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Abstract

We characterize, in several instances, those linear transformations from the linear space of
m × n matrices into the linear space ofp × q matrices that map the set of matrices having a
fixed rank into the set of matrices having a fixed rank. Examples are given showing that, in
contrast with the case of linear transformations on the linear space ofm × n matrices mapping
a rank specific set into itself, in the more general case of linear transformations between two
full matrix spaces, often one cannot expect neat and predictable results.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let F be a field. LetMp×q(F) be the linear space ofp × q matrices with entries
in F. We study linear transformations

φ : Mm×n(F) → Mp×q(F) (1.1)
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(with p, q,m, n fixed) that are specific to certain matrix properties related to the rank.
As a general formulation that encompasses many problems, we state the following:

Problem 1.1. Fix positive integersk ands. Describe all linear transformations (1.1)
that satisfy one of the following properties (a)–(e):
(a) A ∈ Mm×n(F), rankA = k ⇒ rankφ(A) = s.

(b) A ∈ Mm×n(F), rankA = k ⇔ rankφ(A) = s.

(c) A ∈ Mm×n(F), rankA � k ⇒ rankφ(A) � s.

(d) A ∈ Mm×n(F), rankA � k ⇔ rankφ(A) � s.

(e) A ∈ Mm×n(F), rankA = k ⇒ rankφ(A) � s.

If (p, q) = (m, n) many results solving many problems in the spirit of Problem
1.1 are known, most often assuming thatk = s, see [10, Chapter 2].

In this paper, we consider the cases when(p, q) /= (m, n), and study those linear
transformationsφ that satisfy one of the properties (a)–(e) of Problem 1.1. In contrast
with the case(p, q) = (m, n), here one need not assumek = s to obtain meaningful
results. Examples show that in full generality Problem 1.1 is probably intractable,
and we confine ourselves here to a few particular instances when we were able to
obtain a complete description of such mapsφ.

There is an extensive literature concerning linear transformations on a full matrix
algebra that preserve certain matrix properties, such as determinants, ranks, norms,
numerical ranges, etc. Only recently there appeared works concerning structure of
linear preservers between different full matrix spaces. We mention here [3,4] (on pre-
servers of unitary matrices, norms, numerical ranges, and other related properties),
and [6] (on invertibility preserving maps).

We denote byAt the transpose ofA.

2. Linear maps on rank-one matrices

Structure of invertible rank-one nonincreasing linear maps onMm×n(F) was de-
scribed in [8]. All such maps have the form

A 	→ PAQ or A 	→ PAtQ,

whereP andQ are matrices of appropriate sizes. In the spirit of this result, in the next
theorem we consider rank-one preserving linear maps between different (generally
speaking) full matrix spaces. We do not assume nondegeneracy.

Theorem 2.1. Letφ : Mm×n(F) → Mp×q(F) be a linear transformation such that

A ∈ Mm×n(F), rankA = 1 ⇒ rankφ(A) = 1. (2.1)

Then there exist invertible matricesP ∈ Mp×p(F) andQ ∈ Mq×q(F) such that one
of the following four alternatives holds:
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(1)

m � p, n � q, φ(A) = P

[
A 0
0 0

]
Q.

(2)

m � q, n � p, φ(A) = P

[
At 0
0 0

]
Q.

(3)

φ(A) = P
[
ψ(A) 0

]
Q,

whereψ : Mm×n(F)→Mp×1(F) is a linear transformation such thatψ(A) /=
0 for everyA ∈ Mm×n(F) having rank1.

(4)

φ(A) = P

[
ψ(A)

0

]
Q,

whereψ : Mm×n(F) → M1×q(F) is a linear transformation such thatψ(A) /=
0 for everyA ∈ Mm×n(F) having rank1.

We need a lemma to prove the theorem.

