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Abstract 

Under the line communication protocol, calls can be placed between pairs of non-adjacent sites 
over a path of lines connecting them; only one call can utilize a line at any time. This paper 
addresses questions regarding the cumulative cost, i.e., sum of lengths of calls, of broadcasting 
under the line protocol in path networks, Let P, be the path with n vertices, and C,, be the 
cost of an optimal, line broadcast scheme from a terminal vertex in path E,. We show that a 
minimum-cost line broadcast scheme from any source vertex in P, has cost no more than C, 
and no less than C,, - a + 2 for any n > 2 and any time t 2 [log, nl_ We derive a closed-form 
expression for the minimum cost of a minimum-time line broadcast from a terminal vertex in 
certain paths and relate this to costs from nearby sources, 

Kej~n~ords: Line broadcast; Cumulative cost 

1. Introduction 

The synchronous line communication protocol in a network is defined as follows: 

(i) during each time unit, any site can call at most one other site through a path 

of lines connecting them, (ii) a call succeeds only if it shares no line with other 

calls during the same time unit, and (iii) if a call succeeds, it takes only one time 

unit regardless of the distance (i.e., number of lines) between the caller and receiver. 

Under this protocol, a site can send or receive at most one call during any time unit, but 

may switch through several calls, depending on connections. The line communication 

protocol is an approximate model of the wormhole and cut-through communication 

protocols [5, lo- 121. 

We are interested here in the information dissemination task of broadcasting under 

the line communication model. Broadcastiny is the one-to-all information dissemination 

task, where one site, the source, originates a message to be transferred to all other sites. 

Broadcasting under the line communication protocol was first studied by Farley in 131 
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and later examined by Hromkovii: et al. in [7, 81. Several researchers have studied 

broadcasting under a line communication model wherein sites could eavesdrop on calls 

that pass through them [2, 41. Bitan and Zaks [I] considered a broadcasting problem 

in trees under that model, restricting the originator of every call to the given source 

vertex. 

We model a communication network by a connected graph G = (V, E), consisting of 

a set V of vertices, representing sites of the network, and a set E of edges, representing 

lines of the network. A graph is connected if there exists a path in E between every pair 

of vertices in V. In [3], Farley shows that, applying the line communication protocol in 

any connected graph of n vertices, there exists a broadcast scheme that requires [log, n] 

time units from any vertex of the graph. Since the number of informed vertices can 

at most double in any time unit, this broadcast scheme is time optimal. We call such 

a minimum-time scheme a minimum-time line broadcast scheme, consisting of sets 

of calls to be made during successive time units that are sufficient to complete the 

broadcast process. 

Although we assume every call takes a single time unit, we note that longer-distance 

calls incur more cost in terms of their use of network resources. Suppose that each 

call is charged a cost related to its distance; i.e., define the cost of a call to be the 

number of lines on the path between the caller and the receiver. In this paper, we 

consider the cumulative cost of a line broadcast scheme, being the sum of the costs of 

all calls involved in the given scheme. In particular, we are interested in the minimum 

cumulative cost over all broadcast schemes for a given network graph, source vertex, 

and broadcast time. The cumulative cost of line broadcast was examined first by Kane, 

who considered such costs in cycle networks [9]. 

This paper considers two questions regarding the cumulative cost of line broadcast 

in path networks. A path network of n sites is modeled by a graph P, of n vertices 

labeled 1 through n, such that the set of edges is (i, i + 1) for 1 < i < n. Vertices 

1 and n, at the two ends of the path, are called terminal vertices. Our first ques- 

tion addresses the effect of the position of the source in the path on the cumulative 

cost. 

Example 1. Let P4 = (1,2,3,4) be the path of length four. Note that [log, 41 = 2, i.e., 

the minimum-time line broadcast takes 2 time units. 

When the source vertex is 1 a minimum-time line broadcast scheme Yt proceeds 

as follows. In the first time unit, vertex 1 calls vertex 3; and in the second time unit, 

vertices 1 and 3 call vertices 2 and 4, respectively. Note that this scheme has the least 

cumulative cost of 4 among all minimum-time schemes from vertex 1. 

