it is taken to be the local sub-algebra. As such,
its generators do not lead to fields in the non-linear realisation. The Cartan involution is a linear operator and acts
on the generators as

K% — —K%, R™%?2% —Rayazazs RA1+46 — Ra;...a6 ROv-a8b —Ray..ag,b- (2.16)

The sub-algebra invariant under the Cartan involution is generatédd, by F, and at low levels it includes the
generators

Jab = K bplac — K ape, Sayazaz = RPb2b *NbrarMbpazNbzaz — Rayagas, (2.17)
Sal .ag = Rb banblal ***Nbgag + Ral,.,ae, (218)
Sal .ag,c = Rbl be. bnblal ***Nbgaglbc — Ral...ag,c~ (2-19)
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The generatorg,;, are those of the Lorentz algebra SO(1,10) and their commutators with the other generators just
express the fact that they belong to a representation of the Lorentz algeb&, LheandsS,, ., generators obey
the commutators

[Sala2a3, Sb1b2b3] = _365[[2125 Jas}b’o‘] + 28992% o, (2.20)
!

6
[Surazags S7+78] = —2 3 5gﬁ;’;gg3sb4bsb61 — 380106 ). (2.21)

3. Trandationsand an E11 representation

The space-time translation generators carry a single lower index and transform in the correspapding
representation. This is equivalent to a tensor with ten upper anti-symmetrised indices which, in our conventions,
is the representation with weight, or Dynkin indexp1 = 1, all otherp;’s vanishing. We wish to consider the
representation of11 which contain the translation generators. The fundamental weiglfig,aire given by [7]

Li=)i+hehisg, i=1...10, k1= o (3.1)
X X
The E11 representation with highest weight= 11 — %’x obviously contains the states in theg representatioi.

The highest weight stati; > can be thought of as being at Ievel%. It is straightforward to construct the root
string associated with the action of the simple negative rfgtsn this highest weight state. One finds

I, lh—a1, l1—a1—a2, ..., h—01— - -—ag—0a11, .... (3.2)

The last weight written explicitly is the first one in the string whege enters and it corresponds to the appearance
of a newA g representation in the string. In fact,

5
11—011—"'—018—01112)\9—515» (3.3)

which contains the highest weight for thig o representation whose only non-vanishing Dynkin indexds= 1
or a second rank anti-symmetric tensor. Continuing in this way we find that the represehtat@mrtains the
following A1g representations

3 5 7 9
p1=17 (_§>a p9:1a <_§)7 p6=1» (_§>a p4:1a Plozl, <_§>a

p3=1, (—g); ey (3-4)

all other p;’s vanishing. The number in brackets is the corresponding level.

Consider any Lie algebrawith a representatiom(A). By definition, the linear operatorgA), for each element
A € g, obey the relatiom(A1A42) = u(A1)u(A2). If the representation is carried by the stat&s) it defines the
matricesu(A)|X;) = (c(A))s"| x:). Clearly,c(A1A2) = c(A2)c(A1) and so a matrix representationgfs defined
by d(A) = c(A¥) where 1 is any operation that inverts the order of the factors in the Lie algebra. The relevant
operation for us is to takd* = 17/ (A), whereI¢ is the Cartan involution and’ is the operators which inverts
the order of operators and (A) = —A. The latter operator is just the operator in the algebra which corresponds to
inversion of group elements.

In these circumstance we can define a semi-direct product algebra. We associate with each state in the
representationX;) a generatoX; and we extend the algebgato include the new generators by adopting the
commutation relation

(X5, Al=d(A)"X,, Aecg. (3.5)
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This is consistent with the Jacobi identities involving two elemenjsarfid oneX;. The commutator between two
elementsX,; and X, must be chosen and it is consistent to choose it to vanish.
Carrying out this procedure fdf1; and the representatidnwe introduce the generators

Pal...alo’ Walaz, Wal...a5’ Wal...a7,b, L (36)

at levels3, 3, £, 2, respectively. it is straightforward to find the generator associated with the root string of