Lemma 2.2. If U,V ∈ Mp×q(F) are such that for every vectorw ∈ Mq×1(F) the
vectorsUw andVw are linearly dependent, then either the ranges of bothU andV
are contained in the same one-dimensional subspace ofMp×1(F), or U andV are
linearly dependent.

Proof. We consider separately the case whenU andV are both of rank 1. Thus, let
U = x1y

t
1, V = x2y

t
2. Let w be such thatyt

1w /= 0, yt
2w /= 0. ThenUw = (yt

1w)x1
andVw = (yt

2w)x2. By the hypotheses of the lemma,x1 andx2 are scalar multiples
of each other.

Now assume thatU orV , sayV , has rank at least 2. Letv1, . . . , vq be the columns
of V . Multiplying U andV on the right by the same invertible matrix, we may
assume that each pair of columns in the following list:

(v1, v2), (v1, v3), . . . , (v1, vq)

is linearly independent. Ifu1, . . . , uq are the columns ofU , then we clearly have
uj = αjvj for someαj ∈ F. But for a fixedj ∈ {2, 3, . . . , q}, alsou1 + zuj = α(z)

(v1 + zvj ), wherez ∈ F is arbitrary andα(z) ∈ F (here we use the condition that the
columnsv1 andvj are linearly independent). It follows that

(α1 − α(z))v1 + (αj z − α(z)z)vj = 0,

and henceα1 = α(z), αj = α(z) for z /= 0. Thus, allαj ’s are equal, andU is a scalar
multiple ofV . �
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Proof of Theorem 2.1. We write Mr×s instead ofMr×s(F). Let k, � be positive
integers, andx, y nonzero vectors inMk×1, M�×1, respectively. Thenxyt is a rank-1
matrix and every matrix of rank 1 inMk×� can be written in this form. Consider the
setsLx = {xyt : y ∈ M�×1} andRy = {xyt : x ∈ Mk×1}. Each ofLx andRy is a
linear subspace ofMk×� consisting of matrices having rank 1 or 0; ifV is a linear
subspace ofMk×� whose nonzero members have all rank 1 thenV is contained either
in someLx or in someRy .

Supposeφ : Mm×n → Mp×q preserves rank-1 matrices. Then for every nonzero
x ∈ Mm×1 we have eitherφ(Lx) ⊆ Lz for somez ∈ Mp×1 orφ(Lx) ⊆ Ry for some
y ∈ Mq×1. Of course, an analogue holds true forφ(Ry) for every nonzero vectory.

If m = 1 or n = 1, the above argument shows thatφ has the form (1) or (2).
Assume thatm, n � 2. We will prove that we cannot haveφ(Lx) ⊆ Lu andφ(Lz) ⊆
Ry simultaneously for some nonzerox and z in Mm×1. Assume on the contrary
that such vectorsx andz exist. Then, clearly,x andz are linearly independent. Be-
cause of the injectivity of the restriction ofφ toLx we can find linearly independent
vectorsa, b ∈ Mn×1 such thatφ(xat ) = uwt, φ(xbt) = uvt, w andy are linearly
independent,v andy are linearly independent, andv andw are linearly indepen-
dent. Now,φ(zat) = cyt for somec ∈ Mp×1, and sincezat + xat has rank 1, we
have rank(cyt + uwt) = 1 which further implies thatc andu are linearly dependent.
Thus,φ(zat) ∈ span{uyt}. Similarly,φ(zbt) ∈ span{uyt}, contradicting the fact that
the restriction ofφ toLz is injective.

So, either for every nonzerox ∈ Mm×1 there is a vectory ∈ Mp×1 such that
φ(Lx) ⊆ Ly or for every nonzerox ∈ Mm×1 there is a vectory ∈ Mq×1 such that
φ(Lx) ⊆ Ry . We will consider only the first possibility since the second one can be
reduced to the first one by composingφ with the transposition.