When the source vertex is 2, on the other hand, a line broadcast scheme 92 proceeds 

as follows. In the first time unit, vertex 2 calls vertex 3; in the second time unit, 

vertices 2 and 3 call vertices 1 and 4, respectively. This scheme has the least cost of 3 

among all minimum-time schemes from vertex 2; moreover, it is less than the cost of 

scheme 9,. 
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(a) Broadcast scheme from 6. (b) Broadcast scheme from 8. 

Fig. I. Example 2. 

In general, the minimum cumulative cost of a line broadcast for a given number of 

time units will vary with position of the source vertex. A natural conjecture is that a 

source vertex closer to a terminal vertex will have greater cumulative cost. This is not 

the case, however, Example 2 presents a counterexample. 

Example 2. Let Pi6=(1,2 ,..., 16). A minimum-cost line broadcast scheme from ver- 

tex 6 is shown in Fig. l(a); one from vertex 8 is shown in Fig. l(b). Although 

vertex 6 is closer to a terminal vertex than is vertex 8, the former has a lesser 

minimum cost. 

In this paper, we prove that a terminal vertex has the greatest cost of any source 

vertex. The proof of this claim is not trivial, as cumulative cost does not monotonically 

increase as we move the source from a central to a terminal vertex. Specifically, we 

show that a minimum-cost line broadcast scheme from any source vertex in P, has 

cost that is not more than that from a terminal vertex and not less than that cost minus 

n - 2 for any n > 2 and t > log, n. 

We also address issues with respect to the precise value of minimum-time cumulative 

cost from a terminal vertex and its nearby neighbors in certain paths. In [9], Kane 

derived a precise value of the cumulative cost for cycks of size n = 2m. Note that 

since a cycle has no terminal vertex, the position of the source vertex in a cycle does 

not affect the cost. Kane’s result represents a lower bound on the cost of a minimum- 

time line broadcast in the path of length 2*. 

The remainder of this paper is organized as follows. Section 2 introduces preliminary 

notation and definitions and establishes basic properties of minimum-cost line broadcast 

schemes in paths. The goodness and the badness of a terminal vertex as source vertex 

are discussed in Sections 3 and 4, respectively. Section 5 derives a closed form of the 

cumulative cost of the broadcast from a terminal vertex subject to n = 2”’ and relates 

that cost to the cost from nearby vertices as sources. Section 6 concludes the paper 

with some future directions for research. 
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2. Preliminaries 

The minimum cumulative cost of a line broadcast varies with the position of the 

source vertex and the desired broadcast time. 

Definition 1. For all t 2 [log, n1, let C(n,p, t) be the minimum cumulative cost of 

a line broadcast in path P, from vertex p in t time units. 

By symmetry, C(n,p, t) = C(n,n -p + 1,t) for any 1 d p d n. 

Definition 2. For each t 3 [log, nl, let 

and 

Wbt)= ,~~~,{C(n,p~t) +p). . . 

There are two, immediate results regarding the monotonicity of C(n,t). 

Lemma 1. For all t 3 [log, nj, c(n - 1, t) < E(n, t) and c(n, t + 1) < c(n, t). 

Definition 3. A line broadcast scheme Y is nested iff no call of Y passes through an 

informed vertex. 

Lemma 2 (Kane [9]). A minimum-cost line broadcast scheme for path P,, is nested. 

Definition 4. Consider a line broadcast scheme Y in path P,. For each vertex v, the 

segment Q(v) of Y consists of v, those vertices called by v, and those vertices in Q(x) 

for all x called by v in ~7. 

Definition 5. Given segment Q(v) of scheme Y in P,, we call v the leader of Q(v). 

Note that the leader of a segment is the first vertex to become informed in the 

segment. We also say that a vertex v is leader for subsegments of Q(v) containing v 

but not all descendants. 

Example 3. Consider the broadcast schemes in Example 2, again (see Fig. 1). In the 

broadcast scheme from vertex 6, Q(6) = (1,2,. ,16) and Q(8) = (8). On the other 

hand, in the broadcast scheme from vertex 8, Q(6) = (5,6) and Q(8) = (1,2,. . . ,16). 

