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a b s t r a c t

We consider the problem of estimating themarginals in the casewhere there is knowledge
on the copula. If the copula is smooth, it is known that it is possible to improve on the
empirical distribution functions: optimal estimators still have a rate of convergence n−1/2,
but a smaller asymptotic variance. In this paper we show that for non-smooth copulas it is
sometimes possible to construct superefficient estimators of the marginals: we construct
both a copula and, exploiting the information our copula provides, estimators of the
marginals with the rate of convergence log n/n.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Suppose one observes a random sample from a bivariate distribution. By Sklar’s theorem (see, e.g., [5]) the distribution
function is determined by its copula and the marginal distributions. In semiparametric copula models, it is assumed that
the copula depends on a Euclidean parameter and, apart from (absolute) continuity, no assumptions are imposed on the
marginals. The study of efficient estimation for semiparametric copulamodels originated in [3,2], which focused on efficient
estimation of the copula parameter. [3] also noted that exploiting the knowledge on the copula may help to improve on the
marginal empirical distribution functions. Following the setup in [3], [1] and [7, Chapter 5] provide efficient estimators of
themarginals, incorporating the information the copula provides, with the standard rate of convergence n−1/2 and a limiting
distribution that has less spread than the limiting distribution of the empirical distribution functions.

In thosemodels smoothness assumptions on the copula are imposed. This paper shows that in the absence of smoothness,
superefficient estimation of the marginals is possible. To this end, we construct, in Section 2, a specific copula. In Section 3,
we construct an estimator of the marginals that exploits the information our copula provides, and show that its rate of
convergence is log n/n. Our copula is a ‘best copula’ in the sense that log n/n is the best possible rate of convergence.

2. The copula

In this section we define our copula. To this end we introduce independent Bernoulli variables (Bk)k∈N with success
probability 1/2, and define Bernoulli variables (B̃k)k∈N by B̃k = Bk for k odd and B̃k = 1−Bk for k even. Using these Bernoulli
sequences, we introduce the random pair (U, V ) by

U =

∞−
k=1

Bk

2k
, and V =

∞−
k=1

B̃k

2k
.
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Fig. 1. The support Sk of the copula Ck for k = 1, 2, 3.

Hence V is a one-to-one function of U and the inverse is the same function. Note that U and V are uniformly distributed
on [0, 1]. The joint distribution of (U, V ) thus defines a copula, which we will denote by C . This copula can be interpreted
as an ‘infinite shuffle of min’ (see [4] for shuffles of min).

We provide a second construction of C that might bemore intuitive and allows us to introduce notation that is needed in
the remainder of the paper. Define, for k ∈ N and p, q = 1, . . . , 2k, the sets A(k)

p,q = [(p− 1)2−k, p2−k) × [(q− 1)2−k, q2−k).
Next, we define, for k ∈ N and p = 1, . . . , 2k, indices q(k)(p) as follows. For k = 1 we set q(1)(1) = 1 and q(1)(2) = 2. For
k ≥ 2 we set, for p = 1, . . . , 2k−1,

q(k)(2p) =


2q(k−1)(p), k odd;
2q(k−1)(p) − 1, k even,

and q(k)(2p − 1) =


2q(k−1)(p) − 1, k odd;
2q(k−1)(p), k even.

Next we introduce, for k ∈ N, Sk = ∪
2k
p=1 A

(k)
p,q(k)(p)

; see Fig. 1 for an illustration. Now we are able to introduce, for

k ∈ N, random variables (U (k), V (k)) that are uniformly distributed on Sk (the density equals 2k). Note that U (k) and V (k)

are uniformly distributed on [0, 1], so the law of (U (k), V (k)) defines a copula Ck. It is easy to see that Ck → C pointwise, as
k → ∞. In particular, we have, for all k,m ∈ N and all p, q = 1, . . . , 2k,

P{(U (k), V (k)) ∈ A(k)
p,q} = P{(U (k+m), V (k+m)) ∈ A(k)

p,q} = P{(U, V ) ∈ A(k)
p,q},

and this probability equals 2−k in the case q = q(k)(p) and 0 in the case q ≠ q(k)(p).

3. The estimator and its limiting behavior

Available is a random sample (X1, Y1), . . . , (Xn, Yn) from a bivariate distribution function H which has C , as defined in
Section 2, as copula. By Sklar’s theoremwe have, for all (x, y) ∈ R2,H(x, y) = C(F(x),G(y)), where F and G are themarginal
distribution functions of X1 and Y1, respectively. The only assumption we impose on F and G is that they belong to F , the
set of continuous distribution functions on the real line.

We introduce our estimator of F via its quantile function. First, we define Qn(u) on the set {p2−k
|p = 0, . . . , 2k, k ≥ 1}.

