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Abstract

We reconsider the evolution of strongly degenerate neutrinos in the early universe. Our chief concern is the validi
entropy conservation after the neutrino annihilation process has frozen out (so that the establishment of chemical equ
not trivial). We argue that the entropy indeed conserves because elastic scattering keeps the neutrino and antineutrino d
functions in the equilibrium form and the sum of their chemical potential keeps zero even after the neutrino annihilation
out. We also simulate the evolution of the degenerate neutrino spectrum to support the argument. We conclude that t
in the neutrino degeneracy parameter when the relativistic degrees of freedom in the universe decreases is calculate
entropy conservation and the lepton number conservation without worrying about at what temperature the neutrino an
process freezes out.
 2003 Elsevier B.V. Open access under CC BY license.
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1. Introduction

The cosmology with the strongly degenerate n
trinos or, in other word, large lepton asymmetry is o
of well-investigated themes. There are researches
cerning how to generate it and what kind of cosmol
ical consequences it produces at various cosmolog
epochs (see Ref. [1]). In this Letter, we make co
ments on thermodynamic properties of such dege
ate neutrinos in the early universe. Some of them h
been already pointed out in Refs. [1,2] and we m
complementary arguments. Others provide correct
to probable misunderstandings found in Ref. [1].
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First of all, we would like to compare Refs. [1,
and this Letter. In Ref. [1], it is argued that the evo
tion of the neutrino degeneracy parameterξν is given
by imposing the neutrino number conservation
ter the neutrino annihilation freeze-out. Therefore
freeze-out temperature and the variation of the te
perature are regarded to be necessary, where the
is calculated by integrating the covariant energy c
servation law because the entropy conservation is
considered to hold. As for the antineutrino degen
acy parameterξν̄ , the relationξν + ξν̄ = 0 is consid-
ered to break down. In Ref. [2], contrary to Ref. [1
it is argued that the temperature variation can be
culated using the entropy conservation and that the
lation ξν + ξν̄ = 0 holds after the freeze-out. Ther
the entropy conservation is regarded to hold appr
imately and the justification for its application is a
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tributed to the exponentially suppressed antineut
number density under the existence of the strong
generacy. In this Letter, we note that the entropy c
servation is derived using the relationξν + ξν̄ = 0,
which holds also after the freeze-out as describe
Ref. [2]. Then the entropy conservation is valid at a
time. Together with the lepton number conservati
we can calculate how the degeneracy evolves w
out knowing at what temperature the freeze-out ta
place. This is the point we have missed in the p
vious paper and want to stress in this Letter. Ho
ever, we note that the calculations in Ref. [2] are
wrong because the neutrino number conservation u
there is virtually same as the lepton number con
vation when the degeneracy is large. Just we h
done redundant calculations on freeze-out temp
ture.

In Section 2, we first describe how the variation
the neutrino degeneracy parameter is calculated
the lepton number conservation assuming the entr
conservation. Then we show the entropy to conserv
long as neutrinos are kinematically coupled to the
of the cosmic plasma. In Section 3, we show the res
obtained by numerically simulating the degener
neutrino spectrum. In this way, we directly confir
they are in thermal equilibrium andξν + ξν̄ = 0 holds.
In Section 4, we summarize the discussion and g
the conclusion.

2. The neutrino degeneracy variation calculated
by the entropy conservation

The lepton asymmetry in the universe is of cou
measured by the lepton number density:nl = nν −
nν̄ . When neutrinos and antineutrinos are in therm
equilibrium, their number densities are specified
temperatureT together with chemical potentialµ
(or as is frequently used, with degeneracy param
ξ = µ/T ) and annihilation processν + ν̄ ↔ e− + e+
ensuresξν = −ξν̄ so thatnl = ξ{(ξ/π)2 +1}T 3/6 (we
assume for simplicityξν > 0 and denote it asξ ).

Since the lepton numberNl = a3nl and the total
entropyS = a3s in the universe conserve (wherea
is the scale factor ands is the entropy density), i
is useful for quantifying the lepton asymmetry
consider their ratioηl ≡ nl/s, which also conserves
Using energy densityρ, pressureP and number
densityn, s is calculated ass = (ρ + P − µn)/T ,
and is often written ass = (2π2/45)gs(ξ, T )T 3 where
gs denotes the relativistic degrees of freedom. T
ηl is related to the degeneracy parameter as,ηl ∝
(ξ3 + π2ξ)/

∑
gs(ξ, T ).

It is obvious from the last expression thatξ takes
different values as the total relativistic degree
freedom of the universe changes and how much it d
can be calculated with theηl conservation (especially
ξ stays constant while totalgs does not change an
this is the reason thatξ is often used to quantify th
degeneracy).