Definition 6. A line broadcast scheme Y for path P, is contiguous iff segment Q(v) 

consists of a (connected) subpath of P, for all leaders v of ~7. 

Lemma 3. If a line broadcast scheme Yfor path P, is nested, then Y is contiguous. 
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Proof. Assume Y is not contiguous. Then there exists a situation where u calls y and 

u calls x (as the ‘smallest’ violation), where u < x < y < II. They must place these calls 

at different times. Suppose u calls y first. Then when 2: calls x, it calls through 

informed vertex. Thus, Y is not nested. El 

Corollary 1. A minimum-cost line broadcast scheme jtir path P, is contiguous. 

Definition 7. A line broadcast scheme Y for path P, is directed iff the first call 

by a vertex after becoming informed of the message is away from the vertex 

which it received the message. 

Lemma 4. A minimum-cost line broadcast scheme jbr a path is directed. 

y, an 

made 

from 

Proof. Assume Y is not directed. Then there exists a situation where u calls L’ and 

2: calls w as its first call, where w lies between u and o on the path. We can alter 

the scheme to produce a scheme with lower cumulative cost by having u call w when 

it currently calls u and then having IV call u when c was calling w. This produces 

a scheme which has lower cost; thus, a minimum cost scheme must be directed. 0 

3. Goodness of line broadcast from a terminal vertex 

We now consider the cumulative cost of a line broadcast from a terminal vertex of 

path P,. We show that for any n > 2, the cost of a minimum-cost line broadcast from 

a terminal vertex (i.e., C(n, 1, t)) differs by at most n - 2 from the minimum cost of - 
any line broadcast on the path P, with the same broadcast time (i.e., C(n,t)). 

Theorem 1 (Goodness). Fov any n 3 2 and t 3 [log, nl, 

C(n, 1,t) - C(n,t) d n - 2. 

Proof. We prove it by induction on n. By observation, the proposition holds 

n < 4 for all applicable t. 

As our inductive hypothesis, we suppose that for any i <n and t 2 [log, il, 

C(i, 1,t) - C(i,t) < i - 2 

and consider the case of i = n. 

1 < p < n/2. 

Let p be a vertex, such that C(n,p,t) = e(n, t) and 

Let Y be a broadcast scheme which completes the broadcast from vertex p in t time 

units with minimum cost c(n,t). Let q be the vertex called in the first time unit by p. 

By Corollary 1, Q(q) and Pn\Q(q) are both contiguous. Let R = Q(q) and L = P,\R. 

Note that vertex p is the leader of L in the remainder of the broadcast scheme Y and 

that broadcast subschemes for segments L and R can be assumed to have minimum 

cost. Without loss of generality, suppose that R is at least as long as L. Denote IL,1 by 

for all 
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m (< n/2). Let C, be the cost of the broadcast from p to L in t - 1 time units. Since 

e(nz,t - 1) 6 C, and C, +D(n - m,t - 1) < E(n,t), we have 

C(m,t-l)+D(n-m,t-l)<C(n,t). (1) 

Next, consider the following scheme Y’ which completes the broadcast from vertex 

1 in t time units as follows: In the first time unit, vertex 1 calls q, and during the next 

t - 1 time units, vertices 1 and q are responsible for segments L and R, respectively. 

Let C’ be the cost of the scheme. Then, since C(n, 1, t) < C’ and C’ = C(m, 1, t - 1) + 

m- l+D(n-m,t- l), we have 

C(n,1,t)~C(m,1,t-1)+m-1+D(n-m,t-1). 

From (1) and (2) we have 

(2) 

C(n,l,t)-C(n,t)<C(m,l,t-l)-C(m,t-l)+m-1. 

By our inductive hypothesis and the fact that m < n/2, we have 

C(n,l,t)-C(n,t)<2m-3 <n-2 

which completes the proof. 0 

4. Badness of line broadcast from a terminal vertex 

This section characterizes the badness of a terminal vertex as the source vertex of 

a line broadcast in a path. Specifically, we show that it is worst in terms of cumulative 

cost. 

