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Optimization of van der Waals Energy for Protein Side-Chain Placement
and Design
Amr Fahmy and Gerhard Wagner*
Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
ABSTRACT Computational determination of optimal side-chain conformations in protein structures has been a long-standing
and challenging problem. Solving this problem is important for many applications including homology modeling, protein docking,
and for placing small molecule ligands on protein-binding sites. Programs available as of this writing are very fast and reasonably
accurate, as measured by deviations of side-chain dihedral angles; however, often due to multiple atomic clashes, they produce
structures with high positive energies. This is problematic in applications where the energy values are important, for example
when placing small molecules in docking applications; the relatively small binding energy of the small molecule is drowned
by the large energy due to atomic clashes that hampers finding the lowest energy state of the docked ligand. To address this
we have developed an algorithm for generating a set of side-chain conformations that is dense enough that at least one of
its members would have a root mean-square deviation of no more than R Å from any possible side-chain conformation of the
amino acid. We call such a set a side-chain cover set of order R for the amino acid. The size of the set is constrained by the
energy of the interaction of the side chain to the backbone atoms. Then, side-chain cover sets are used to optimize the confor-
mation of the side chains given the coordinates of the backbone of a protein. The method we use is based on a variety of dead-
end elimination methods and the recently discovered dynamic programming algorithm for this problem. This was implemented in
a computer program called Octopus where we use side-chain cover sets with very small values for R, such as 0.1 Å, which
ensures that for each amino-acid side chain the set contains a conformation with a root mean-square deviation of, at most,
R from the optimal conformation. The side-chain dihedral-angle accuracy of the program is comparable to other implementa-
tions; however, it has the important advantage that the structures produced by the program have negative energies that are
very close to the energies of the crystal structure for all tested proteins.
INTRODUCTION
Side-chain conformation prediction, or protein side-chain
placement, is an important problem in computational struc-
tural biology. Its accurate and efficient solution would have
many applications, among them being ab initio protein struc-
ture prediction, protein design, and protein complex structure
prediction—all of which are vital problems leading toward
advances in understanding fundamental questions in struc-
tural biology.

The problem can be stated as the prediction of the confor-
mation of the amino-acid side chains, given the coordinates
of the protein backbone. The problem is easier than the full
protein folding problem; however, it is still computationally
hard in the sense that a polynomial time algorithm for side-
chain placement can be transformed to solve other compu-
tationally hard problems in polynomial time, such as the
‘‘traveling-salesman problem’’ (1,2), for which, as of this
writing, no polynomial time algorithm is known.

Despite this, and because of the importance of finding
methods to solve the problem of protein side-chain place-
ment, it has been addressed several times in the literature.
Many different algorithmic techniques have been used to
attempt solving the problem. Some methods are exact, based
on the dead-end-elimination (DEE) algorithms (3–6) and on
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graph theory methods (7,8). Other methods are approximate,
such as simulated annealing and Monte Carlo methods (9).
Most of the above methods use rotamer libraries to
model amino-acid side-chain conformations. The idea is to
limit the number of side-chain conformations by gathering
conformations that have already appeared in experimentally
determined protein structures (see, for example, (10–12)).

Starting with the assignments of all possible rotamers to
each residue of the protein from a rotamer library, the pro-
gram TreePack (http://ttic.uchicago.edu/~jinbo/TreePack.
htm) (8) first performs the DEE algorithms by removing
rotamers that cannot be part of the optimized energy state.
After this step, a small number of rotamers per residue
will be left. To optimize the energy of the side-chain confor-
mations, a dynamic programming (13)-based algorithm has
been discovered whose runtime is short enough for handling
many interesting proteins; in a few seconds of computer
time, it is able to select from the remaining set a single
rotamer for each residue that will minimize the protein
energy. Based on the work of Xu and Berger (8), Krivov
et al. (14) developed SCWRL4 (http://dunbrack.fccc.edu/
scwrl4/), which also uses the dynamic programming method
for side-chain placement and the rotamer library developed
by Dunbrack and Karplus (11).

The tree decomposition algorithm used in these programs
is certainly correct, which can be proven in that they indeed
identify the assignment that minimizes the energy within the
doi: 10.1016/j.bpj.2011.07.052
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set of conformers used. Thus, we hypothesize that the large
positive energies of the resulting structures (see Table 1) are
due to the limited choices of rotameric states found in the
rotamer libraries and, due to the use of an artificial energy
function (15), a coarse approximation of the Lennard-Jones
potential.

