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Abstract

We characterize, in several instances, those linear transformations from the linear space of
m x n matrices into the linear space pfx ¢ matrices that map the set of matrices having a
fixed rank into the set of matrices having a fixed rank. Examples are given showing that, in
contrast with the case of linear transformations on the linear spaee<of matrices mapping
a rank specific set into itself, in the more general case of linear transformations between two
full matrix spaces, often one cannot expect neat and predictable results.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let F be a field. LetM, ., (F) be the linear space gf x ¢ matrices with entries
in . We study linear transformations

& Myscn(F) = Mpxq(F) (1.2)
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(with p, g, m, n fixed) that are specific to certain matrix properties related to the rank.
As a general formulation that encompasses many problems, we state the following:

Problem 1.1. Fix positive integerg ands. Describe all linear transformations (1.1)
that satisfy one of the following properties (a)—(e):

(@) A € My, (F), rankA = k = rank¢(A) =s.

(b) A e M,;,»,,(F), rankA = k < rankg(A) = s.

(c) A € My, (F), rankA < k = rank¢(A) < s.

(d) A € M, (F), rankA < k < rankg (A) < s.

() A € My, (F), rankA = k = rank¢(A) < s.

If (p,q) = (m,n) many results solving many problems in the spirit of Problem
1.1 are known, most often assuming that s, see [10, Chapter 2].

In this paper, we consider the cases wlgng) # (m, n), and study those linear
transformationg that satisfy one of the properties (a)—(e) of Problem 1.1. In contrast
with the casép, ¢) = (m, n), here one need not assuie- s to obtain meaningful
results. Examples show that in full generality Problem 1.1 is probably intractable,
and we confine ourselves here to a few particular instances when we were able to
obtain a complete description of such maps

There is an extensive literature concerning linear transformations on a full matrix
algebra that preserve certain matrix properties, such as determinants, ranks, norms,
numerical ranges, etc. Only recently there appeared works concerning structure of
linear preservers between different full matrix spaces. We mention here [3,4] (on pre-
servers of unitary matrices, norms, numerical ranges, and other related properties),
and [6] (on invertibility preserving maps).

We denote by the transpose oA.

2. Linear mapson rank-one matrices
Structure of invertible rank-one nonincreasing linear mapa/n, (F) was de-
scribed in [8]. All such maps have the form
A PAQ or A~ PA'Q,

whereP andQ are matrices of appropriate sizes. In the spirit of this result, in the next
theorem we consider rank-one preserving linear maps between different (generally
speaking) full matrix spaces. We do not assume nondegeneracy.

Theorem 2.1. Let¢ : My, 5, (F) = M, (F) be alinear transformation such that
A€ Myy,(F), rankA =1 = rank¢(A) = 1. (2.1)

Then there exist invertible matricése M, ,(F) and Q € M, 4 (F) such that one
of the following four alternatives holds
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(@)

m<p n<q ow=rly oo
(2

t

m<q. n<p. ¢<A)=P[Q‘, 3}Q
3

$pA)=P [I/f(A) 0] 0,

wherey : My, xn(F) = Mp1(F) is a linear transformation such that (A) #

0 for everyA € M, (F) having rankl.
]

p(A) = P [%A)} 0.

wherey : My, (F) = M1y, (F) is a linear transformation such that (A) #
0 for everyA € M, (F) having rankl.

We need a lemma to prove the theorem.

Lemma22. If U,V € M,.,(F) are such that for every vectar € M, 1(F) the
vectorsUw and Vw are linearly dependenthen either the ranges of both and vV
are contained in the same one-dimensional subspadé,gfi (F), or U andV are
linearly dependent.

Proof. We consider separately the case wiieandV are both of rank 1. Thus, let
U= xlytl, V= xzyé. Letw be such thayiw +0, yéw #+ 0. ThenUw = (ytlw)xl
andVw = (y;w)xz. By the hypotheses of the lemma,andx; are scalar multiples
of each other.

