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Recent experimental results for the ratio of the branching fractions of B̄ → D(∗)τ ν̄τ and B̄ → D(∗)μν̄μ

decays came as a surprise and lead to a discussion of possibility to constraining New Physics through
these modes. Here we focus on B(B̄ → Dτ ν̄τ )/B(B̄ → Dμν̄μ) and argue that the result is consistent
with the Standard Model within 2σ , and that the test of compatibility of this ratio with the Standard
Model can be done experimentally with a minimal theory input. We also show that these two decay
channels can provide us with quite good constraints of the New Physics couplings.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recent experimental result by BaBar [1]

R(D) = B(B̄ → Dτ ν̄τ )

B(B̄ → Dμν̄μ)
= 0.440 ± 0.058 ± 0.042 (1)

seems to indicate a disagreement with the Standard Model (SM)
prediction. In addition to the above ratio, the experimenters also
measured the corresponding decays to the final vector meson.
Since the latter involve more form factors and can also be ex-
perimentally more challenging due to the need of discerning
the soft pion events in B → D∗(→ Dπ)�ν from those in B →
D∗∗(→ Dπ)�ν , we prefer to focus on B̄ → D�ν̄ decays, even if the
issue of properly handling the soft photon emission in this decay
still remains to be solved [2].2

To begin with, let us write the relevant hadronic matrix ele-
ment in the form in which it is usually done in QCD, namely,

〈
D

(
p′)∣∣c̄γμb

∣∣B̄(p)
〉

=
(

pμ + p′
μ − m2

B − m2
D

q2
qμ

)
F+

(
q2)

+ m2
B − m2

D

q2
qμF0

(
q2), (2)
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2 � labels the lepton flavor. In practice, � = μ refers to the combined B̄ → Deν̄e

and B̄ → Dμν̄μ , as both leptons can be considered as massless with respect to the
heavy mesons involved in the process.
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that leads to the differential decay rate,

dB(B̄ → D�ν̄�)

dq2
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λ
(
q2,m2

B ,m2
D

) = [
q2 − (mB + mD)2][q2 − (mB − mD)2]. (4)

From the above expressions it is obvious that for the massless
lepton in the final state the scalar form factor F0(q2) does not
contribute to the differential branching fraction. In the case of τ -
lepton, instead, the last term becomes more important and one
can question whether or not the coupling to a scalar non-SM par-
ticle can be probed through this decay. Usual assumption is that
a charged Higgs boson might give a non-zero contribution in the
b → cH− → c�ν̄� transition [3,4], a scenario that was recently chal-
lenged by the experimental results [1]. A couple of alternatives
have already been proposed [5,6], and suggestions for further ex-
perimental analyses indicated [7].

Up to now all the experimental analyses of B → D(∗) decays
have been made by heavily relying on heavy quark effective theory
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Fig. 1. Phase space available from B̄ → Dτ ν̄τ is shown in the left plot. Dashed curve corresponds to cτ
0 (q2), while the solid curve corresponds to cτ+(q2). The expressions for

cτ
0,+(q2) are given in Eq. (4). In the right plot the same cτ

+,0(q2) are plotted together with cμ
+(q2) (red curve), the phase space available in the case of massless muon in the

final state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
(HQET) [8]. While HQET provides us with an extremely useful tool
in understanding and simplifying the non-perturbative dynamics
of QCD in the processes involving heavy–light mesons, at the level
of precision aimed at the B-factories, the HQET description of the
B → D(∗) transition matrix element is not as helpful anymore and
one should attempt doing the QCD analysis instead.