Here we test this hypothesis by using the dynamic
programming algorithm while generating, on the fly and at
any desired resolution, all possible side-chain conformations
for all residues of a protein, and by using the exact van der
Waals energy function. The side-chain conformations are
generated by uniformly rotating all dihedral angles, starting
from any initial side-chain state, by small-enough angular
increments so as to increase the number of available side-
chain conformations, thus avoiding atomic clashes, and
guaranteeing that a conformation close to the optimal confor-
mation is included in the generated set. The effect of
increasing the resolution of rotamer libraries on the energy
of the protein is discussed in Xiang and Honig (16). The
side-chain states that are generated will be used in the
dynamic programming algorithm to predict the conformation
of the side chains in proteins. The approach presented here
creates near ideally placed side chains without clashes. It
minimizes the side-chain energies with a correct van der
Waals energy and will allow flexible docking of small mole-
cule ligands or other proteins.
THEORY AND METHODS

We first provide an overview of the method followed by an explicit descrip-

tion. The basis of the method is to generate a set of side-chain conforma-

tions that we term side-chain cover sets (SCCS), each set of which is

dense enough so that at least one of its members would be close to the

conformation in the native state of the protein. The generation method is

exhaustive up to a resolution R, which controls the dihedral angle increment

in a manner that will be discussed shortly. The smaller the value of R, the

more the number of valid side-chain conformations is increased, thus

making available many more choices to the optimization algorithm. Next,

we discuss the energy-resolution step and the DEE methods used in our

implementation. The dynamic programming energy optimization algorithm

is summarized after that.
TABLE 1 vdW side-chain energy of several proteins from the

PDB compared to the energy of the predicted structures of

TreePack and SCWRL4

PDB structure TreePack SWRL4

PDB ID Residues

vdW energy vdW energy vdW energy

Kcal/mol Kcal/mol Kcal/mol

16pk.pdb 415 �658.3 >106 109,087.6

1a8d.pdb 452 �890.2 >108 45,003.1

1a8i.pdb 812 �1650.6 >105 485,521.7

1b6a.pdb 355 �656.9 >103 10,680.5

1bfg.pdb 126 �236.8 >1012 �103.9

1bg6.pdb 349 �506.4 >108 �364.3

Value of the vdW energy is often very large due to atomic clashes as

compared to the energy of the structure found in the PDB.
Side-chain cover sets

Rotamer libraries store amino-acid side-chain conformations based on

experimentally determined protein structures. There is small variation in

bond-length and angle-bending values of the side chains—the major vari-

ables that determine the conformation of an amino-acid side chain are

the dihedral angles.

In this section, we explain how to generate a side-chain conformation set

that is sufficiently dense that the root mean-square deviation (RMSD) to an

arbitrary side-chain conformation is, at most, R Å for any given R. The

generated set will be called a side-chain cover set of order R (SCCS-R).

For example, we will show that for R¼1 Å—given an arbitrary side-chain

conformation t (not necessarily a member of the SCCS)—the set will

contain a member s such that the RMSD between s and t is, at most, 1 Å.
Definition

Let t be an arbitrary side-chain conformation of some amino acid and let S

be a set of side-chain conformations of the amino acid. S is called a side-

chain cover set of order R for the amino acid if there exists at least one

member, s ˛ S, such that the RMSD between s and t is at most R.

The SCCS-R provides a better alternative than using rotamer libraries

alone because of several reasons. First, the SCCS-R is complete because

it uniformly covers the entire 2p range of each of the dihedral angles of

the side chain. This is contrasted with rotamer libraries where some valid

conformations may not have appeared in any experimentally determined

protein structure. A second reason is that the resolution, R, can always be

made smaller for any one amino acid or individual residue, to obtain

more conformations that will allow for more accommodation among the

atoms of the side chains of the protein so as to minimize its energy. Rotamer

libraries are fixed and it is inevitable that side-chain placement programs

perform a search near the stored rotamers to minimize energy (16). Finally,

the resolution R is known a-priori, which allows more research into other

factors that contribute to the accuracy of the solutions to the problem of

side-chain placement.

For reasonable values of R, the size of the SCSS will be large for use in

the optimization algorithm. After the generation of a SCCS, conformations

with energies possessing too high a backbone are deleted from further

consideration.
Generation of side-chain cover sets

In the problem we are addressing, the backbone will be held fixed and the

dihedral angles of the side chain will be rotated. Within this picture, dihe-

dral angles are nested, meaning that rotating about the first dihedral bond

rotates the entire side chain and fixes only the first group. Rotating about

the second dihedral bond leaves the first group unchanged, then rotates

the rest of the side chain and fixes the second group, and so on.

To generate a SCCS-R, for each increment of each dihedral, the 2p range

of all of the remaining dihedral bonds will be exhausted. The initial state of

the side chain used in the generation algorithm is not important because we

are going to rotate all dihedral angles over the 2p range. We can arbitrarily

choose the initial state to be the state with all dihedral angles set at 0�. As an
example of the generation algorithm presented here, for a side chain with

two dihedrals, the first dihedral will be rotated once by its increment and

the second dihedral will be rotated by its increment over its entire 2p range,

then the first dihedral will be rotated by another increment, etc. This process

continues until the 2p range of the first dihedral has been exhausted.