Now assume thdt or V, sayV, hasrank atleast 2. Let, ..., v, be the columns
of V. Multiplying U and V on the right by the same invertible matrix, we may
assume that each pair of columns in the following list:

(Ula UZ), (vl5 v3)7 M) (vla vq)
is linearly independent. iy, ..., u, are the columns ot/, then we clearly have
uj =ajv; forsomex; € F. Butforafixedj € {2,3, ..., ¢}, alsous + zu; = a(z)

(v1 + zvj), wherez € Fis arbitrary andx(z) € F (here we use the condition that the
columnsy; andv; are linearly independent). It follows that

(1 — a(@)v1+ (ojz — a(z)z)v; =0,

and hencer; = a(z), a; = a(z) forz # 0. Thus, alkx;’s are equal, and/ is a scalar
multiple of V. O
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Proof of Theorem 2.1. We write M, . instead ofM, (F). Let k, £ be positive
integers, and, y nonzero vectors ity 1, My 1, respectively. Themy! is a rank-1
matrix and every matrix of rank 1 it «, can be written in this form. Consider the
setsL, = {xy' : y € Myx1} andRy = {xy' : x € Myx1}. Each ofL, andR, is a
linear subspace afx ., consisting of matrices having rank 1 or O;Vifis a linear
subspace o#f; ., whose nonzero members have all rank 1 thiees contained either
in someL, or in someR,,.

Supposep : My xn — Mpxq pPreserves rank-1 matrices. Then for every nonzero
X € M;yx1 We have eithep (L) € L, for somez € M1 0r¢(Ly) € R, for some
y € M,1. Of course, an analogue holds true §aiR ) for every nonzero vectoy.

If m =1 orn =1, the above argument shows tlatas the form (1) or (2).
Assume thatz, n > 2. We will prove that we cannot haygL,) € L, and¢(L;) €
R, simultaneously for some nonzefoandz in M, «1. Assume on the contrary
that such vectors andz exist. Then, clearlyy andz are linearly independent. Be-
cause of the injectivity of the restriction @fto L, we can find linearly independent
vectorsa, b € M, 1 such thatp (xa’) = uw!, ¢ (xb") = uv!, w andy are linearly
independentp andy are linearly independent, andand w are linearly indepen-
dent. Now,¢ (za') = cy! for somec € M,«1, and sinceza' + xa! has rank 1, we
have rankcy' + uw') = 1 which further implies that andu are linearly dependent.
Thus,¢ (za') € span{uy'}. Similarly, ¢ (zb') € span{uy'}, contradicting the fact that
the restriction ofp to L is injective.

So, either for every nonzere e M, 1 there is a vectoly € M,.1 such that
¢(Ly) € Ly or for every nonzera € My, there is a vectoy € M, 1 such that
¢(Lx) € Ry. We will consider only the first possibility since the second one can be
reduced to the first one by composiggvith the transposition.

If there existsy € M, 1 such thatp(L,) € L, for every nonzerox € M,,x1,
then¢ has one of the forms described in our statement. So, it remains to consider
the case that there akg andzo in M, such thay(L,,) € L, and¢ (L) S L,
for some linearly independent vectorandu. In particular, if we choose and fix a
nonzerow € M, x1, theng (xow') = ya' and¢ (zow') = ub' for some nonzero vec-
torsa andb. Applying the fact thatow' + zow! has rank 1, we see thatandb
are linearly dependent. It follows that(R,,) C R,. The restriction ofp to R, is
injective; consequently, if, z € M,,«1 are linearly independent anddf(L,) € L;
and¢(L,) € L, for some vectors andr, thens andt are linearly independent.
To verify this conclusion, observe thatxw') = asa' and¢ (zw') = Brat for some
a, B el

So, for everyx € My, x1 there isy € M1 such thaty (xw') = yv' for every
w € M, 1. The mapw — v is linear. Therefore,