In the HQET description of this decay, after taking both me-
son masses to infinity (or mc,b → ∞), the vector form factor
F+(q2) – by virtue of the heavy quark flavor symmetry – is re-
lated to the elastic vector form factor and therefore normalized
to one at the zero-recoil.3 To relate that normalization to the
measured branching fraction one needs to make hazardous com-
putation to match HQET with QCD, and include the power correc-
tions that might be uncomfortably large, especially those O(1/mn

c ).
Worse even, the symmetry point at which the normalization of
the form factor is fixed to unity is q2

max = (mB − mD)2 [or equiv-
alently w = pB · pD/(mBmD) = 1], where there is no phase space,
c�
+,0(q

2
max) = 0, and therefore the assumptions on the shape of the

form factor become essential. At first it was believed that the slope
of the form factor was enough, but later it became clear that an
information about its curvature was indispensable [9,10]. The im-
portance of that issue is obvious since the available phase space
rapidly grows with w (for lower q2’s). Clearly, a description of
this decay that does not rely on HQET is welcome. That state-
ment should not be viewed as if HQET is not useful any more. It is
still the most valuable framework for understanding the dynamics
of heavy–light mesons in B → D∗∗ semileptonic and non-leptonic
decays, and in many other processes, but it is not practical for the
exclusive B → D(∗) semileptonic modes that are likely to lead to
the precision determination of |V cb|, i.e. a determination that re-
quires the least number of assumptions about the underlying QCD
dynamics.

2. B → D�ν with minimal theory input

Let us return to Eq. (2) and note that the range of q2’s available
from this decay is large:

m2
� � q2 � (mB − mD)2 = 11.63 GeV2. (5)

The form factors F0,+(q2) can be computed on the lattice. The
strategy that requires minimum assumptions and allows the pre-
cision determination exists and it has been implemented in the

3 The term vector (scalar) form factor for F+(q2) (F0(q2)) is related to the fact
that in the t-channel it couples to the states with quantum numbers J P = 1− (0+).
quenched approximation (Nf = 0) [11].4 The unquenched results
with Nf = 2+1 dynamical light flavors have been recently reported
too [13]. An important constraint on the form factors is that they
are equal at q2 = 0,

F+(0) = F0(0), (6)

and everywhere else the vector form factor is larger than the
scalar one, |F+(q2)| � |F0(q2)|. This constraint is useful because
the scalar form factor is enhanced by cτ

0 (q2), cf. Fig. 1, and the
contributions to the decay rate coming from the vector and scalar
form factors are competitive in size. After taking m2

μ = 0, we can
write

cμ
0

(
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(
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and
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where q2
max = (mB − mD)2. On the other hand
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4 Another strategy has been proposed and implemented recently in the compu-
tation of the B-meson decay constants f B but not in the computation of B → D
transition form factors [12].
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= |V cb|2B0

q2
max∫

m2
τ

cμ
+
(
q2)∣∣F+

(
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(
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so that the ratio from Eq. (1) can be written as

R(D) = 1 + Rτ

1 + Rμ
, (10)

with

Rτ =
∫ q2

max

m2
τ

|F+(q2)|2[	c+(q2) + cτ
0 (q2)| F0(q2)

F+(q2)
|2]dq2

∫ q2
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m2
τ
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,
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τ
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μ

cμ
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∫ q2
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m2
τ

cμ
+(q2)|F+(q2)|2 dq2

. (11)

Most of these integrals can be evaluated by using the experimen-
tally determined form factor |V cb|G(w), extracted from the differ-
ential branching fraction in Ref. [14], and related to |V cb|F+(q2)

via,

q2 = m2
B + m2

D − 2mBmD w,

F+
(
q2) = mB + mD√

4mBmD
G(w)
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w(q2)

. (12)

For the numerator in Rμ the lowest three q2 bins, each containing
a large fraction of events, lead to an accurate result,

|V cb|2
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m2
μ
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+
(
q2)∣∣F exp.