In Appendix A, we give the details of deriving the angular increments for

side chains of up to four dihedral angles that are necessary to meet the

required RMSD R. Table 2 shows sizes of SCCS-R, for various values of

R for all amino acids with rotatable bonds. These values were computed

when the amino acid is isolated and are smaller in the presence of a protein

backbone. The table also gives the average smallest RMSD of 1000 random

conformations of each amino acid to the SCCS-R for various values of R.
Biophysical Journal 101(7) 1690–1698



TABLE 2 Size of unrestricted side-chain cover set of order R

for each of the amino acids with rotatable bonds

AA

R ¼ 4.0 R ¼ 2.0 R ¼ 1.0 R ¼ 0.5

Set size RMSD Set size RMSD Set size RMSD Set size RMSD

Cys 2 1.490 3 0.852 6 0.479 11 0.238

Thr 2 1.599 3 0.896 5 0.486 9 0.259

Ser 2 1.572 3 0.891 5 0.477 9 0.250

Val 2 1.522 3 0.837 5 0.466 9 0.255

His 7 1.758 18 0.969 61 0.505 208 0.250

Phe 7 1.883 19 1.033 61 0.537 212 0.277

Tyr 7 1.818 22 1.053 71 0.528 256 0.268

Trp 7 2.141 26 1.179 95 0.615 382 0.315

Asn 6 1.765 10 0.923 18 0.322 68 0.157

Asp 6 1.885 10 0.965 14 0.381 48 0.181

Ile 3 1.393 10 0.718 35 0.374 145 0.184

Leu 5 1.717 13 0.971 47 0.523 166 0.255

Met 10 1.127 58 0.606 422 0.272 2956 0.161

Gln 9 0.823 40 0.403 231 0.208 1312 0.103

Glu 9 0.826 40 0.404 221 0.208 1237 0.104

Lys 21 1.486 237 1.773 2786 0.516 32,963 0.230

Arg 21 2.049 240 1.327 3968 0.551 53,337 0.138

To test the covering property of each set, 1000 random side chains for each

amino acid were generated and the closest member of the SCCS was iden-

tified. The average RMSD between the random side chains and the closest

member of the SCSS is listed. In each case the RMSD is lower than the

R value, showing that the SCCS covers all side chains for the given R.

The size of the SCCS becomes much smaller once torsion energy and

energy to their backbones are taken into account.
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These values are smaller than R for each case, which shows that the set

covers all the randomly generated side chains. As the number of dihedral

bonds increases, the difference between R and the smallest RMSD to the

random conformations becomes larger. This is due to the accumulated

effect of computing upper bounds on the atomic deviations.

Steric hindrance does not permit all possible combinations of the dihe-

dral angles. However, there are occasions in which strained side-chain

conformations have been found in experimentally determined protein struc-

tures (17). We have restrained the size of the SCCS by the value of the self-

energy of the side chain but we also allow strained conformations to be part

of the set. The high energy of the strained conformation may be compen-

sated for by low energy of the surrounding structure. Discarding or keeping

strained side-chain conformations becomes part of the energy optimization

problem.
Protein side-chain optimization algorithm

The optimization algorithm used here is based on the dynamic program-

ming algorithm in Xu and Berger (8) over the tree decomposition of the

residue interaction graph of the protein. The major difference is that we

generate the SCCS for each residue in the protein instead of using rotamer

libraries. An outline of the steps of our algorithm is:

1. For each residue, generate the SCCS-R for the residue.

2. For each residue, compute the energy of all side-chain conformations to

each of the neighboring residues.

3. For each residue, perform the energy-resolution step.

4. Perform the DEE step.

5. Build the residue interaction graph.

6. Compute the tree-decomposition of the graph.

7. Traverse the tree from the leaves to the root to compute the value of the

minimum energy.

8. Traverse the tree from the root to the leaves to extract the minimum

energy side-chain assignment.
Biophysical Journal 101(7) 1690–1698
After these steps are carried out, each residue will have one side-chain

conformation left that minimizes the energy of the protein up to R.
A precise energy function

The energy function that is optimized in the programs TreePack and

SCWRL (7,14,15) is an approximation of the repulsive component of the

Lennard-Jones potential. It is designed so that it does not have very large

positive values when atoms clash. Furthermore, atomic radii of terminal

atoms in longer residues are reduced so as ‘‘to make the steric term more

forgiving.’’ (Bower et al. (15)). In studying energy functions for protein

side-chain placement and design, Pokala and Handel also used a linearized

version of the Lennard-Jones potential function ‘‘to relieve clashes due to

the use of discrete rotamers’’ (18).

Here we optimize the exact Lennard-Jones potential of the van der

Waal’s energy (19). The Lennard-Jones potential between a pair of atoms

a and b is given by

Eða; bÞ ¼ A

r12
� B

r6
;

where r is the distance between the atoms and where A and B are constants

that depend on the atomic species.

The self-energy, Eself(si), of side-chain conformation si, is the energy

between atoms of the side chain, and the backbone atoms of the protein

including those of the side chain itself.