However, when the degeneracy is very large, th
are occasions that the entropy conservation is not
ial as explained below (the lepton number conse
tion evidently holds because it is respected in ev
relevant elementary process). With neutrino dege
acy, there exists more neutrinos and less antineutr
than without it. Since this makes harder for neutrin
to find partners of annihilation process, it freezes-
(the process rate becomes less than the cosmic ex
sion rate) at higher temperature. When the dege
acy is so large that neutrino annihilation freezes
before the muon and antimuon annihilate, we c
not in general expect the entropy to conserve du
the muon annihilation because the process which
sures the chemical equilibrium to hold has froze
out.

The higher neutrino annihilation freeze-out te
perature under the existence of degeneracy has
noticed in Ref. [4] and its effect on cosmology h
been discussed there and also in Ref. [3]. Howe
as pointed out by Ref. [1], they have regarded
neutrino annihilation freeze-out as the neutrino dec
pling so they have concluded that neutrinos would
be heated while the muon annihilation. This is not t
because although neutrinos come short of annih
tion partners, antineutrinos, they have enough ela
scattering partners, for example, electrons. The cor
picture is that even the neutrino annihilation free
out, they keep contact with the rest of the cosm
plasma and decoupling does not take place. In o
words, after the neutrino annihilation freeze-out,
chemical equilibrium in not ensured to hold but the
netic equilibrium is.

In this picture, what occurs during muon annihi
tion is that neutrinos preserve number and keep e
librium distribution with the temperature followin
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photon’s which falls more slowly thana−1. That is

(1)Nν = a3nν ∝ a3T 3
∫

y2

exp(y − ξ)+ 1
= const,

while aT deviates from unity and increases. The
fore, as is easily seen,ξ has to decrease. On calculati
how muchaT increases andξ decreases, Ref. [1] ha
suggested the use of covariant energy conservation
because they consider the entropy conservation
not hold when there is degeneracy. Also, they h
stated that the relationξν + ξν̄ = 0, which is true dur-
ing chemical equilibrium, breaks down. In summa
from Ref. [1] point of view, the evolution ofξ would
be calculated as:

(1) calculate the neutrino annihilation freeze-out te
perature;

(2) use the total entropy conservation before
freeze-out; and

(3) use the neutrino number conservation and
covariant energy conservation law after the free
out.

In our recent paper, we expressed different opini
from theirs. In Ref. [2], we argued that the tot
entropy conserves andξν + ξν̄ = 0 holds even afte
the freeze-out. Our argument is as follows.

The variation of the entropy is determined by t
second law of thermodynamics [5]:

(2)T dS = d(ρV )+ P dV −µdN.
The first two terms on the right-hand side vanish
according to the covariant energy conservation. For
last term, there are contributions from neutrinos a
antineutrinos so that

(3)T dS = −µν dNν −µν̄ dNν̄ = −(µν +µν̄) dNν,
where for the second equality, we use the lep
number conservationdNl = d(Nν −Nν̄) = 0. Before
the neutrino annihilation freezes out, the particles
in chemical equilibrium soµν + µν̄ = 0 holds and
the entropy conserves even ifdNν 
= 0 (during, for
example, muon annihilation).

After the neutrino annihilation process has froze
out, since the chemical equilibrium breaks in gene
we cannot applyµν + µν̄ = 0 immediately so it is
not trivial that the entropy conservation holds wh
dNν 
= 0. However, what we call here “freeze-ou
is for neutrinos and not for antineutrinos who hav
lot of annihilation partners. As a result, the chemi
potential of antineutrinos is expected to keep the va
µν̄ = −µν and the entropy conserves.

To make this argument clearer, we consider
Boltzmann equation for the annihilation of antineut
nos during the muon annihilation. For that purpose
is important to notice that even after the neutrino an
hilation freeze-out, the elastic scattering is sufficien
frequent so every particle species are in kinetic eq
librium with certain well-defined temperature and
the universe expands, the kinetic equilibrium is ma
tained as the temperature decreases. The relevan
of the Boltzmann equation is

dnν̄

dt
+ 3Hnν̄

=
∫

d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3

× (2π)4δ(4)(p1 + p2 − p3 − p4)

× |M|2{[1− fν̄(E1)
][

1− fν(E2)
]

× fe−(E3)fe+(E4)

− fν̄(E1)fν(E2)
[
1− fe−(E3)

]
(4)× [

1− fe+(E4)
]}
,

where|M|2 is the (angular integrated) invariant am
plitude squared. Suppose that at first the universe
temperatureT1 with µν +µν̄ = 0. At that moment, the
number density obeys the Boltzmann equation w
out the expansion termdnν̄/dt = 0. This is consisten
with the collision term, the right-hand side of Eq. (4
which vanishes when the distribution functions ta
equilibrium formf (E) = 1/[exp{(E − µ)/T1} + 1]
with µe± = 0, µν + µν̄ = 0 and energy conservatio
E1 + E2 = E3 + E4. As the muons annihilate an
the universe expands, the equilibrium with tempe
ture T1 breaks but by the frequent elastic scatteri
it quickly settles down to next equilibrium withT2(<