P (xw') = y(Cyw)" (2.2)

for some linear transformatiafi, : M,.1 — M,x1. The linear transformatio@, is
clearly injective (otherwise (A) = 0 for some matrixA of rank 1, a contradiction),
and therefore it is not of rank 1.
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Assume thatx and z are linearly independent. Thep(xw') = y(C,w)! and
¢ (zwh) = u(C,w)!, w € M, 1, and the fact thav andu are linearly independent
imply thatC,w andC,w are linearly dependent for evewy. As C, andC, are not
of rank 1, by Lemma 2.2C, and C, are linearly dependent. ¥ andz are lin-
early dependent, then we can fimdsuch thatx and w, as well as; andw are
linearly independent. We already know that ti@nandC,,, as well asC, andC,,
are linearly dependent. Thus, for every pair of nonzero vectarad z the linear
transformations<”, andC, are linearly dependent. By absorbing the constant in the
first term of the product on the right-hand side in (2.2) we may assum€thatC
is independent of. Whence, for every nonzeroe M,, 1 there existy such that
d(xwh) = y(Cw)', w € M,»1. The mapr — vy is linear. Denoting it byD we have
¢ (xwh) = Dx(Cw)', w € M, 1. We already know that both andC are injective.
It follows that¢ has the form (1). O

There are certain restrictions on the sizes of matrices involved, under which the
situations described in (3) and (4) may occur:

Proposition 2.3. If m +n — 1 < ¢, then there exists a linear transformation

¢ men(”:) g Mlxq(ﬂ:)
such that
A€ My, (F), rankA =1= ¢(A) #0. (2.3)

Conversely if F is an algebraically closed fieldand there is a linear transfor-
mation

& Myscn(F) = Mixg(F)

satisfying(2.3), thenm +n — 1 < gq.
Proof. Assumen +n —1< g. Defineg : My, xn(F) = Mixq(F) by

m,n
¢([a.j,k]j=l’k=1) = [am,L ap-11+am2, An—21+ am—12 + am,3,
ey @p—2+a2,-1+ a3y, A1n-1+ a2, a1, 0, ..., 0]

Theng (A) + 0 if rankA = 1, and therefore has property (2.3).

To prove the converse, I¢t1, .. ., ¢, } be the standard basis Bf'. If ¢ satisfies
(2.3), then for every = 1,..., m, there exists¥; € M, «,(F) such thaw(ejxt) =
x'M ;. Moreover, for any nonzemw= (ax, . .., an)' € F", ¢ (ax') = Z;'?:lxt(aij)

+ 0 for any nonzera. Thus,Zj?:l a;M; has rank: for any nonzera = (ay, .. .,
ap) € F". So,{M;, ..., My} is a basis for a subspace M, (F) whose non-
zero elements have rank By a result of Meshulam [1, Appendix], we see that
m < n+q — 2n+ 1, which is our desired inequality after rearrangemetiil
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Without the additional hypothesis dnthe converse statement of Proposition 2.3
is false, as the following example shows. lget M2, >(R) — M142(R) be a linear
transformation such that

K . / 0o 1
erd)_span{,[_1 0]}

Since Kerp does not contain any rank-1 matrix(A) + O for every rank-1 matrid.

Corollary 2.4. Let¢ : My xn(F) = M,«4(F) be alinear transformation such that
AeM,y,(F), rankA =1<& rank¢(A) = 1. (2.4)

Then there exist invertible matricése M ,(F) andQ € M, ., (F) such that con-
dition (1) or (2) of Theoren®.1 holds.

Proof. We need only to show that the situations (3) and (4) of Theorem 2.1 cannot
occur under the more restrictive hypothesis (2.4). We may assume> 2. Arguing
by contradiction, assume there exists a linear map

Yoo Myxn(F) — Mpxa(F)

such thatyr(A) # 0 for every A € M,,«,(F) of rank 1, andyr(A) = O for every

A € My, x,(F) of rank at least 2. Select linearly independeny € M,,.1(F), and

a, b, c € M1x,(F) such thau, b are linearly independent, ¢ are linearly indepen-
dent, and # ¢. Then

(y(b— o)) = p(xa' + yb') — p(xa' + yc') =0-0=0,

a contradiction, becauségb — ¢)t has rank 1. O

Theorem 2.5. Let[F be an algebraically closed field of characterisficandk be a
positive integer. The following conditions are equivalent for a linear transformation
¢ : My (F) = M,y,(F) whose range contains a matrix of rakk.