The energy of a side-chain assignment P (i.e., a choice of a side-chain

conformation for each residue of the protein) can be written as a sum of

pairs of interacting side chains. The energy, E(P), of a side-chain assign-

ment P for the protein can thus be written as

EðPÞ ¼
XN

i¼ 1

Eself ðsiÞ þ
XN�1

i¼ 1

XN

j¼ iþ1

Epair

�
si; sj

�
;

where si is the side-chain conformation of residue i, and Epair(si,sj) is the

energy of side chains s and s . The aim of this work is to assign a conforma-
i j

tion for each residue so that E(P) is minimized. Parameters for the Lennard-

Jones potential and the torsion angle potential are the same ones used in the

program CHARMM (19).
Side-chain energy-resolution method

Consider an arginine or a lysine on the surface of the protein with a small

number of neighboring residues. The algorithm for generating the side-

chain conformations for such residues will produce many conformations

that are very close to each other, yet their energy to the rest of the structure

is the same or very close. Here we resolve the energy of these conforma-

tions by calculating the RMSD between side-chain conformations of the

residue as well as their minimum energy to the rest of the structure. Any

pair of conformations within 0.1 Å and energy difference of <0.1 Kcal/mol

are merged into a single conformation. This method has minimal impact on

the global minimum energy conformation yet reduces the number of side-

chain conformations whose energies are indistinguishable. This energy

resolution step is carried out for each residue and its computational time

is very small.
Dead-end elimination step

After generating and energy-resolving the side-chain conformations for

each residue, we use the DEE method to remove side-chain conformations

that cannot be part of the minimum energy state. The first method we use is

the Goldstein criteria (4), which states that, for residue i, a conformation si
can be eliminated if there is another conformation, ri, such that
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Eself ðsiÞ � Eself ðriÞ þ
XN

min
�
Epair

�
si; rj

�

j¼ 1;jsi
rj

� Epair

�
ri; rj

��
>0:

This states that regardless of the choice for all other residues, conformation

ri can eliminate si if choosing ri always results in lower energy. This crite-

rion is very powerful and results in a substantial reduction in the number of

possible conformations for each residue.

For small values of R, the number of generated side-chain conformations

at each residue may be large and in that case, we use additional DEE

criteria. We follow the methods described in Pierce et al. (5) and Gordon

and Mayo (6), which are efficient and effective. Suppose that residue k

has a number of possible conformations that cause ambiguity for elimi-

nating conformations at some other residue i. The simple-split method

partitions the conformational space of the protein using the conformations

of residue k. Now, within each partition, if conformation si is now elimi-

nated, si can be eliminated from position i because it can be eliminated

for all possible conformations of residue k.

The Goldstein criteria can also be applied to pairs of rotamers of neigh-

boring residues. The energies of dead-ending pairs will not be used in the

subsequent Goldstein and simple-split DEE steps, as this results in more

singles eliminations. However, computation time for full doubles elimina-

tion is high and the magic-bullet method (6) is used to identify dead-ending

pairs in an efficient manner. The magic-bullet pair of rotamers is the pair

that minimizes the maximum energy between rotamers of the residues.

We also use the split-magic-bullet method (5) in which the conformational

space is split by pairs of rotamers (only the magic-bullet pairs), and in each

partition, if rotamer si can be eliminated by some other rotamer of residue i,

it is eliminated from the set of possibilities for residue i. The DEE schedule

(5) that we use can be summarized as follows:

1. Repeat the following steps:

2. Goldstein singles until no further eliminations;

3. simple-split until no further eliminations;

4. magic-bullet-doubles to mark dead-ending pairs; and

5. split-magic-bullet,

6. until average number of conformations per residue %2.
Residue interaction graph and its tree
decomposition

To model the dependence of residues on each other in the structure of

a protein, Canutescu et al. (7) introduced the idea of building a graph.

Each node in the graph represents a residue of the protein. There is an

edge between nodes i and j in the graph if the interaction energy between

the residues in the protein is significant.

In their program, called SCWRL3.0, Canutescu et al. (7) decompose the

residue interaction graph into biconnected components where any two

biconnected components share, at most, one residue. For each possible

rotamer assignment to the shared residue, each biconnected component is

optimized and the global minimum assignment is computed. The algorithm

is deterministic and will identify the minimum energy state given the

rotamer library. SCWRL3.0 can take a long time for large proteins and

for proteins where the biconnected components are large. This motivated

Xu and Berger (8) to discover a new algorithm for the problem, which

uses the tree-decomposition of the residue interaction graph in a program

called TreePack. TreePack is up to five-times faster than SCWRL3.0. Later

these methods were used in SCWRL4.0. (Here, we give only an outline of

these methods; for a more complete discussion, including proof of correct-

ness of the method, see Xu and Berger (8).)