Theorem 2 (Badness). For all n 3 1, 

C(n,p, t) d C(Q, 1, t) 

for any 1 < p d n and t 2 [log, nl 

We prove it by induction on n. When n < 4, the statement holds by inspection. Sup- 

pose that for any i < n, C(i, p, t) d C(i, 1, t) holds for any 1 < p < i and t > [log, il , 

and consider the case of i = n, for n > 4. 

Let &’ be a scheme which completes a line broadcast from vertex 1 in t time units 

with minimum cost C(n, 1, t). Without loss of generality, we assume that scheme d 

is ‘eager’, i.e., each vertex makes its calls as soon as possible; by our earlier lemmas, 

this is possible and does not affect broadcast cost. Let p be a vertex in the path. 

Without loss of generality, we suppose 1 d p d n/2. In the following, we will construct 

a broadcast scheme .G’@ that completes a broadcast from vertex p with no more cost 

than C(n, 1, t) by modifying scheme &. 

Label vertices in P, from left to right as 1,2,. . . , n. For each 0 < i < k, where k < t, 

define ui (E P,) as follows: (1) uo = 1, and (2) for each i > 1, ai is the first vertex 
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so 
t I I 

I 4 scheme A 

I 4 scheme I3 

1 P Ul 

Fig. 2. An explanation of Lemma 5 

called by z~i_i. By our ‘eager’ scheme assumption, Ui_ 1 calls ui during the ith time 

unit of the scheme. By Lemmas 2-4, scheme d partitions P, into contiguous segments 

that lie consecutively from one end of the path to the other, as 

where Si = Q(u~)\Q(u~+~) for each 0 < i < k < t. Vertex Ui is the leader of segment 

S,; let s; be the number of vertices in segment Si, i.e., IS;l. Note that vertex & is 

the terminal vertex at the other end of path P,, i.e., vertex n, and that Sk = 1. Thus, 

the cumulative cost of calls between the k + 1 leaders is II - 1. The overall cost of a 

broadcast is equal to n - 1 plus the sum of the costs to broadcast in the segments S,. 

For I < i < k, that cost is equal to ?(s[, t - (i + I)), as each such Ui can be selected 

to be the optimal originator for each segment and time remaining. By Lemma 1, we 

can assume that si 3 Si+i , for all 1 < i < k. 

The following lemma eliminates an obvious case. 

Lemma 5. !f p E SO und p # 1, then C(n,p, t) < C(n, 1, t). 

Proof. Scheme 93 proceeds as follows. In the first time unit, vertex p calls vertex ui. 

Note that since p is closer to ui than vertex 1 ( = UO), the first time unit has less cost 

than scheme d (see Fig. 2 for illustration). During the next t - 1 time units, vertex p 

is responsible for segment SO, and vertex 211 is responsible for P,\So. In other words, 

in scheme 9, all vertices in P,\So act as in scheme .d. 

The broadcast from zai to P,\So has the same cost as scheme A&. Since SO < n, by our 

inductive hypothesis, the broadcast from p to SO has no more cost than the broadcast 

from 1 to SO, completing the proof. q 

Given the above lemma, we need only consider the case of SO < p < n/2. We use 

the following two operations to modify a given line broadcast scheme in a path P,. 

Definition 8 (FLIP). Let Q(U) be a (sub)segment of scheme 9 on a path P with 

leader U. FLIP(Q(u)) means the replacement of segment Q(o) by the mirror image of 

Q(U). It does not change the leader of or transmission order in Q(G). 

Definition 9 (EXCHANGE). Let Q(U) and Q(z) be two disjoint (sub)segments 

of scheme Y on a path P with leaders u and C, respectively. The operation 
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ABC D E F 

scheme A 

scheme A’ 

Fig. 3. A partition of P, according to scheme ss? and scheme d’ 

EXCHANGE(Q(u), Q(U)) exchanges the positions of Q(U) and Q(U) (without flipping) 

and exchanges the roles of the leaders with respect to external vertices. 