(a) rankp (A) = k wheneverankA = 1.

(b) rank¢$ (A) < k wheneverankA = 1.

(c) ¢ has the form

I ®A 0 0
A P 0 IL®AY 0] Q, (2.5)
0 0 z

whereZ stands for the(p — rn — sn) x (¢ — rn — sn) zero matrix for some
nonnegative integers and s and some invertible matriceB € M, ,(F) and
0 € Myyy(F).
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Proof. The implications (c}= (a)= (b) are clear. We consider (b} (c). If A has
rankr, then it can be written as a summofank-1 linear transformations, and since
rank is subadditive, we have rapkA) < rk. Let B be a matrix with the property
that rankp (B) = nk. Then B has rank:, and so, we may assume without loss of
generality that

sanr=" 0]

Let P € M,,»,(F) be an idempotent, say of ramk Then¢(1,,) = ¢(P) + ¢ (I, —
P) andkn = ranke (1) < ranke (P) + ranke¢ (I, — P) < kr + k(n — r) = kn. So,
the inequalities are actually equalities.
Identifying matrices with operators we have the following obvious relation in-
volving range spaces:

R(d (1)) S R(Pp(P)) + R(PU, — P)).
From
dimZ(¢ (1)) = dim (¢ (P)) + dimZ(¢p (I, — P))

we get
AP (In) = R(P(P)) + R(p (I, — P)), (2.6)

a direct sum. In particulagz(¢ (P)) € Z(¢ (I,)). The same is true for the transpos-
es, sap(P) is a matrix having nonzero entries only in the upper#eftx kn corner.
Every A € M,,,.,,(F) is a linear combination of idempotents, and so, it is mapped
into the upper lefkn x kn corner. Therefore, there is no loss of generality in assum-
ing that p = ¢ = kn. For x € Z(¢(P)) we havex = ¢(I,)x = ¢(P)x + ¢ (I, —

P)x, which by (2.6) yieldsp (P)x = x and¢ (I, — P)x = 0. Similarly, ¢ (P)x =

0 for everyx € Z(¢ (I, — P)). Therefore,¢(P) is an idempotent. We have thus
proved thatp : M,,»,,(F) — M, xnk (F) maps idempotents into idempotents. By [2,
Theorem 2.1]¢ is a sum of a homomorphism and an antihomomorphism. Now one
can complete the proof using the same approach as in [7, p. [7].

The assumption that the rangedptontains a matrix of rankn in Theorem 2.5
is essential as shown in the following.

Example2.6. Let n, wu: Myxn(F) = Mut+1xn+1(F) be linear maps so that
for any A € M, «,,(F), n(A) = A®[0] and u(A) =[0]d A. Thengp =n+ u:
Myxn(F) > Mu+1yxn+1)(F) maps every rank-1 matrix into a rank-2 matrix but
is not of the form (2.5).

The next example shows that one cannot simply replace in Theorem 2.5 the do-
main of¢ by M,,«,(F) andkn by k min{m, n}.
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Example2.7. Let¢ : M2,3(F) — My 4(F) be defined by

a b ¢ O

a b c|\ _|d e f O
¢<|:defi|)_0abc
0 d e f

Clearly,¢ maps every rank-1 matrix to a rank-2 matrix, and

(o 7 1))

has rank 4. Howevey is not of the form (2.5).

3. Linear mapson matrices of higher ranks

In view of Theorem 2.1, one may conjecture that i§ fixed, 2< k < min{m, n}
and ¢ : My, (F) = Mpyq(F) is a linear mapping having the property that
rank¢ (A) = k whenever ranld = k then either it is of the form (1) or (2) in
Theorem 2.1 or the range ¢fis a rankk subspace oM., (), that is, a subspace
whose all nonzero members have ranH his conjecture is not true as shown in the
following examples.

Example 3.1. Assumek = n < p and consider any linear map froM, », (F) into
M, ,(F) of the form

an 4 v

whereys is any linear map. Obviously, such maps need not be of the form (1) or (2)
in Theorem 2.1, and their range need not be a rasgace.