The tree decomposition of a graph was introduced by Robertson and

Seymour (20). It is a data structure that is used to compute solutions of

instances of many NP-hard problems if the graph used to model the problem
is sparse. This is the case with the residue interaction graph of a protein

because the energy between pairs of residues beyond a certain distance is

very small. The tree decomposition of the residue interaction graph

describes the interdependence of subsets of residues in the protein in

the form of a tree. The tree is important because subsets of residues that

are represented by different children of a tree-node can be optimized

independently given an enumeration of the side-chain conformations of

residues of their parent node. See Appendix B for the definition of a tree

decomposition.
Dynamic programming equation

Given a tree decomposition of the residue interaction graph and a set of

side-chain conformations for each residue, Xu and Berger (8) describe

a procedure to compute the assignment of a side-chain conformation to

each residue that will minimize the energy of the structure. It is the tree

data structure that will allow fast calculation of the minimum energy. We

follow the notation and methods given in Xu and Berger (8) for the minimi-

zation algorithm.

The calculation of the value of the minimum energy starts at the leaves of

the tree and proceeds upwards. Computation of the energy at a node can

start only when the energy has been computed for all of its children. At

the root of the tree, all possible assignments to residues in the root node

are enumerated and the energy of each of its children is added. The energy

at the root node is the energy of the entire protein.

In the top-down stage, starting at the root node, the assignments to the

residues at the root node that minimizes the energy can be found. Recur-

sively, this assignment is passed down to the children and the assignments

to the residues at the children that minimize the energy can also be found.

See Appendix C for the dynamic programming equation.
RESULTS

Generation of SCCS-R by using the DEE methods
mentioned above, as well as the dynamic programming opti-
mization algorithm, were all implemented in a C program
called Octopus. The program was tested on 180 high-resolu-
tion protein crystal structures from the Protein DataBank
(PDB); this is the same test set as used in Xu and Berger
(8). In all test cases, side chains of all amino acids were
deleted and the backbones were given to the program to
place the side chains. Although the generation accuracy
for residues is adjustable in Octopus, the results of the test
cases were generated with the same set of R values for all
proteins (R ¼ 0.1 for all amino acids with a single dihedral;
R ¼ 0.3 for all amino acids with two dihedrals; R ¼ 0.6 for
all amino acids with three dihedrals; and R ¼ 1.0 for argi-
nine and lysine). Using larger values of R resulted in clashes
for some test cases.

The main results of this work are:

1. The program Octopus consistently produces structures
with negative energy in contrast to other methods. The
energies of structures produced by Octopus were less
than the energies of structures produced by TreePack
and SCWRL4 for all test cases.

2. Octopus produces structures with energies nearly iden-
tical to crystal structures (see Fig. 1). The correlation
coefficient between the energies of the tested proteins
and the predicted structures is 0.92.
Biophysical Journal 101(7) 1690–1698



FIGURE 1 Plot of vdW energies of side-chain placement obtained with

the program Octopus against those calculated for the experimental crystal

structures. To measure the performance of the program, for each tested

protein crystal structure, the energy of the protein is measured (horizontal

axis) and the side chains are removed. The side chains are then replaced

using the program Octopus and the energy is measured again (vertical

axis). The correlation coefficient is 0.92. The resolution R for the SCCS

was as described in the text, R ¼ 0.1 for all amino acids with a single dihe-

dral, R ¼ 0.3 for all amino acids with two dihedrals, R ¼ 0.6 for all amino

acids with three dihedrals, and R ¼ 1.0 for arginine and lysine.
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3. Octopus produces structures with correct side-chain
dihedral angles similar to other methods (see Fig. 2, A
and B). Historically, performance of side-chain place-
ment programs has been measured by the angular devia-
tion of the side-chain dihedral angles from those found in
the PDB structures. Energy of predicted structure as
compared to the experimentally determined structure
was not used due to the atomic clashes that causes the
van der Waals energy to have very large values.

4. Octopus produces structures without side-chain clashes.
As an example, Fig. 3 shows the location of TRP-33 in
the PDB structure 1BG6 as predicted by the program
TreePack on the right with the side chain clashing with
many of its neighbors including the protein backbone.
The prediction made by Octopus on the left is nearly
identical to the crystal structure with no atomic clashes.

5. In general, Octopus is slower than both TreePack and
SCWRL4. The program Octopus takes ~1–2 min of
computer time on a 3-GHz Linux workstation for a 500-
residue protein. TreePack takes ~0.5 s whereas SCWRL4
takes ~3 s for the same protein and sameworkstation. This
is due to the large number of side-chain conformations
that are considered by Octopus.
DISCUSSION

To our knowledge, we have developed a new approach for
side-chain placement in proteins with a given backbone
structure. This problem has been tackled by a number of
groups who developed tools to advance this issue, such as
Biophysical Journal 101(7) 1690–1698
dead-end-elimination, graph theory methods, simulated
annealing, and Monte Carlo methods. Unfortunately, these
sophisticated approaches produce structures with high ener-
gies and numerous side-chain clashes. We argue that the
reason for these difficulties is the use of rotamer libraries
upon which most of these approaches rely. Rotamer libraries
create somewhat artificial boundaries for side-chain confor-
mations and have a predefined resolution that cannot easily
be modified to eliminate clashes.