If there existsy ∈ Mp×1 such thatφ(Lx) ⊆ Ly for every nonzerox ∈ Mm×1,
thenφ has one of the forms described in our statement. So, it remains to consider
the case that there arex0 andz0 in Mm×1 such thatφ(Lx0) ⊆ Ly andφ(Lz0) ⊆ Lu

for some linearly independent vectorsy andu. In particular, if we choose and fix a
nonzerow ∈ Mn×1, thenφ(x0w

t) = yat andφ(z0w
t) = ubt for some nonzero vec-

tors a andb. Applying the fact thatx0w
t + z0w

t has rank 1, we see thata andb
are linearly dependent. It follows thatφ(Rw) ⊆ Ra . The restriction ofφ to Rw is
injective; consequently, ifx, z ∈ Mm×1 are linearly independent and ifφ(Lx) ⊆ Ls

andφ(Lz) ⊆ Lt for some vectorss and t , then s and t are linearly independent.
To verify this conclusion, observe thatφ(xwt) = αsat andφ(zwt) = βtat for some
α, β ∈ F.

So, for everyx ∈ Mm×1 there isy ∈ Mp×1 such thatφ(xwt) = yvt for every
w ∈ Mn×1. The mapw 	→ v is linear. Therefore,

φ(xwt) = y(Cxw)t (2.2)

for some linear transformationCx : Mn×1 → Mq×1. The linear transformationCx is
clearly injective (otherwiseφ(A) = 0 for some matrixA of rank 1, a contradiction),
and therefore it is not of rank 1.
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Assume thatx and z are linearly independent. Thenφ(xwt) = y(Cxw)t and
φ(zwt) = u(Czw)t, w ∈ Mn×1, and the fact thaty andu are linearly independent
imply thatCxw andCzw are linearly dependent for everyw. AsCx andCz are not
of rank 1, by Lemma 2.2,Cx andCz are linearly dependent. Ifx and z are lin-
early dependent, then we can findw such thatx andw, as well asz andw are
linearly independent. We already know that thenCx andCw, as well asCz andCw

are linearly dependent. Thus, for every pair of nonzero vectorsx andz the linear
transformationsCx andCz are linearly dependent. By absorbing the constant in the
first term of the product on the right-hand side in (2.2) we may assume thatCx = C

is independent ofx. Whence, for every nonzerox ∈ Mm×1 there existsy such that
φ(xwt) = y(Cw)t, w ∈ Mn×1. The mapx 	→ y is linear. Denoting it byD we have
φ(xwt) = Dx(Cw)t, w ∈ Mn×1. We already know that bothD andC are injective.
It follows thatφ has the form (1). �

There are certain restrictions on the sizes of matrices involved, under which the
situations described in (3) and (4) may occur:

Proposition 2.3. If m + n − 1 � q, then there exists a linear transformation

φ : Mm×n(F) → M1×q(F)

such that

A ∈ Mm×n(F), rankA = 1 ⇒ φ(A) /= 0. (2.3)

Conversely, if F is an algebraically closed field, and there is a linear transfor-
mation

φ : Mm×n(F) → M1×q(F)

satisfying(2.3), thenm + n − 1 � q.

Proof. Assumem + n − 1 � q. Defineφ : Mm×n(F) → M1×q(F) by

φ
([aj,k]m,n

j=1,k=1

)=[am,1, am−1,1 + am,2, am−2,1 + am−1,2 + am,3,

. . . , a1,n−2 + a2,n−1 + a3,n, a1,n−1 + a2,n, a1,n, 0, . . . , 0].
Thenφ(A) /= 0 if rankA = 1, and thereforeφ has property (2.3).