The following lemma is crucial to the construction of scheme &. 

Lemma 6. There is a position q > SO in path P, such that 

1. there is a scheme with cumulative cost less than or equat to that of scheme 

~4 in which the source vertex at the qth position of path P, calls the vertex at the 

(q + 1)th position in the first time unit; and 

2. for any SO < p < q, there is a broadcast scheme from the vertex at the pth 

position with cumulative cost less than or equal to that of scheme SL 

Proof. First, according to scheme ._&, partition P, into six segments A, B,. . . ,F as 

follows: the source vertex at the left end of path P,, is the leader of A; the leader 

of A calls the leader of D in the first time unit; in the second time unit, the leaders of 

A and D, respectively, call the leaders of B and F; and in the third time unit, the leaders 

of B and D, respectively, call the leaders of C and E. Some, but not all, of 

these segments may be empty; given n > 4, segments A, D and F are not empty. 

The catenation of A, B, C coincides with SO and the catenation of D and E coincides 

with St, see Fig. 3 for illustration. 

Now we begin to modify scheme A& by moving the source interior to the path 

by applying operation FLIP($) to scheme &‘. Let ~8 be the resulting scheme. If 

segment B exists and IBI < IDI, we apply EXCHANGE(B,D) prior to flipping SO 
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without increasing the cumulative cost of s#“. Similarly, if B exists and ICI < lEl, we 

apply the operation EXCHANGE( C, E) to scheme ,G? prior to flipping St,, as this does 

not increase the cumulative cost of scheme &‘. 

In scheme c&‘, the position of the source vertex has been moved from the left end 

to the qth position of P,, where q =SO + max{O, IEl - ICI} + max{O, IDI - IBi}. These 

operations reduce the cost of the calls reaching segment F by q- 1 and do not increase 

any other line broadcast costs, as per the semantics of the FLIP and EXCHANGE 

operations. As such, the cost of scheme &” is at most 

C(n, 1,t) -q + 1. 

The first claim of the lemma is proved as follows. Modify scheme .d’ in such a 

way that the vertex called by the source vertex in the first time unit is at the (q + 1 )th 

position. That vertex informs the segment F in the next time unit and then acts as 

leader for the possibly modified segment S1 after that. The modification does not affect 

the cumulative cost of calls of scheme XI’ in the first and second time units. The 

increase in the cost during the next t - 2 time units is at most st - max{O, lEl - ICI} + 

max{ 0, IDI - IBl} - 2 by Theorem 1. This increase cannot be more than the decrease to 

scheme d resulting from the earlier flip of So. The possible exchanges guarantee that 

the modified S1 is not larger than the original SO. Theorem 1 guarantees the increase 

is 2 less than the size of the modified S1, which is less than or equal to q. 

The second claim of the lemma is established as follows. By Lemma 5, we need only 

consider the case of q > j&l. Modify scheme d’ in such a way that the position of the 

source vertex is at the pth position, where ISol < p 6 q. This modification increases 

the cost of the first call by q - p, and, by the inductive hypothesis, results in a cost 

for the first segment of size q that is not greater than from location q. Thus, the cost 

of this scheme is at most 

C(n, 1,t) ~ p + 1. 0 

The following lemma examines the remaining case and completes the proof of 

Theorem 2. 

Lemma 7. Let q be the position determined in Lemma 6. Then, for any q < p < n/2, 

there is a broadcast scheme 93 from the vertex at the pth position with u cumulative 

cost no larger than that of scheme .d, 

Proof. Let Y be a broadcast scheme from the qth position with minimum cumulative 

cost in which the source vertex calls the vertex at the (q + 1 )th position in the first 

time unit. By Lemma 6, the scheme ,Y has cost not greater than that of the original 

scheme .d from an end vertex. 