+
(
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dq2 = 28.7. (13)

For the denominators in Rμ,τ we need the form factor F+(q2) for
q2 ∈ [m2

τ ,q2
max], which is difficult to extract from experiment alone

because of the smallness of phase space at larger q2’s (smaller w),
as we can see from Fig. 1. One can instead combine the experi-
mental results obtained within q2 ∈ [m2

τ ,8 GeV2], with the lattice
QCD results obtained for q2 ∈ [8 GeV2,q2

max] [11,13],
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which, after using |V cb| = 0.0411(16) [18] to multiply the lattice
results, leads to
|V cb|2
q2

max∫

m2
τ

cμ
+
(
q2)∣∣F+

(
q2)∣∣2

dq2 = (26.3 ± 1.0) + (4.9 ± 0.4)

= 31.1 ± 1.1. (15)

Notice that due to the phase space suppression, the last range of
q2’s in which we used the lattice data, makes less than 10% (20%)
with respect to the full range of q2 accessible from this decay with
muon (τ ) in the final state. For the numerator in Rτ the ratio be-
tween the scalar and vector form factors is needed too. Lattice QCD
results of Refs. [11,13] can be converted to the form factors em-
ployed here by

F+
(
q2) = mB + mD√

4mBmD
h+(w) − mB − mD√

4mBmD
h−(w)
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w(q2)

,

F0
(
q2) = √

mBmD

(
w + 1

mB + mD
h+(w) − w − 1

mB − mD
h−(w)

)
w(q2)

,

(16)

and after combining them, we see that the ratio F0(q2)/F+(q2)

exhibits a linear q2 behavior, which with the intercept fixed
by F0(0)/F+(0) = 1 allows for an accurate determination of the
slope α,

F0(q2)

F+(q2)
= 1 − αq2, (17)

as shown in Fig. 2.5 We obtain α = 0.020(1) GeV−2 from the
values reported in [11], and α = 0.022(1) GeV−2 from the re-
sults of Ref. [13], i.e. slightly smaller than the naive pole domi-
nance model would suggest α = 1/m2

B∗
c

= 0.025 GeV−2, and very

close to the result of the model of Ref. [15], α = 0.022 GeV−2, or
α = 0.021(2) GeV−2, as obtained in the recent QCD sum rule anal-
yses [16,17]. By using α = 0.021(1), and with the help of Eq. (17),
for the numerator of Rτ we obtain −12.9±0.7, which finally gives

R(D) = 0.31 ± 0.02, (18)

which is more than 1- but less than 2-σ below the BaBar re-
sult (1).

3. New Physics

As we saw above the value we obtain is consistent with ex-
periment to within 2σ . Since R(D) requires a minimal non-
perturbative QCD theory input, it is tempting to check the con-
straints on New Physics that one can infer from the comparison
between theory and the BaBar result (1). In a generic New Physics
scenario without right-handed neutrino that preserves the lepton
flavor universality (LFU), a coupling from this decay to the scalar,
vector and tensor operators can be described via6

Heff = −√
2G F V cb

[
(c̄γμb)

(
�̄Lγ

μνL
) + gV (c̄γμb)

(
�̄Lγ

μνL
)

+ gS(μ)(c̄b)(�̄RνL) + gT (μ)(c̄σμνb)
(
�̄RσμννL

)]
+ h.c., (19)

where the dimensionless couplings gV ,S,T ∝ m2
W /m2

NP, with mNP
being the New Physics scale. The differential decay rate from

5 Please note that the plotted values corresponding to the lattice results with
Nf = 2+1 are obtained from h±(w) that we read off from Figs. 6 and 7 of Ref. [13].

6 A coupling to the pseudoscalar and axial operators cannot be studied in this
decay as the corresponding matrix elements vanish due to parity.
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Fig. 2. In the left panel we show the ratio of B → D form factors obtained in the lattice QCD simulations in quenched approximation (empty symbols) [11], and those in
which Nf = 2 + 1 dynamical flavors are included (filled symbols) [13]. In the right plot we show the three regions used in Eq. (11). The same lattice data are used in the
large q2 region, while the |V cb|F+(q2) at q2 � 8 GeV2 is extracted from the measured differential branching fraction for B̄ → Dμν̄ [14].