To prove the converse, let{e1, . . . , em} be the standard basis ofFm. If φ satisfies
(2.3), then for everyj = 1, . . . , m, there existsMj ∈ Mn×q(F) such thatφ(ej xt) =
xtMj . Moreover, for any nonzeroa = (a1, . . . , am)

t ∈ Fm,φ(axt) =∑m
j=1 x

t(ajMj )

/= 0 for any nonzeroxt. Thus,
∑m

j=1 ajMj has rankn for any nonzeroa = (a1, . . . ,

am) ∈ Fm. So, {M1, . . . ,Mm} is a basis for a subspace inMn×q(F) whose non-
zero elements have rankn. By a result of Meshulam [1, Appendix], we see that
m � n + q − 2n + 1, which is our desired inequality after rearrangement.�
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Without the additional hypothesis onF, the converse statement of Proposition 2.3
is false, as the following example shows. Letφ : M2×2(R) → M1×2(R) be a linear
transformation such that

Kerφ = span

{
I,

[
0 1

−1 0

]}
.

Since Kerφ does not contain any rank-1 matrix,φ(A) /= 0 for every rank-1 matrixA.

Corollary 2.4. Letφ : Mm×n(F) → Mp×q(F) be a linear transformation such that

A ∈ Mp×q(F), rankA = 1 ⇔ rankφ(A) = 1. (2.4)

Then there exist invertible matricesP ∈ Mp×p(F) andQ ∈ Mq×q(F) such that con-
dition (1) or (2) of Theorem2.1 holds.

Proof. We need only to show that the situations (3) and (4) of Theorem 2.1 cannot
occur under the more restrictive hypothesis (2.4). We may assumem, n � 2. Arguing
by contradiction, assume there exists a linear map

ψ : Mm×n(F) → Mp×1(F)

such thatψ(A) /= 0 for everyA ∈ Mm×n(F) of rank 1, andψ(A) = 0 for every
A ∈ Mm×n(F) of rank at least 2. Select linearly independentx, y ∈ Mm×1(F), and
a, b, c ∈ M1×n(F) such thata, b are linearly independent,a, c are linearly indepen-
dent, andb /= c. Then

φ(y(b − c)t) = φ(xat + ybt) − φ(xat + yct) = 0 − 0 = 0,

a contradiction, becausey(b − c)t has rank 1. �

Theorem 2.5. Let F be an algebraically closed field of characteristic0, andk be a
positive integer. The following conditions are equivalent for a linear transformation
φ : Mn×n(F) → Mp×q(F) whose range contains a matrix of rankkn.
(a) rankφ(A) = k wheneverrankA = 1.
(b) rankφ(A) � k wheneverrankA = 1.
(c) φ has the form

A 	→ P


Ir ⊗ A 0 0

0 Is ⊗ At 0
0 0 Z


 Q, (2.5)

whereZ stands for the(p − rn − sn) × (q − rn − sn) zero matrix, for some
nonnegative integersr and s and some invertible matricesP ∈ Mp×p(F) and
Q ∈ Mq×q(F).
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Proof. The implications (c)⇒ (a)⇒ (b) are clear. We consider (b)⇒ (c). If A has
rankr, then it can be written as a sum ofr rank-1 linear transformations, and since
rank is subadditive, we have rankφ(A) � rk. Let B be a matrix with the property
that rankφ(B) = nk. ThenB has rankn, and so, we may assume without loss of
generality that

φ(In) =
[
Ikn 0
0 0

]
.

Let P ∈ Mn×n(F) be an idempotent, say of rankr. Thenφ(In) = φ(P ) + φ(In −
P) andkn = rankφ(In) � rankφ(P ) + rankφ(In − P) � kr + k(n − r) = kn. So,
the inequalities are actually equalities.

Identifying matrices with operators we have the following obvious relation in-
volving range spaces:

R(φ(In)) ⊆ R(φ(P )) + R(φ(In − P)).