Eq. (3.2). The entries explicitly given correspondré-11, p13-11 pl124..119nd R91011 \We denote the semi-
direct product ofE11 with its /1 representation b1 ®; L1.
It is simpler to work with the more familiar generator

1
P, = 1—mebal_._aloP“1‘"“w. 3.7)

The A1g generators act on the translations as
[ch Pal...alo] — 108[01P\C|a2...a10] _ ESCPal...alo. (38)
’ b 2 b
The last term on the right-hand side of the above equation is required as a result of the félgiagrf1--10] = Q.
The corresponding commutator involviiy is
1
2
The root string of Eq. (3.2) corresponds to the commutators

(K, Pa]=—85Py + =8}, Pa. (3.9)

[Ralazag,, Pb] — 38£a1 Wazag,]’ [Ralazag,, Wble] — W010203blb2, (310)
[Rala2a3, Wb1...b5] — Wbl...b5[a1a2,a3]’ (311)

which also normalise the new generators.
Using these relationships and the Jacobi identities one deduces that

[Ral...ae, Pb] — _331[7“1Wa2...06]‘ (312)

Using the Jacobi identities and Egs. (3.10) and (3.11) the commutators involving the negative geRgpatisrs
found to be given by

[Ralazas’ Pb] =0, [Ralazas’ Wblbz] = 125?;11;22 Pag), (3.13)
[Ralazagv Wbl...bs] — 1205{blb2b3 Wb4b5] ) (3 14)

ajazas
It will be instructive to consider the commutators of the Cartan invariant sub-algebra gersgpatofr £11 with
the generators associated with the representatiddsing Egs. (3.10) and (3.11) and Egs. (3.13) and (3.14) we
find that
[Salazag, Pb] = Snb[al Wazag,]v [Salazag, Wblbz] = Walazagblbz - 125?;11;22 Pag]v (3-15)

[Sarazazs WOH-05] = WPL-P5 1 o) o) — 1205{”1”5?33 Whabsl, (3.16)

aiap
Itis interesting to examine what adding the generators correspondingfor@esentation means in terms of
the weight lattice. The weighif = —%(l + 1) in the notation of Ref. [7], Section 5. The root latticefof; is given
by [7]
Ap,® MY @ {(n,n), ne2). (3.17)

Adding the /1 representation corresponds to adding the veetér(l,—l) to the last factor in the above
decomposition and so one is working on the full weight lattice.
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4, GL(32) and central charges

In this section we review and expand the results of Refs. [1,8,9]. The eleven-dimensional supersymmetry
algebra is of the form [10]

(Qus Qp} = Zap = (y*C T Pu + v 2C  Zyay + v "C ™ Zay...a5) 0 (4.1)

[Qu, Zozﬂ] =0, [ZOlﬂv Z}/S] =0. (4-2)
This algebra admits GL(32) as an automorphism whose action is given by

[00. 1] =840y,  [Zap. T,,°] =85Z,5 +85° Zay . (4.3)

This automorphism was found to play a role in the symmetries of the fivebrane dynamics [8,9] and later was shown
to be a symmetry of M theory [1].

To gain a more familiar set of generators we may expﬂ,n‘dout in terms of the elements of the enveloping
Clifford algebra

T’ = Z Z SZLp'(_l)p(pzl) (Val"'ap)yaTal---ap or (Val"'ap)ayTylS =T, (4.4)

p ai.ap

The summation only goes over=0, 1, ..., 4, 6 since we may use the relation

14

1 D
)/al"'apza(_l)(q_l)p(_l) 2+ Eal...apbl...bqyblmbq’ (4_5)

for p + ¢ =11. We then find that

[Qa’ Tal'"a/)] = (yal"'al’)aﬂng. (46)