Fig. 3. Regions of allowed values for gS (mb) and gT (mb), compatible with experimentally measured R(D). The first (statistical) error in (1) is treated as Gaussian, while the
second (systematic) as uniform. The small region within the solid, dashed and dot-dashed white curves correspond to the respective 1-, 2- and 3-σ compatibility with both
B(exp)(B̄ → Dτ ν̄τ ) and B(exp)(B̄ → Dμν̄μ). If the LFU is broken the small region disappears and the above contour plot describes gτ

S,T (mb). The thick dot represents the
Standard Model value, namely gS,T (mb) = 0. (For interpretation of the references to color in this figure, the reader is referred to the web version of this or Letter.)
Eq. (3) now becomes
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dq2
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(20)

where
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mB + mD q
and the form factor F T (q2,μ) is defined as

〈
D

(
p′)∣∣c̄σμνb

∣∣B̄(p)
〉 = −i

(
pμp′

ν − p′
μpν

)2F T (q2,μ)

mB + mD
. (22)

The above formulas agree with those reported in Ref. [20]. A pos-
sibility to discern a small gV from this experiment seems very
unlikely. It was recently searched while checking the unitarity of
the first raw of the CKM matrix [19] and was found to be con-
sistent with zero. On the other hand gS(μ) 	= 0 is plausible but
its value is expected to be very small as the left–right opera-
tor lifts the helicity suppression and affects both B̄ → Dτ ν̄ and
B̄ → Dμν̄ decays. Its non-zero value could also be a source of diffi-
culties for the D0–D̄0 mixing amplitude, as the left–right operators
are enhanced by the factor m2

D/m2
c with respect to the left–left

(SM) contribution. A sizable effect could also be seen in D → V γ
decays, as those too are governed by the loops, with the down-
type quarks propagating in the loop and therefore sensitive to
gS(μ) 	= 0 [21]. From R(D) alone we get a very loose constraint on
gS(mb) (cf. the contour plot in Fig. 3). Requiring the compatibility
of the theoretical expression for B(B̄ → Dμν̄μ) obtained by using
Eq. (20) with gS(mb) 	= 0 and gV = gT (mb) = 0, and the measured
value [14], restricts the allowed gS(mb) to a small region also
indicated in Fig. 3. For example, if gS(mb) is real then the 1σ com-
patibility with experiment would allow −0.37 � gS(mb) � −0.05,
while the 3σ compatibility would amount to −0.53 � gS(mb) �
+0.20. Note that gS(mb), extracted from (tree level) semileptonic
process should be run to μ = mNP before using it in the loop
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induced processes. With the help of the MS mass anomalous di-
mension [22], we find gS(mNP = 1 TeV) = 0.58gS (mb). In the above
discussion we assumed a common practice of using the standard
quark masses renormalized in the MS scheme at μ = mb , the val-
ues of which can be found in Ref. [23].

If in Eq. (20) we set gV = gS(mb) = 0 and allow for gT (mb) 	= 0,
then the possible values for the real and imaginary parts that are
compatible with R(D) [1] are those in the contour plot shown
in Fig. 3. To do that we obviously needed the tensor form factor
which has not been computed on the lattice nor in the QCD sum
rules. To our knowledge it was only computed in the model of
Ref. [15] from which we learn that F T (q2)/F+(q2) = 1.03(1) is a
constant, in agreement with naive expectations based on the pole
dominance. Again, R(D) alone is not constraining much the pos-
sible values of gT (mb), and the compatibility with the measured
B(B̄ → Dμν̄μ) [14] helps selecting a smaller region, also shown in
Fig. 3. If Im gT (mb) = 0, we obtain 0.3 � gT (mb) � 1.5 and −0.6 �
gT (mb) � 2.1, from the requirement of respective 1- and 3σ com-
patibility with both experimental R(D) and B(B̄ → Dμν̄μ). Note
again that gT (mNP = 1 TeV) = 0.82gT (mb), where we used the QCD
anomalous dimension of the tensor density operator [24].