From

dimR(φ(In)) = dimR(φ(P )) + dimR(φ(In − P))

we get

R(φ(In)) = R(φ(P )) +̇R(φ(In − P)), (2.6)

a direct sum. In particular,R(φ(P )) ⊆ R(φ(In)). The same is true for the transpos-
es, soφ(P ) is a matrix having nonzero entries only in the upper leftkn × kn corner.
EveryA ∈ Mn×n(F) is a linear combination of idempotents, and so, it is mapped
into the upper leftkn × kn corner. Therefore, there is no loss of generality in assum-
ing thatp = q = kn. For x ∈ R(φ(P )) we havex = φ(In)x = φ(P )x + φ(In −
P)x, which by (2.6) yieldsφ(P )x = x andφ(In − P)x = 0. Similarly, φ(P )x =
0 for everyx ∈ R(φ(In − P)). Therefore,φ(P ) is an idempotent. We have thus
proved thatφ : Mn×n(F) → Mnk×nk(F) maps idempotents into idempotents. By [2,
Theorem 2.1],φ is a sum of a homomorphism and an antihomomorphism. Now one
can complete the proof using the same approach as in [7, p. 77].�

The assumption that the range ofφ contains a matrix of rankkn in Theorem 2.5
is essential as shown in the following.

Example 2.6. Let η, µ : Mn×n(F) → M(n+1)×(n+1)(F) be linear maps so that
for any A ∈ Mn×n(F), η(A) = A ⊕ [0] and µ(A) = [0] ⊕ A. Then φ = η + µ :
Mn×n(F) → M(n+1)×(n+1)(F) maps every rank-1 matrix into a rank-2 matrix but
is not of the form (2.5).

The next example shows that one cannot simply replace in Theorem 2.5 the do-
main ofφ byMm×n(F) andkn by k min{m, n}.
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Example 2.7. Let φ : M2×3(F) → M4×4(F) be defined by

φ

([
a b c

d e f

])
=



a b c 0
d e f 0
0 a b c

0 d e f


 .

Clearly,φ maps every rank-1 matrix to a rank-2 matrix, and

φ

([
1 1 1
0 1 1

])

has rank 4. However,φ is not of the form (2.5).

3. Linear maps on matrices of higher ranks

In view of Theorem 2.1, one may conjecture that ifk is fixed, 2� k � min{m, n}
and φ : Mm×n(F) → Mp×q(F) is a linear mapping having the property that
rankφ(A) = k whenever rankA = k then either it is of the form (1) or (2) in
Theorem 2.1 or the range ofφ is a rank-k subspace ofMp×q(F), that is, a subspace
whose all nonzero members have rankk. This conjecture is not true as shown in the
following examples.

Example 3.1. Assumek = n < p and consider any linear map fromMn×n(F) into
Mp×p(F) of the form

A 	→
[
A ψ(A)

0 0

]
,

whereψ is any linear map. Obviously, such maps need not be of the form (1) or (2)
in Theorem 2.1, and their range need not be a rank-n space.

The next example again concerns linear map fromMn×n(F) into Mp×p(F). For
simplicity, we describe the construction forn = 3, k = 2, andp = 8. It is easy to
construct higher dimensional examples using exactly the same idea.

Example 3.2. LetEij , 1 � i, j � 8 be the standard matrix units inM8×8(F). Define
φ : M3×3(F) → M8×8(F) by

φ([aij ]) = a11(E11 + E22) + a12(E12 + E23) + a13(E13 + E24)

+ a21(E14 + E25) + a22(E15 + E26)

+ a23(E16 + E27) + ϕ([aij ]),
whereϕ is any linear map fromM3×3(F) to the linear span ofE18 andE28. If A ∈
M3×3 is any matrix of rank 2, then at least one of the entriesa11, a12, a13, a21, a22, a23
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has to be nonzero, and so, the rankφ(A) is 2. But obviously,φ is neither of the form
(1) nor of the form (2) in Theorem 2.1, and as we have a complete freedom when
choosingϕ the range ofφ is in general not a rank-2 space.

By the above examples, we need some stronger assumptions to get a good de-
scription for rankk preservers between matrix spaces. One possibility is to assume
preservation of rankk matrices in both directions.