The next example again concerns linear map fidpm., (F) into M, ,(F). For
simplicity, we describe the construction fer= 3, k = 2, andp = 8. It is easy to
construct higher dimensional examples using exactly the same idea.

Example3.2. LetE;;, 1<, j < 8 bethe standard matrix units Mg, g(F). Define
¢ : M3,3(F) — Mgxg(F) by

¢ ([ai;]) = a11(E11 + E22) + a12(E12 + E23) + a13(E13 + E24)
+az1(E1a+ E25) 4+ a22(E15+ E2g)
+az3(E1e + E27) + ¢([ai;]),

whereg is any linear map frond3.3(F) to the linear span of1g andEog. If A €
M3y 3is any matrix of rank 2, then at least one of the entigsai 2, a13, az1, az2, azs
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has to be nonzero, and so, the ranid) is 2. But obviouslyg is neither of the form
(1) nor of the form (2) in Theorem 2.1, and as we have a complete freedom when
choosingy the range ofp is in general not a rank-2 space.

By the above examples, we need some stronger assumptions to get a good de-
scription for rankk preservers between matrix spaces. One possibility is to assume
preservation of rank matrices in both directions.

Theorem 3.3. Assume thaf is infinite. Letm, n, p, g, k be positive integers such
that2 < &k < min{m, n}. SUpPoSe : My, x,(F) — M., (F) is a linear transforma-
tion such that

ranke (A) = k <= rankA =k.

Then eithem < p andn < g, orm < g andn < p, and there exist invertible matri-
cesP € M,y ,(F) andQ € M, (F) such thaw has the forn(1) or (2) in Theorem
2.1.

Proof. We letM, ., = M, «(F). We start with the special cage= 2. Observe that
¢ is continuous in the Zariski topology, i.e., the topologyMf), «, in which closed
sets are exactly those that are common zeros of finite sets of polynomials with co-
efficients inF of mn independent commuting variables that represent the entries of
an element oM, ., and the analogously defined closed set#fig,, . It is easy to
see that the closure of the set of matrices of rank 2 in the Zariski topology is the set
of matrices of rank at most 2. Because of the continuity pfve see tha$ maps
matrices of rank 1 into matrices of rank at most 2. By the assumption, a rank-1 matrix
cannot be mapped into a matrix of rank 2. So, its image has rank at most 1. We will
show that rank-1 matrix cannot be mapped into zero matrix. Assume that there is a
rank-1 matrixA such thaip(A) = 0. It is easy to find a rank-B such thatA + B
has rank 2. But thep (B) must have rank 2, a contradiction. Sopreserves rank-1
matrices and the result follows from Theorem 2.1.

Now letk > 3. We assume (without loss of generality) that m.

First consider the cage= n. We will prove that in this cas¢ preserves matrices
of rank 1 and then the result will follow directly from Theorem 2.1. So, for any rank-
1 matrix A we have to show that rark(A) = 1. With no loss of generality we may
assume tha#t = E11. There is also no loss of generality in assuming that

(o) =[o o

Our next step will be to prove that

(5] =[: 3]
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for everyA € M, ,. Indeed, it is easy to see that if there isAar M, , such that
¢ (A) has a nonzero entry in the bottom right corner then there is arf such that
¢(al + A) has rank larger than. On the other hand, we know that by continuity
(in the Zariski topology) ofp every matrix in the range af has rank at most, a
contradiction.

We define now a new linear map : M., — M, «, which associates to each
A € My, the upper leftz x n corner ofg(A), whereA = [{]. This linear trans-
formation obviously maps singular matrices into singular matrices. Indeedisf
singular, then the rank @f(A) cannot be equal ta, on the other hand, it cannot be
larger tharm because of the continuity a@f; so rankp(A) < n, and therefore also
ranky (A) < n. Sincey (1) = I, Theorem 1 of [9] implies that/(A) = UAV or
VY (A) = UA'YV for someU, V € GL(n, F) (in fact, sincey (I) = I we haveV =
U~1). Hence, there is no loss of generality in assuming ¢histsuch that

(2] [ ")

Here, of coursey andu are linear maps satisfying(/) = 0 andu (/) = 0.