Label vertices in e, from left to right as 1,2,. . . ,n. Let L = { 1,2,. . .,q} and 

R = P,\L. Since Y is optimal, by Lemma 2 and Theorem 3, segments L and R, 

respectively, can be partitioned into (sub)segments as Lt , Lz, . , Lt and RI, R2,. , RI, 
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in a way equivalent to the initial partition of P, under scheme d into subsegments 

~O,Sl,..., St. Subsegments of L are arranged from left to right as Lt,Lt_ 1,. . . ,LI, and 

subsegments of R are arranged from left to right as RI, R2,. . . , R,. As per our prior 

lemmas and discussion, we may assume that 

l ]Li] > lLi+il and JRil 2 IRi+ll for i > 2, and 

l ]Li U RI 1 2 J&l and ILi U Ri I > I&I. 
In the following, we will modify Y in such a way that the source vertex moves to 

the pth position without increasing the cumulative cost. 

First, we apply EXCHANGE(FLIP(Li), FLIP(Ri)) for some 2 < i < t to scheme 

9 in such a way that the resultant L1 U RI contains the pth position of path P,. 

An application of one of these exchanges moves the position of the source vertex to 

the right by at most distance IRil - lLil and does not alter the cost of the overall 

scheme. Since (IRjl - ILil) < (IL1 U RI I) and IRI >n/2, there always exists such a set 

of EXCHANGE operations. 

Let Y’ be the resultant scheme, which has the same cost as 9. We now modify 

scheme 9’ so that the originator is at location p. Location p calls the leader of the 

other first segment, either LI or RI, in the first time unit and, in the second time unit, 

the two informed vertices call the leaders of L2 and R2; following this, the broadcast 

proceeds as in scheme Y’, except that p optimizes its broadcast in the first segment, 

L1 or RI, of which it is part. The cost of the first two time units is unchanged. By our 

inductive hypothesis regarding the cost of broadcast from p to its segment, this results 

in a broadcast scheme with cost less than or equal to Y’, which is less than or equal 

to the original, optimal scheme from a terminal vertex. 0 

5. Cumulative cost on paths with length of a power of two 

This section derives a simple form of the cumulative cost C(n,p, Ilog, n] ) when 

n = 2” for some integer m. In his study of line broadcasting in cycles, Kane proved 

the following theorem. 

Theorem 3 (Kane [9]). 

2m . m 
C(2m,m) = - 

3 
+ 2m - (-lY 

9 . 

In this section, we derive a simple form of C(2”‘, 1,m). First, recall that D(n, t) is 

defined as 

D(n,t) = 1 $QC(n,p, t) + P). 
. . 

Then, for any n > 1, C(n, 1, t) is recursively defined as 

C(n,l,t)=mjn{C(i,l,t- l)+i- 1 +D(n-i,t- 

follows: 

1)). 
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If n=2”’ and t=m, then since n-2’-‘=2’-‘=2mp’ (=n/2), C(n, 1,m) is represented 

as 

C(n,l,m)=C(5, l,m-1)+;-l+D(;,M-1). (3) 

By a similar observation, if n = 2m and t = m, 0(2”, m) and C(2”, m) are represented 

as follows: 

and 

C(n,m)=C(i.m-2)+U(f,m-l)+D(T,m-2)+:-l. 

By solving the recurrences, we have the following theorem. 

Theorem 4. If n = 2”‘, then C(2”‘, 1,m) is given as 

2m . m 7(2”) - - C(2m, I,m) 5m 6 = 

3 

+ 

9 

Proof. See [6]. 0 

Cost C(2m, 1,m) is calculated as in Table 1. 

By Theorems 3 and 4, we have the following corollary 

Corollary 2. Let AC = C(2m, 1, m) - C(2”‘,m). 

We now consider the cost of line broadcasting in a path of length 2m from source 

vertices that are near to a terminal vertex. We see that cost drops off significantly in 

the neighborhood of a terminal vertex in such paths. 

Theorem 5. Cost C(2m,2,m) = C(2m, 1,m) - (m - 1) jbr m 3 2. 

Proof. Our proof is by induction on m. We see the proposition is true for P4, as the 

cumulative cost from vertex 1 is 4 and from vertex 2 it is 3. We assume it is true for 

2 < m < k, and consider the case for m = k + 1. Vertex 2 must call the leader of the 

other half of the path, just as vertex 1 does in the first time unit. The leader of the 

other half must be the same; however, the cost of a call from vertex 2 is one less. 