Thus, we decided to use a new, to our knowledge, concept
of side-chain cover sets that contain all possible side-chain
conformations within a resolution R. Importantly, R can
be made as low as desired during the process of side-chain
placement. We also utilized the sophisticated tools of DEE
and graph theory as well as similar methods developed by
others.

Being able to decrease the value of R in particular cases
turned out to be crucial for eliminating clashes. In a first
attempt to compare energies of crystal structures with those
obtained with the Octopus program as shown in Fig. 1, we
found a few drastic outliers when working with a suboptimal
resolution; however, lowering the resolution resulted in
perfect agreement of energies between the selected PDB
entries and the structures calculated with Octopus.

Overall, the approach presented here can place side
chains correctly within predefined backbone structures,
with low negative energies, nearly identical to the experi-
mental crystal structures. To our knowledge, this is not
achievable with other available approaches, such as Tree-
Pack or SCWRL4.0.

The approach presented here and the implementation in
the Octopus program has numerous potential applications,
as enumerated here:

1. We anticipate that it will become an invaluable tool in
homology modeling for replacing nonconserved amino
acids.

2. The Octopus program will be able to place side-chain
conformations in NMR structures of large proteins, and
in particular of membrane proteins that have been deter-
mined from backbone constraints only, such as residual
dipolar couplings, paramagnetic relaxation enhance-
ments, and a few nuclear Overhauser effect (NOE)
restraints. An example is the recently determined struc-
ture of the mitochondrial uncoupling protein UCP2 (21).

3. This approach will also be suitable for placing side
chains correctly in other NMR structures that are based
on a restricted number of NOEs, such as between the
methyl groups of isoleucines, leucines, and valines, and
amide protons. Such constraints are typically obtained
for large proteins that are deuterated except for these
methyl groups to eliminate dipolar broadening. Exam-
ples are the 37-kDa structure of the T-TE didomain of
the nonribosomal peptide synthetase EntF (22), or the
50-kDa structure of the C-domain of the same system (7).



FIGURE 2 Comparison of the prediction of (A)

c1 alone, and (B) c1 and c2. A dihedral angle is

deemed ‘‘correct’’ if the deviation from the value

in the protein crystal structure is no more than

40�$ The prediction accuracy of a dihedral angle

is the ratio of number of conformations within

the ‘‘correct’’ range to the number of occurrence

of the amino acid in the test set. Octopus is

generally better than TreePack and comparable to

SCWRL. In general, the prediction accuracy of

hydrophobic residues is better than side chains

with oxygen and nitrogen atoms.
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4. Another application will be the placement of side chains
in protein interfaces that are obtained based on NMR
chemical shift mapping, cross-saturation experiments,
mutation data, and molecular docking. The short compu-
tation times will enable the evaluation of binding ener-
gies for multiple docking orientations combined with
side-chain rearrangements with Octopus.

5. The Octopus program is ideally suited for placing small
molecules into binding sites on proteins identified with
chemical shift mapping or NOE measurements. It will
allow flexible docking with side-chain rearrangements
within a rigid backbone. This will be suitable for many
small molecules or drug leads that bind weakly to target
proteins without causing backbone rearrangements.

6. The side-chain placement will facilitate assignments of
NOE cross peaks in NMR structures in advanced stages
of structure determination when the backbone fold is
close to being defined.

There are certainly other applications in protein design
and recognition of cofactors as well.
CONCLUSION

In this work we present a new, to our knowledge, approach
that is able to place side chains in a given backbone structure
without clashes and at negative energies essentially identical
to those of the parent crystal structures. This is achieved by
using side-chain cover sets, which allow placing side chains
at any desired fine resolution, and on the fly. The approach
does not rely on predefined rotamer libraries where the reso-
lution is limited by the rotamer classes. We obtain low and
Biophysical Journal 101(7) 1690–1698



FIGURE 3 Comparison of side-chain placement with Octopus (left) and

TreePack (right) programs. As an example, side-chain placement was per-

formed for a dehydrogenase (1BG6), and the placement of TRP-33 was

inspected. (Left) Placement with Octopus, which is almost identical to

the crystal structure. (Right) Placement with TreePack where atoms of the

side chain of TRP-33 are clashing with several neighboring atoms. This

figure was produced with the program PyMol (25).
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correct energy values with the standard and exact Lennard-
Jones potential that does not have to be modified to alleviate
clashes. The approach has numerous applications ranging
from homology modeling and ligand binding to facilitating
NMR structure determination.