Theorem 3.3. Assume thatF is infinite. Letm, n, p, q, k be positive integers such
that2 � k � min{m, n}. Supposeφ : Mm×n(F) → Mp×q(F) is a linear transforma-
tion such that

rankφ(A) = k ⇐⇒ rankA = k.

Then eitherm � p andn � q, or m � q andn � p, and there exist invertible matri-
cesP ∈ Mp×p(F) andQ ∈ Mq×q(F) such thatφ has the form(1) or (2) in Theorem
2.1.

Proof. We letMr×s = Mr×s(F). We start with the special casek = 2. Observe that
φ is continuous in the Zariski topology, i.e., the topology inMm×n in which closed
sets are exactly those that are common zeros of finite sets of polynomials with co-
efficients inF of mn independent commuting variables that represent the entries of
an element ofMm×n, and the analogously defined closed sets inMp×q . It is easy to
see that the closure of the set of matrices of rank 2 in the Zariski topology is the set
of matrices of rank at most 2. Because of the continuity ofφ, we see thatφ maps
matrices of rank 1 into matrices of rank at most 2. By the assumption, a rank-1 matrix
cannot be mapped into a matrix of rank 2. So, its image has rank at most 1. We will
show that rank-1 matrix cannot be mapped into zero matrix. Assume that there is a
rank-1 matrixA such thatφ(A) = 0. It is easy to find a rank-1B such thatA + B

has rank 2. But thenφ(B) must have rank 2, a contradiction. So,φ preserves rank-1
matrices and the result follows from Theorem 2.1.

Now letk � 3. We assume (without loss of generality) thatn � m.
First consider the casek = n. We will prove that in this caseφ preserves matrices

of rank 1 and then the result will follow directly from Theorem 2.1. So, for any rank-
1 matrixA we have to show that rankφ(A) = 1. With no loss of generality we may
assume thatA = E11. There is also no loss of generality in assuming that

φ

([
I

0

])
=
[
I 0
0 0

]
.

Our next step will be to prove that

φ

([
A

0

])
=
[∗ ∗
∗ 0

]
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for everyA ∈ Mn×n. Indeed, it is easy to see that if there is anA ∈ Mn×n such that
φ(A) has a nonzero entry in the bottom right corner then there is anα ∈ F such that
φ(αI + A) has rank larger thann. On the other hand, we know that by continuity
(in the Zariski topology) ofφ every matrix in the range ofφ has rank at mostn, a
contradiction.

We define now a new linear mapψ : Mn×n → Mn×n which associates to each
A ∈ Mn×n the upper leftn × n corner ofφ(Ã), whereÃ = [

A
0

]
. This linear trans-

formation obviously maps singular matrices into singular matrices. Indeed, ifA is
singular, then the rank ofφ(Ã) cannot be equal ton, on the other hand, it cannot be
larger thann because of the continuity ofφ; so rankφ(A) < n, and therefore also
rankψ(A) < n. Sinceψ(I) = I , Theorem 1 of [9] implies thatψ(A) = UAV or
ψ(A) = UAtV for someU,V ∈ GL(n, F) (in fact, sinceψ(I) = I we haveV =
U−1). Hence, there is no loss of generality in assuming thatφ is such that

φ

([
A

0

])
=
[

A η(A)

µ(A) 0

]
. (3.1)

Here, of courseη andµ are linear maps satisfyingη(I) = 0 andµ(I) = 0.
Let A ∈ Mn×n be any matrix of rankn − 1 having the first row equal to zero.