As such, theQ, carry a representation of GL(32) wiftf'1-“» represented by“1--4r, The Lorentz generators are
represented in the usual way By, = va».
Using the relation

n

\m!
nim: (_l)s(s+l)/2(_1)sn (1 _ (_1)nm+s)5[[211-21§ ya;+1...an]b

ay...dy —
[v  Vb1...bm | g S —)lm — )] st 1o ]
4.7)
valid for m > n, it straightforward to show, for example, that
(742, Thiphy] = —368 51520 o) + 2722 s, (4.8)
[T20212, Thyg] = +36451 7%y, gy — 2 SIS Thapsie (4.9)

Examining the other commutators one finds that SL(32) is generated by multiple commut&t6r&et.
For the effect of SL(32) on the central charges was given in Eg. (4.3) which in terms of the new basis becomes

[Zozﬂy Tal...ap] — (yal...ap ()/a j yalazzalaz + yal...a5zalma5))a5(Cfl)aﬁ

+ (_1)p(p+1)/2((ya Pa + yalazzalaz + yal...a5zalma5)yal...ap)aé(C—l)éﬂ‘ (410)
As a result we find that [8]
b1b
[va Talazas] = _677b[alza2a3]v [Zblbzv Talazag,] = _S!Zalazagblbz + 65[;1;2 Pag], (4-11)

1
[Zbl...bs’ Talazag] = _Zeblmbscl...cs[alazZag]CL"CS + 25&?-%122@32174175]. (412)
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GL(32) first arose in the dynamics of the M theory fivebrane which was found [8] to possess an unexpected
symmetry whose generator had three anti-symmetrised eleven-dimensional space—time indices. This generator
was shown to obey commutation relations that identified it with a generator in contracted version of SL(32) [8].
Furthermore, when the dynamics of the fivebrane was described by a non-linear realisation the third rank world
volume gauge field strength was found to be the Goldstone boson for a rank-three generator in SL(32) which acted
on the supercharges as in Eq. (4.3).

It was explained in Ref. [8], that SL(32) is the natural generalisation of($pl®), required for the point
particles, to the situation when branes are presentin M theory and it acts as a brane rotating symmgitryL3pin
can be defined is just the group which acts by a transformatio@ pthat takes(y%),” P, into on object of the
same form. However, when branes are present this last expression is replaced by the arbitrag mainik so
the natural symmetry to consider is SL(32).

Finally, in Ref. [1] it was argued that GL(32) was a symmetry of M theory. We recall the outline of the argument.
Eleven-dimensional supergravity is invariant under the supersymmetry algebra and it is also invariant under the
eleven-dimensional conformal group. The latter follows from the formulation of eleven-dimensional supergravity
as a simultaneous non-linear realisation of the conformal algebr& gjd]. However, it has been known [10] for
many years that the only algebra that contains the conformal algebra and the supersymmetry algebra is Osp(1/64)
and so the result follows.

This invariance is consistent with the much earlier result of Ref. [11] which showed that eleven-dimensional
supergravity was invariant under SO(16) provided one took onlylSE) x SO(8) as the Lorentz group. This
SO(16) is contained in SL(32) in a straightforward way; we write the 32-component spinor in terms of its
spin(1, 2) x spin(8) decomposition and then the spin(16) acts on the indices associated with the latter.

Very recently SL(32) has been considered in the context of the holonomy of M theory [12—14].

5. E11 and theidentification of the central charges

It was suggested [8] that the Lorentz algebra should be replaced by SL(32) in the context of M theory. As such,
one might anticipate that this algebra should be containgt} irand, in particular, one might expect that SL(32)
should be contained in the corresponding local sub-algebra which is the Cartan involution invariant sub-algebra
of E11. Such an identification can also be seen from another viewpoint. The world volume gauge field strength that
occurs in the fivebrane equation of motion is the Goldstone boson for part of the SL(32) automorphism symmetry
[9] and it is also the case that the third rank gauge field of eleven-dimensional supergravity is the Goldstone boson
associated with the genera®f12%3 of E£11 [1,2]. However, these two fields appear in the world volume dynamics
in a linear combination due to their gauge symmetry and as such the generators of the two algebras should be
related to each other.