Let A € M,,»,, be any matrix of ranks — 1 having the first row equal to zero.
Since rankp (A) < n — 1 we see using (3.1) that the first rowpfA) must be zero.
Every matrix fromM,,«,, having the first row equal to zero can be written as a differ-
ence of two such matrices with rank— 1. So, for every such matrix the first row of
n(A) must be zero. Of course, an analogue holds true for every matrix havintpthe
row zero. In particulary (E11) has nonzero entries only in the first row. Assume that
n(E11) # 0. Sincegp (1) = ¢(E11) + ¢(E22+ - - - + Eny) the first row ofn(E22 +
---+ E,,) is nonzero, a contradiction. Thug(E11) = 0, and similarly,u(E11) =
0. Consequentlyy (E11) = E11. Hence, we have proved thatmaps rank-1 matrices
into rank-1 matrices. This completes the proof in the special casé that.

Let us now prove the statement for<2k < n. Once again we will prove that
¢ preserves matrices of rank 1 and then the result follows directly from Theorem
2.1. As before it is enough to prove thatE;1) has rank 1. The linear spa#i
of {E;; : 1<, j <k} is isomorphic toM;,. We consider the restriction af
to the subalgebrd& and applying the previous step we get the desired relation
rank¢ (E11) = 1. O

A special case of linear magssuch that rank (A) = s for every matrixA of
rankk (with £ ands fixed) are linear maps that send full rank matrices to full rank
matrices. In particular, if: = n andp = ¢, we are studying linear maps preserving
invertibility, which is very difficult; see [6]. It was proved in [5] that if a linear trans-
formatione : My« (F) — M, ,(F) maps invertible matrices to invertible matri-
ces, therp = km for some positive integdr. An example in [6] shows that without
additional assumptions description of all linear transformations (1.1) (wheten
andp = ¢) such that
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¢ (A) is invertible < A is invertible 3.2)

may be intractable. Thus, we need to impose additional assumptions. We have the
following result.

Proposition 3.4. LetC be the complex fieldind suppose : M, ., (C) = M, ,(C)

is linear and maps invertible matrices to invertible matrices¢fA*) = ¢(A)*
forall A € M,,,,,(C), and ¢ (P) is positive or negative definite for some positive
definiteP € M, <, (C), theng is of the from

I, ® A 0
1 ® } T* (3.3)

$(A) = £T [ 0 I, ® At

for some invertible matrif’ and some nonnegative integsis s (if s; = 0for some
J,» j = 1,2, then the corresponding part in the right-hand sidd2)is absent.

Proof. SupposeP € M,,«,(C) is positive definite such that(P) = Q is positive

or negative definite. Replacingby a mapping of the fornX — +¢(PY/2X p1/?),

we may assume that(l,,) is positive definite. We may further replageby the
mapping of the formX — ¢ (1,,) Y/?¢ (X)¢ (I,,)~Y/? and assume that(l,,) = I,.

Note that the modified transformation still maps Hermitian matrices to Hermitian
matrices. Moreover, ifA € M, «,,(C) is a Hermitian idempotent, ther,, — A is
invertible for allr € C\{0, 1}. Thus¢ (t1,, — A) =tI, — $(A) is also invertible for

all t € C\{0, 1}. Hencep maps the set of Hermitian idempotents to itself. The proof
can now be completed using the arguments from the proofs of Theorem 4.1 and
Corollary 4.3 in [7] (see also [2, Theorem 2.1])]

Note that one cannot remove the hypothesisdi#) is definite for some definite
P € M,,,»(C) in the above proposition.

Example 3.5. Let¢ : M2, 2(C) — Max4(C) be defined by

< -

Theng is linear such thap (A*) = ¢ (A)* forall A € M>42(C), and maps invertible
matrices to invertible matrices. Howeverjs not of the form (3.3).

b

o Q O
SO0
oo Q

d
0
d 0 O
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