Since rankφ(Ã) � n − 1 we see using (3.1) that the first row ofη(A) must be zero.
Every matrix fromMn×n having the first row equal to zero can be written as a differ-
ence of two such matrices with rankn − 1. So, for every such matrix the first row of
η(A) must be zero. Of course, an analogue holds true for every matrix having theith
row zero. In particular,η(E11) has nonzero entries only in the first row. Assume that
η(E11) �= 0. Sinceφ(I) = φ(E11) + φ(E22 + · · · + Enn) the first row ofη(E22 +
· · · + Enn) is nonzero, a contradiction. Thus,η(E11) = 0, and similarly,µ(E11) =
0. Consequently,φ(E11) = E11. Hence, we have proved thatφ maps rank-1 matrices
into rank-1 matrices. This completes the proof in the special case thatk = n.

Let us now prove the statement for 2< k < n. Once again we will prove that
φ preserves matrices of rank 1 and then the result follows directly from Theorem
2.1. As before it is enough to prove thatφ(E11) has rank 1. The linear spanV
of {Eij : 1 � i, j � k} is isomorphic toMk×k. We consider the restriction ofφ
to the subalgebraV and applying the previous step we get the desired relation
rankφ(E11) = 1. �

A special case of linear mapsφ such that rankφ(A) = s for every matrixA of
rankk (with k ands fixed) are linear maps that send full rank matrices to full rank
matrices. In particular, ifm = n andp = q, we are studying linear maps preserving
invertibility, which is very difficult; see [6]. It was proved in [5] that if a linear trans-
formationφ : Mm×m(F) → Mp×p(F) maps invertible matrices to invertible matri-
ces, thenp = km for some positive integerk. An example in [6] shows that without
additional assumptions description of all linear transformations (1.1) (wherem = n

andp = q) such that



C.-K. Li et al. / Linear Algebra and its Applications 357 (2002) 197–208 207

φ(A) is invertible⇔ A is invertible (3.2)

may be intractable. Thus, we need to impose additional assumptions. We have the
following result.

Proposition 3.4. LetC be the complex field, and supposeφ :Mm×m(C)→Mp×p(C)

is linear and maps invertible matrices to invertible matrices. Ifφ(A∗) = φ(A)∗
for all A ∈ Mm×m(C), andφ(P ) is positive or negative definite for some positive
definiteP ∈ Mm×m(C), thenφ is of the from

φ(A) = ±T

[
Is1 ⊗ A 0

0 Is2 ⊗ At

]
T ∗ (3.3)

for some invertible matrixT and some nonnegative integerss1, s2(if sj = 0 for some
j, j = 1, 2, then the corresponding part in the right-hand side of(3.3) is absent).

Proof. SupposeP ∈ Mm×m(C) is positive definite such thatφ(P ) = Q is positive
or negative definite. Replacingφ by a mapping of the formX 	→ ±φ(P 1/2XP 1/2),
we may assume thatφ(Im) is positive definite. We may further replaceφ by the
mapping of the formX 	→ φ(Im)

−1/2φ(X)φ(Im)
−1/2 and assume thatφ(Im) = Ip.

Note that the modified transformation still maps Hermitian matrices to Hermitian
matrices. Moreover, ifA ∈ Mm×m(C) is a Hermitian idempotent, thentIm − A is
invertible for allt ∈ C\{0, 1}. Thusφ(tIm − A) = tIp − φ(A) is also invertible for
all t ∈ C\{0, 1}. Henceφ maps the set of Hermitian idempotents to itself. The proof
can now be completed using the arguments from the proofs of Theorem 4.1 and
Corollary 4.3 in [7] (see also [2, Theorem 2.1]).�

Note that one cannot remove the hypothesis thatφ(P ) is definite for some definite
P ∈ Mm×m(C) in the above proposition.

Example 3.5. Let φ : M2×2(C) → M4×4(C) be defined by

[
a b

c d

]
	→




0 c a b

b 0 c d

a b 0 0
c d 0 0


 .

Thenφ is linear such thatφ(A∗) = φ(A)∗ for all A ∈ M2×2(C), and maps invertible
matrices to invertible matrices. However,φ is not of the form (3.3).
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