Future work will include automatic determination of the
value of R for different residues: generation of an isolated
residue does not need to be performed at high resolution,
but generation of a residue located in the presence of many
other residues such as in the docking site of a protein-protein
complex should be performed at the highest practical resolu-
tion. Another conclusion of this work is that use of rotamer
libraries is not necessary and that generation of side-chain
conformations is a viable option with the added advantage
of predicting structures with similar energies found in the
PDB. We plan to use the Octopus program in docking small
molecules with complete side-chain flexibility—something
other approaches are currently unable to do.
APPENDIX A: GENERATION OF SIDE-CHAIN
COVER SETS

Generation of cover sets for single dihedral
side chains

A dihedral angle is specified by four atoms, (a1, a2, a3, a4). Numbering

atoms such that an atom is further from the backbone with increasing index

(for example, for valine, if a1 is the backbone nitrogen, a2 is the a-carbon,

a3 is the b-carbon, and a4 is the g1-carbon) if we fix a1, a2, and a3 and rotate

a4 about the a2–a3 bond, the dihedral angle will change. We can generate

many different conformations for the side chain of valine by changing its

dihedral angle.

To meet the density requirement for the SCCS-R, we move a4 over the

entire 2p range by 2R Å increments in successive rotations. The angular

increment must therefore be 2R/d1 radians where d1 is the length of the

perpendicular from a4 to the a2–a3 bond (the rotation axis). To see that

the set generated using an angular increment of 2R/d1 radians is an

SCCS-R, consider an arbitrary side-chain conformation; the position of

its a4 atom will be, in general, between the positions of the a4 atoms of

two successive conformations in the set. In the worst case, it will be exactly

between the positions of the a4 atom of two successive conformations. Thus

there is at least one member of the set where the deviation of the a4 atom is
Biophysical Journal 101(7) 1690–1698
at most R Å from the arbitrary conformation of the side chain and the

RMSD of a4 is, at most, R.

Using an angular increment of 2R/d1 generates a SCCS-R of minimal

size. Using a larger increment makes the set lose its covering property,

and a smaller increment is not necessary.
Calculation of angular increments for two
dihedral side chains

To calculate the angular increments for the two nested dihedral angles

(a1, a2, a3, a4) and (a2, a3, a4, a5), i.e., q1 and q2, which ensure that we

generate a SCCS-R, we write an expression for the maximum RMSD to

an arbitrary conformation

R2 ¼ 1

2

�
d2ða4Þ þ d2ða5Þ

�
; (1)

where d(a4) and d(a5) are the maximum deviations of a4 and a5, respec-

tively. From the case of a single dihedral side chain, d2(a4) ¼ d1
2q1

2/4.

To calculate d2(a5), consider two successive positions for a4, i.e., p1 and

p2, from each of which there will be successive rotations by q2 increments

that generate two circles centered at p1 and p2. The position of a5 that would

have the largest possible deviation from any of the points on the circles is

when it lies exactly between the two circles and also exactly between two

pairs of points on the circles, i.e., in the middle of a rectangle whose sides

are bounded by d2q1 and d3q2 (if that is not the case, i.e., a5 is closer to one

circle over the other, its deviation would be smaller than what is computed

here). Thus, we have

d2ða5Þ ¼ d22q
2
1

4
þ d2

3q
2
2

4
: (2)

Letting q2 ¼ k1q1, the maximum RMSD of the two atoms can now be

computed from

R2 ¼ q21
8

�
d21 þ d22 þ d23k

2
1

�
: (3)

The number of possible positions for a4 and a5 is given by 2p/q1 and 2p/q2,

respectively, and the size of the SCCS is

N ¼ 4p2

k1q
2
1

: (4)

For a fixed R, we find the optimal k1 that will result in the smallest size

SCCS-R given the upper bounds on the deviations of a4 and a5. This can

be obtained by solving for k1 in

dN

dk1
¼ 0: (5)

Using Eq. 3, we thus obtain

k21 ¼ d21 þ d2
2

d23
: (6)

Substituting in Eq. 3, the values of q1 and q2, in radians, that will ensure that

the smallest size SCCS-R will be

q1 ¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1 þ d22

p and q2 ¼ 2R

d3
: (7)
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Generation of cover sets for three-dihedral side
chains

Rotating about the three dihedrals bonds by q , q , and q , respectively, we
1 2 3

calculate the maximum RMSD of an arbitrary conformation

R2 ¼ 1

3

�
d2ða4Þ þ d2ða5Þ þ d2ða6Þ

�
; (8)

where a6 is the atom at the end of the third dihedral and d(a6) is its

maximum deviation. Let d4 be the maximum length (over all possible

conformations) of the perpendicular from a6 to the a2–a3 bond (the first

dihedral bond), d5 be the maximum length (over all possible conformations)

of the perpendicular from a6 to the a4–a4 bond, and d6 be the length of the

perpendicular from a6 to the a4–a5 bond. The maximum deviation of a6 is

calculated in the same manner as the deviation of a5 in the previous section,

and we have

R2 ¼ q21
12

�
d21 þ d22 þ d24 þ

�
d23 þ d2

5

�
k21 þ d26k

2
2

�
; (9)

where q3 ¼ k2q1. The number of possible positions for a6 is given by 2p/q3
and the size of the SCCS is