The generators of the Cartan involution invariant sub-algebr&;efare given, at low levels, in Eqgs. (2.17)—
(2.19) and their commutation relations in Egs. (2.20) and (2.21). Comparing these with the analogous relations for
the SL(32) automorphism algebra of the eleven-dimensional supersymmetry algebra given in Egs. (4.8) and (4.9)
we find the same commutation relations provided we identify

1
Ta1a2a3 = Salazag» Tbl...b6 = Sbl---bﬁ and Sbl...bs[alaz’a:;] = E6[[ZfEalaZ]bl...ba]Cl...C4TClmCA- (51)

The reason for the contraction appearing in Ref. [8] is because the symmetry of the fivebrane dynamics
considered there involves the generai¥i?2?s rather thanSs,a,q5. It follows from the above arguments that,
even though we have not introduced the supersymmetry supercharges themselves, the SL(32) generators identifie
in E1; in this Letter are the ones that acts on the supercharges as in Eq. (4.3).

At first sight the rank of SL(32) is too large for it to be containedHiy. However,E11 does contain very
large commuting sub-algebras, certainly much larger than eleven, and to identify SI(32) we have set to zero some
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generators irE11 and this step could also increase the number of generators allowed in a commuting sub-algebra.
The only remaining SL(32) generator that is left to identifyfjswhich occurs at the next level and it would be
good to extent the calculation given in this paper to the next level and so identify this generator.

Given the above identification of SL(32) one can examine if its action on the central charges given in Egs. (4.11)
and (4.12) plays a role ift1;. Indeed, comparing these equations with Egs. (3.15) and (3.16) we find the same
commutators provided we identify the central charges of the eleven-dimensional supersymmetry algebra with the
two- and five-rank anti-symmetric tensors that appear irtherepresentation with highest weight in particular
we take

Wwhaz — 22“1“2, Wa-as — 9., 5!Za1...a5’ Wa-a1,¢ — 606“1'"a7d1...d4ZCdlmdA- (52)

Since the generata?, is in common to the supersymmetry algebra and the semi-direct prodiégt afith its I1
representation, we are obliged to identify the two- and five-rank anti-symmetric tensors that appgabin’j.

The conjecturedt11 symmetry of M theory was uncovered in Ref. [2] by examining the bosonic sector of
eleven-dimensional supergravity and it is encouraging that aspects of M theory found outside this sector, i.e., in the
fermionic sector and in the fivebrane dynamics lead to symmetries that are contained in semi-direct pBguct of
with its [ representation. This bodes well for the incorporation of supersymmetry and the rest of the conformal
group into an extension df11 ®; L1.

The realisation thak1 places the central charges in the same symmetry multiplet as the translations generators
indicates that the theory which is invariant undey; should involve the usual space—time and coordinates
associated with the central charges. In particular, we should construct the non-linear realisatiQn®QfL
and so consider a group element of the form

g= exp(xa P, + Xayas w2 Xay...as W45 4 .. ) exp(habK”b)

X exp( Ay RT3 ACl---CaRCL"Cﬁ)

s . (5.3)

where 4 - -’ stand for higher-level generatorsinand the final /- -’ for terms containing higher level generators

of E11. The fields should then depend f, x4,4,, Xa;...as, - - - - This formulation should be able to describe point
particles and branes on an equal footing as it encodes the brane rotating symmetries. Traditionally, non-linear
realisation have been used to describe the low energy dynamics of a theory in which a symmetry is spontaneously
broken, however, at high energies the same symmetry is expected to be linearly realised. It is to be expected that
the same might occur here and that the fundamental theory may have its symmetries realised on different variables.
This presumably should include the coordinates.