Then, vertex 2 must complete the line broadcast in its half of the path, now of size 

2k; by our inductive hypothesis, we know it can be done with cost that is k - 1 less 

than from vertex 1. Thus, vertex 2 completes the line broadcast in path of length 2k+’ 

with cost reduced by k from the cost of a line broadcast from vertex 1, completing 

our proof. 0 
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Table 1 

Cumulative cost C(2m, 1, m) 

m cost 2m 

1 1 2 

2 4 4 

3 12 8 

4 31 16 

5 75 32 

6 174 64 

I 394 128 

8 877 256 

9 1929 512 

10 4204 1024 

11 9096 2048 

12 19563 4096 

13 41863 8192 

14 89194 16384 

15 189318 32768 

16 400489 65536 

Theorem 6. Cost C(2m, 3, m) = C(2m, 2, m) - (m - 2) for m B 3. 

Proof. Again, our proof is by induction on m. First, considering P4, the cumulative 

cost from vertex 1 is four and from vertex 2 it is three. By symmetry, we know that 

the cost from vertex 3 is also 3. When looking at Ps, we see that the cost to call the 

‘other half’ is one less from vertex 3 than it is from vertex 2; the costs are equal in 

their respective segments. This establishes our base case for m = 3. We now assume our 

proposition is true for 3 < m < k, and consider the case for m = k + 1. The argument 

to complete the proof is as in the previous theorem. 0 

6. Conclusions 

In this paper, we continue the investigation of cumulative cost for line broadcasting 

begun by Kane in his work on cycle graphs. We establish a set of basic results regarding 

cumulative cost in paths, determining that indeed terminal vertices have the greatest 

cost over all vertices as source in a path. By Theorems 1 and 2, we have that for any 

n 3 2, 

C(n,l,t)-n+2 d C(n,p,t) d C(n,l,t) 

for any 1 d p d n and t > [log, nl. Furthermore, we provide closed-form solutions for 

the cost from a terminal vertex and from its two nearest neighbors in paths of length 

2m, when broadcast time is minimized as m time units. 
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Before concluding, we consider cases where the time to complete broadcast is on 

the order of the number of vertices in the path. The least cost possible from any vertex 

of P, is of course n - 1, as every edge must be traversed at least once (i.e., all n - 1 

non-source vertices must be called) if all vertices are to be informed. We have the 

following, straightforward results regarding cumulative cost when time is near or above 

n - 1 time units. 

Observation 1. C(n, 1, t) = n - 1 for t 3 n - 1. 

Lemma 8. C(n, 1,n - 2) = n for n > 3. 

Proof. One call of length 2 is needed to reach the other end (i.e. vertex n). If there 

is another time unit left to make a call to ‘fill in’ behind the length 2 call, then this 

scheme is optimal. This is the case for all paths of length greater than 3. 0 

Lemma 9. C(n,l,n-3)=n+lJor n>S. 

Proof. Two calls of length 2 (or one of length 3) with ‘fill in’ calls to follow are 

needed in this case. 0 

We have implemented a recursive procedure that computes minimum cumulative 

cost C(n,p, t) from any location p in a path of any length n and for any time t < n. 

catching results for smaller n, p and t to make the process reasonably efficient. The 

algorithm reflects the following definition, based upon our result as to contiguity of 

a minimum-cost line broadcast scheme, where D(n - m, t - 1) is as defined earlier: 

C(nTP3t)= p~~cn{C(%p,t - 1) + m -p +D(n - m,t - l)}. 

Further closed-form characterizations of the cumulative cost function C(2”‘, p, m) for 

other position p, as well as for other path lengths for any given time remain as open 

problems. Looking at classes of graphs other than paths or cycles, e.g., binary, binomial. 

or general trees, also represents an opportunity for further research in determining 

minimum-cost line broadcast schemes. Results for such structures do not follow directly 

from results obtained for cycles and paths as the nested and contiguity properties are 

likely to no longer hold, i.e, calls will be placed through informed vertices in optimal 

schemes. 
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