N ¼ 8p3

k1k2q
3
1

: (10)

To obtain a SCCS-R with the smallest size given the atom deviations, we

solve for k1 and k2 in

vN

vk1
¼ 0 and

vN

vk2
¼ 0 (11)

to get

k21 ¼ d2
1 þ d22 þ d24
d23 þ d25

and k22 ¼ d21 þ d2
2 þ d2

4

d2
6

: (12)

The values of q1, q2, and q3, in radians, that will ensure the smallest size

SCCS-R, will be

q1 ¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1 þ d2

2 þ d2
4

p ; q2 ¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d23 þ d2

5

p and q3 ¼ 2R

d6
:

(13)

For four-dihedral side chains, the calculation of their angular increments

that ensures a SCCS-R with the smallest size, given the atom deviations,

proceeds in the same manner and produces increments with the same

pattern.
APPENDIX B: TREE DECOMPOSITION
OF A GRAPH

Definition

Let G ¼ (V, E) be a graph, a tree decomposition of G is a pair (T, X) satis-

fying the the conditions:

1. T ¼ (I, F) is a tree where I is the set of nodes of the tree and F its set of

edges.

2. X¼ {Xi}i˛ I, Xi˛V} andWi˛I Xi¼ V. Each node in the tree T is a subset

of V and the union of the subsets is V.
3. For every edge e ¼ {v, w} ˛ E, there is at least one i ˛ I such that both v

and w are in Xi.

4. For all i, j, k ˛ I. If j is a node on the path from i to k in T, then

Xi X Xk 4 Xj.

The tree decomposition of a graph is not unique; for example, the trivial

decomposition consisting of a tree with a single node will result in a very

inefficient optimization algorithm. It is thus desirable to have a tree decom-

position where the size of the largest subset of residues per tree node is

small. The notion of tree-width was also introduced by Robertson and

Seymour (20) to differentiate between tree decompositions for the same

graph. The tree width of a tree decomposition is maxi˛I {jXij �1}, i.e.,

the node with the maximum number of vertices of the graph minus 1.

The tree width of a graph G is the minimum width over all possible tree

decompositions of G. Computing the tree width of a graph is NP-hard

(23); however, many heuristics are known (24) for computing tree

decompositions of a graph with small, but not necessarily smallest, tree

width. One such heuristic is the minimum degree heuristic (24), which

we use here.
APPENDIX C: DYNAMIC PROGRAMMING
EQUATION

Let D(i) denote the possible side-chain conformations for residue i and

D(X) denote the possible side-chain conformations of the subset of residues

X. Also let A(X) be an assignment of conformations to residues of subset X

from D(X). Let Xr be the parent of node Xj in the tree and C(j) be the set of

children of the node Xj. If all the residues in Xr X Xj are removed from the

tree, the tree splits into two separate subtrees. Assume that the side-chain

conformations of residues in Xr X Xj have been assigned conformations

A(Xr X Xj). Define F(Xj, A(Xr X Xj)) to be the minimum energy of the sub-

tree rooted at Xj given that the side-chain assignment for XrX Xj is given by

A(Xr X Xj). Because the energy at a tree node depends only on the assign-

ment to the residues in common with its parent (and not on the assignment

of its siblings in the tree), the minimum energy of the tree rooted at Xj can

be written as the recursive equation

F
�
Xj;A

�
XrXXj

�� ¼ min
A˛D½Xj�XrXXj�

X

i˛CðjÞ
F
�
Xi;A

�
XjXXi

��

þ E
�
A
�
Xj

��
:

The calculation of the value of the minimum energy starts at the leaves of

the tree and proceeds upwards. Computation of the energy at a node can
start only when the energy has been computed for all of its children.

For node Xi, let Xj be its parent. For each possible assignment A(XiX Xj),

from D(Xi X Xj), enumerate the assignments of residues in Xi � Xi X Xj,

and find the assignment that will minimize the energy of the subgraph

induced by Xi. This energy is recorded in a table (as the energy of the resi-

dues in Xi X Xj) because it will be used later to minimize the energy at the

parent node. In addition, the assignment from Xi � Xi X Xj that minimized

the energy is recorded so that in the next stage, the assignments that mini-

mize the energy for the protein can be found. At the root of the tree, all

possible assignments to residues in the root node are enumerated and the

energy of each of its children is added. The energy at the root node is the

energy of the entire protein.

In the top-down stage, starting at the root node, the assignments to the

residues at the root node that minimizes the energy can be found. Recur-

sively, this assignment is passed down to the children and the assignments

to the residues at the children that minimize the energy can also be found.

A.F. thanks Deani Cooper, Sabastian Hiller, and John Myers for valuable

discussions.
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