6. Solutionsand Weyl transfor mations

In a recent paper [15], the Cartan sub-algebrAgf that is group elements of the forgn= " ) whereH,,
are the Cartan generators Bf1, was considered and the action of the; Weyl transformations induced on the
space-time fieldg™ was found. After relating these to the diagonal components of the metric, it was shown that the
moduli space of an enlarged set of Kasner solutions carry a representation of these Weyl transformations [15]. In
this section we generalise this work and consider group elements that include the space—time translation generators
and higher level generators in tlig representation. We will find the action of the Weyl transformations also
on the space—time and other coordinates at low levels. As a result, we will be able to find the action of Weyl
transformations on the solutions themselves and not just their moduli. Our discussion will be rather brief, but we
will set out the general procedure and illustrate it in the context of the generalised Kasner solutions.
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Restricting theFE1; part of the group element to be in the Cartan sub-algebra, the group element of Eq. (5.3)
takes the form

g= exdxﬂpu + Xayay Wz 4 Xay...a WaLas 4 .. ) exqqm Hm)
= exp(x" Py + Xajay W + Xay..as W% + ) exp(pa K%4). (6.1)

For E11 the Cartan sub-algebra is expressed in terms of the genek&tgnshich belong to GL(11) [2]. A detailed
explanation of the change from th& to the p, variables is given in Section 2 of Ref. [15]. The theory resulting
from the non-linear realisation involving such a restriction only possess a diagonal metric whose components are
given byg,,, = e Nap-

Although the Cartan sub-algebra of a Kac—Moody algebcarries a representation of the Weyl group this is
not the case for the representationsgoHowever, an extension of the Weyl group by a cyclic group does have
an action on representations gf The effect of this extension is to introduce various signs into the action of the
Weyl group. In this first account we will omit the, possibly significant, effects of the centre and give the effect
of Weyl transformations are only up to signs. The Weyl reflectidhg,corresponding to the simple roats on
the weightsw of a representation are given I8y, w = w — (a4, w)e,. Carrying this out on the root string of
Eq. (3.2) and using the correspondence between the weights and the generators, we findatkat, .. ., 10,
does not introduce anyi; and so they do not change the level of the generator on which they act. They act on the
space—time translation generators as

Sa(Pg) = Pyy1, Sa(Pay1) = Py, Sa(Pp)=Py, b#a,a+ 1 (62)

The Weyl transformatior§1; can change the level as it can introducesa in its reflection. Its action on the
translations is given by

S11(Pe) = Py, a#9,10,11,  S1(P9) =W 519(Pio =W S10(P1) = w0, (6.3)

while on the second rank central charge we find that

Sll(Wloll) = Py, Sll(ngl) = P10, 511(W910) = Py, 511(Wab) =w®, a4<8, b>8.
(6.4)
S11 takes the remaining components of the two-form central charge into the five-form central charge. Examining
the group element of Eq. (6.1) we find that the Weyl transformatns: = 1, ..., 10, act on the space—time
coordinates and variableg as

1 < xa—&-l’ Pa <> Pa+1. (6.5)
It is important to remember that the, depend on the space—time and other coordinates and the change in these
must also be carried out when evaluating the transformed variable. The Weyl transforfatiomxes the space—
time coordinates with the central charge coordinates, for examiple x¢, c =1, ...,8,x2 < x1011 x1% < x911
andxll <> X910-
The generalised Kasner solutions can be labeled by the space—time variable that the metric depends on. The

xb-Kasner solution has a metric of the form

~ b
Sup = nuafprax , (6.6)
wherep, are constants which must satisfy
Y be=po. D (he)?= (w2 (6.7)
c,c#b c,c#b

in order to obey Einstein’s equations. The usual Kasner solutioh k&8, i.e., depends on a time variable.
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Using Eq. (6.5) we can carry out the Weyl transformationsSgra =1, ..., 10, on the generalised Kasner
solutions and we find that the solutions are indeed exchanged under the action of these Weyl transformations. It
takes thex”-Kasner solution into the®-Kasner solution ifb # a,a + 1, and it swops the“-Kasner solution
with the x?*+1-Kasner solution. We observe that this includes the swopping of the temporal and spatial generalised
Kasner solutions ifi = 1.
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