Set Qn(0) = X1:n,Qn(1) = Xn:n, and define Qn(p2−k) for k ∈ N and p ∈ {1, . . . , 2k
− 1} odd, recursively by (we adopt the

usual convention max∅ = −∞):

Qn

 p
2k


= max


Qn


p − 1
2k


, Q̃n

 p
2k


,

where

Q̃n

 p
2k


=


max
i∈I

p
k

Xi| max
j:Xj∈


Qn

p−1
2k


,Xi
 Yj < min

j:Xj∈

Xi,Qn


p+1
2k

 Yj

 , for k odd,

max
i∈I

p
k

Xi| min
j: Xj∈


Qn

p−1
2k


,Xi
 Yj > max

j:Xj∈

Xi,Qn


p+1
2k

 Yj

 , for k even,

with

I
p
k =


i ∈ {1, . . . , n} | Xi ∈


Qn


p − 1
2k


,Qn


p + 1
2k


, ∃Xj ∈


Xi,Qn


p + 1
2k

]
.

Next, we extend the domain to [0, 1] by Qn(u) = sup{Qn(p2−k)|p2−k
≤ u}. As estimator of F we take the distribution

function associated with Qn. We denote this estimator by F̂n. Note that F̂n can be written as F̂n(x) =
∑n

i=1 pi1(−∞,x](Xi),
where the probability masses pi only depend on the observations via the ranks (RX

j , R
Y
j ) of (Xj, Yj), j = 1, . . . , n.

The following theorem is the main result of this paper.
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Fig. 2. Realization of F̂n (solid) and F edf
n (dashed) for n = 100, F = Φ (dotted), and G ∈ F .

Theorem 3.1. For F ,G ∈ F we have (‖ · ‖∞ denotes the sup-norm):

1
2

≤ lim inf
n→∞

n
log n

‖F̂n − F‖∞ ≤ lim sup
n→∞

n
log n

‖F̂n − F‖∞ ≤ 4 a.s. (1)

The theorem demonstrates that F̂n is superefficient, i.e. the rate of convergence is log n/n instead of the usual rate n−1/2.

Remark 1. In the proof of Theorem 3.1 we exploit that any estimator F̃n of F that concentrates on X1, . . . , Xn satisfies

lim inf
n→∞

n
log n

‖F̃n − F‖∞ ≥
1
2

a.s. (2)

This property implies that our estimator F̂n achieves the best attainable rate of convergence log n/n. As the bound (2) does
not depend on the copula, our copula C can be interpreted as a ‘best one’ (in terms of rate of convergence).

Remark 2. A natural question is whether Zn =


(n/ log n)(F̂n(x) − F(x)) | x ∈ R


, seen as an element of ℓ∞(R), weakly

converges (if so, the limit determines the limiting distribution of (n/ log n)‖F̂n − F‖∞ by an application of the continuous
mapping theorem). The answer is negative. For F = I , where I denotes the distribution function of the Uniform[0, 1]
distribution, the argument is as follows (the general case easily follows from the uniform case). Since F̂n concentrates on the
observations and, as we exploit in the proof of Theorem 3.1, the maximal spacing ∆n of n i.i.d. draws from the Uniform[0, 1]
distribution satisfies (n/ log n)∆n → 1 a.s. we have, for any η ∈ (0, 1), ϵ ∈ (0, 1/2) and any finite partition ∪

k
i=1 Ti of [0, 1],

lim
n→∞

P


sup

i
sup

u,u′∈Ti

n
log n

|F̂n(u) − F̂n(u′) − (u − u′)| > ϵ


= 1 > η,

which shows that Zn is not tight.

As an illustration, Fig. 2 presents a realization of our estimator and the empirical distribution function F edf
n for n = 100,

F = Φ , the standard normal distribution function, and G ∈ F , and Fig. 3 presents the centered versions of the estimates.

Proof of Theorem 3.1. Introduce Ui = F(Xi) and Vi = G(Yi), and recall that monotone transformations of the marginals
do not change the copula. Let F̂U

n denote the distribution function resulting from computing F̂n from (Ui, Vi)
n
i=1 instead of

(Xi, Yi)
n
i=1. As F̂n(x) = F̂U

n (F(x)) a.s. we have ‖F̂n − F‖∞ = ‖F̂U
n − I‖∞ a.s., which shows that it suffices to prove (1) for

F = G = I . To stress that we consider uniform marginals we denote the observations by (Ui, Vi) in the remainder of the
proof.

As the probability of a tie in (Ui)
∞

i=1 or (Vi)
∞

i=1 equals zero, we throughout work on the event that there are no ties. Let
∆n = maxi=1,...,n+1 |Ui:n − Ui−1:n|, with U0:n = 0 and Un+1:n = 1, denote the maximal spacing of U1, . . . ,Un. Observe that
any estimator F̃n of I of the form F̃n(u) =

∑n
i=1 p̃i1[0,u](Ui) satisfies ‖F̃n − I‖∞ ≥ ∆n/2. Observe that ‖Fn − I‖∞ = ‖Qn − I‖∞.