As we see from the above discussion, one could easily bridge
the gap between experimental result and the SM prediction for
B(B̄ → Dτ ν̄τ ) by invoking the New Physics effects that pre-
serve LFU. If we give up LFU, the couplings gV ,S,T (μ) in the La-
grangian (19) become g�

V ,S,T (μ), dependent on the lepton species
too. Many concrete New Physics models, such as various types of
Two Higgs Doublet Model (2HDM), break LFU and, for example,
the scalar coupling g�

S(μ) becomes proportional to the mass of
the charged lepton [4]. If so, the constraint from B(B̄ → Dμν̄μ) is
a factor of mμ/mτ less sensitive to New Physics than in the case
of LFU illustrated above. The net effect would be that the small
regions within the white curves depicted in Fig. 3 would simply
disappear, and the preferred regions of the scalar coupling gτ

S (mb)

would be those represented by the blue contours in the left plot
of Fig. 3.

4. Concluding comments

In closing this Letter we would like to make the following com-
ments:

• Assuming the lepton flavor universality, which has been exper-
imentally verified to a very good accuracy [23], the result (1)
could be an indication of New Physics, if incompatibility with
the Standard Model is indeed shown to be significant (more
than 3σ ). That test [of compatibility with the Standard Model]
can be made experimentally, with a minimal theory input, as
discussed in this Letter. Here we used the lattice QCD results
for F+(q2) at larger q2’s because the full branching fractions
were reported in Ref. [1]. Our value (18) is compatible with ex-
periment within less than 2σ . If, instead of measuring the full
branching fractions for both decay modes, the experimenters
made a cut at about q2 ≈ 8 GeV2, then the full shape of the
needed vector form factor could be reconstructed from the
differential branching fraction of B̄ → Dμν̄ [3,4]. The only in-
formation needed from theory is then the ratio of the scalar
and vector form factors (17), which is quite accurately known
from lattice QCD, with the values that agree with quark mod-
els, and with recent QCD sum rule studies. We hope such an
analysis will be made by both BaBar and Belle. By using the
vector form factor data from Ref. [14] only, and by integrating
the decay rates up to q2

cut = 8 GeV2, we obtain

B(B̄ → Dτ ν̄τ )

B(B̄ → Dμν̄ )

∣∣∣∣
2 2

= 0.20 ± 0.02. (23)

μ q �8 GeV
• B̄ → Dμν̄ decay can be the mode allowing the most reliable
extraction of |V cb| as it requires the least number of assump-
tions. A discussion made in Ref. [14] showed that one can
find a range of q2’s in which both the experimental and lat-
tice QCD errors can be kept small and therefore allow for a
very clean extraction of |V cb|. As for the large measured value
for B(B̄ → Dτ ν̄τ ), an independent measurement by Belle is
necessary. A measure of its partial branching fraction would
also be helpful to permit a direct comparison with the lat-
tice QCD results for the form factors. In both cases, a special
care should be devoted to the systematics related to the pres-
ence of B → D�νγ events in the selected sample, with photon
being soft. Such events affect the neutral and the charged B-
meson semileptonic decays differently [2].

• As shown above, the measured R(D) and B(B̄ → Dμν̄μ) pro-
vide quite good constraints on the New Physics couplings
gS,T (mb), that then can be used at the loop induced processes,
after running to gS,T (mNP).

• An experimental study of Bs → Ds�ν decay rates would be
even more advantageous. It would eliminate the chiral extrap-
olations of the lattice results in the valence light quark mass.
A fully unquenched lattice QCD study along the lines pre-
sented in Ref. [11] would be very welcome too. It would be
an important independent check of the results of Ref. [13].
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