As it is well-known (see, e.g., [6]) that (n/ log n)∆n → 1 a.s., we see that the theorem holds once we establish the bound
‖Qn − I‖∞ ≤ 4∆n. As |Qn(0) − 0| ≤ ∆n and |Qn(1) − 1| ≤ ∆n we have to prove

|Qn(u) − u| ≤ 4∆n, for all u ∈ (0, 1). (3)
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Fig. 3. Realization of F̂n − F (solid) and F edf
n − F (dashed) for n = 100, F = Φ , and G ∈ F .

Denote Un = {U1, . . . ,Un} and introduce the random variable

K̃ = max

k ∈ N | ∀p = 1, . . . , 2k+1

:


p − 1
2k+1

,
p

2k+1

]
∩ Un ≠ ∅


.

In the case K̃ = −∞ we have ∆n ≥ 1/4 and (3) trivially holds, so we only need to consider K̃ ≥ 1. We will prove, for
k = 1, . . . , K̃ and p = 1, . . . , 2k

− 1 odd,

Qn

 p
2k


= max

i=1,...,n


Ui|Ui <

p
2k


. (4)

Before we prove (4) we show that (4) implies (3). From (4) it is immediate that (3) holds for u ∈ {p2−K̃
|p = 1, . . . , 2K̃

− 1};
to be precise, we have, for p = 1, . . . , 2K̃

− 1,Qn


p

2K̃


−

p

2K̃

 ≤ ∆n.

LetK ⋆
= K̃+1 andnote that the intervals ((p−1)2−K⋆

, p2−K⋆
] and (p2−K⋆

, (p+1)2−K⋆
]both contain at least one observation.

The definition ofQn and (4) now yieldQn(p2−K∗

) ∈ [(p−1)2−K∗

, (p+1)2−K∗

) and the definition of K̃ implies∆n ≥ 2−(K⋆
+1).

A combination of these observations immediately yieldsQn

 p
2K∗


−

p
2K∗

 ≤ 2∆n,

which shows that (3) holds for all u ∈ {p2−K⋆
|p = 1, . . . , 2K⋆

− 1}. Finally, we consider u ∈ (0, 1) with u2K⋆
∉ N. Let p∗

such that u ∈ (p∗2−K∗

, (p∗
+ 1)2−K∗

). We easily obtain the bound

−4∆n ≤ Qn


p∗

2K∗


−

p∗

2K∗
−

1
2K∗

≤ Qn(u) − u ≤ Qn


p∗

+ 1
2K∗


−

p∗
+ 1

2K∗
+

1
2K∗

≤ 4∆n.

We conclude that (3) indeed holds.
We conclude the proof by establishing (4). We start with k = p = 1. Since the squares A(1)

1,1 and A(1)
2,2 both contain at

least two observations and A(1)
2,2 is ‘north’ to A(1)

1,1, it follows from the definition of Qn(1/2) that Qn(1/2) ≥ maxi{Ui|Ui <

1/2}. As the square A(2)
3,4 is ‘north’ to A(2)

4,3 and both squares contain at least one observation it is also immediate that
Qn(1/2) < mini{Ui|Ui ≥ 1/2}. Hence (4) indeed holds for k = p = 1. Suppose that we have shown (4) to hold
for k = 1, . . . , K − 1, with K ≤ K̃ . We show that then (4) also holds for k = K . We have to discuss the cases K
even and K odd separately. As the arguments are similar, we only discuss the case K odd. For p odd we obtain from the
induction hypothesis that all observations that are relevant for Qn(p2−K ), i.e. the observations Ui that belong to the interval
(Qn((p−1)2−K ),Qn((p+1)2−K )], correspond to observations (Ui, Vi) that fall in the sets A(K)

p,q(K)(p)
and A(K)

p+1,q(K)(p+1)
. As K ≤ K̃

both squares contain at least one observation. As K is odd A(K)

p+1,q(K)(p+1)
is ‘north’ to A(K)

p,q(K)(p)
. It follows that Qn(p2−K ) ≥

maxi{Ui|Ui < p2−k
}. The mass that C assigns to the set A(K)

p+1,q(K)(p+1)
concentrates in the two subsets A(K+1)

2p+1,q(K+1)(2p+1)
and

A(K+1)
2(p+1),q(K+1)(2(p+1))

, and both sets contain at least one observation. As K + 1 is even the set A(K+1)
2(p+1),q(K+1)(2(p+1))

is ‘south’ to

A(K+1)
2p+1,q(K+1)(2p+1)

. This easily yields Qn(p2−K ) < mini{Ui|Ui ≥ p2−k
}. We conclude that (4) holds for k = K as well, which

concludes the induction argument. �
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