T1). This transition is driven by the Boltzmann equ
tion like Eq. (4) with electron and positron temperatu
T2 and neutrino and antineutrino temperatureT1. The
difference takes place because the electromagnet
teraction is much stronger than the weak interac
and electrons are immediately heated by annihila
muons but neutrinos are not. This gives non-zero co
sion term to evolve the distribution functions or, kno
ing they take equilibrium form, to evolve chemical p
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tentials. The relation between the chemical potent
is determined by demanding the Boltzmann equa
be dnν̄/dt = 0 whenH → 0 and T1 → T2. This is
only achieved when the phase space factors on
right-hand side of Eq. (4) cancel out i.e.,µν +µν̄ = 0.

We would like to note three points. First, similar a
gument does not work with neutrino Boltzmann eq
tion because after the neutrino annihilation freeze-
when collision term is negligible to expansion ter
it is dnν/dt + 3Hnν ≈ 0 and does not give us info
mation about distribution functions. Second, the
gument above assumes the period in which temp
ture decrease is dictated by the muon annihilation
addition to the cosmic expansion. On the other ha
when particle degree of freedom is constant, the u
verse becomes cooler as a whole only by the cos
expansion so there occurs no temperature differe
between electrons and neutrinos. Then the term
the right-hand side of Eq. (4) cancel out to give t
evolution equationdnν̄/dt + 3Hnν̄ properly express
ing the number conservation. Third, it is crucial th
there exists temperature difference between elect
and degenerate neutrinos to showµν +µν̄ = 0 but the
difference is quickly erased due to the frequent ela
scattering and we can regardTν = Tγ for the cosmo-
logical time scale. More concretely, the argumen
the previous paragraph is valid whenT1 − T2 is much
smaller than the temperature difference between
fore and after the muon annihilation.

Now that we showµν + µν̄ = 0, it is readily seen
from Eq. (3) that the total entropy conserves even a
the neutrino annihilation process freezes out. Th
the evolution ofξν is calculated with the total entrop
conservation and the lepton number conservation w
ξν̄ = −ξν . Note that the neutrino annihilation freez
out temperature is not necessary for the calculat
contrary to what is discussed in the literatures suc
Refs. [1,3,4]. The naive treatment we have introdu
at the beginning of this section turns out to be corre

3. Numerical simulation of the neutrino spectrum
evolution

In this section, we simulate the evolution of dege
erate neutrino spectrum to confirm the argument gi
in the previous section. We find manifestly the therm
equilibrium distribution is preserved with the sam
temperature as the photons and the relationξν+ξν̄ = 0
holds.

Before showing the results, we describe our s
ulation method. Similar simulations are performed
Refs. [6,7] and more details are found. We assume
simplicity that only electron-type neutrinos are deg
erate and other types have no degeneracy. We ev
neutrino and antineutrino distribution functions,fν(y)
andfν̄(y), and the photon temperatureT as functions
of x =m0a wherem0 is an arbitrary energy scale (w
usem0 = 1 GeV and set it unity hereafter).y is de-
fined byy = ap wherep is the particle momentum.

With these variables, derivatives of the distributi
functions are calculated by

(5)
dfν(ν̄)

dx
= Cν(ν̄)

Hx
,

whereC is the collision term andH is the cosmic
expansion rate.H is calculated from the total en
ergy densityρtot asH = √

ρtot/3/Mpl whereMpl =
2.436× 1018 GeV is the Planck energy.

For the collision term, we include the elas
scatteringν(ν̄)+ e± ↔ ν(ν̄)+ e± and the annihilation
ν + ν̄↔ e− + e+. We denote the former contributio
as Ce and the latterCa so thatC = Ce + Ca . We
calculate them with approximation for electrons
be massless and to obey Boltzmann statistics a
Ref. [8]. Then

Ceν(y)=
2G2

F [(CV + 1)2 + (CA + 1)2]x
π3y2

×
[
−fν(y)

{ y∫
0

dy ′ [1− fν(y ′)
]
F1(y, y

′)

+
∞∫
y

dy ′ [1− fν(y ′)
]
F2(y, y

′)
}

+ [
1− fν(y)

]{ y∫
0

dy ′ fν(y ′)B1(y, y
′)

(6)+
∞∫
y

dy ′ fν(y ′)B2(y, y
′)
}]
,

whereGF is the Fermi coupling constant,CV = −1/2
andCA = −1/2 + 2 sin2 θ (θ : weak mixing angle)



158 K. Ichikawa, M. Kawasaki / Physics Letters B 570 (2003) 154–160

ot
dify

st

om

c-
pes
de-

t the
We

pond
.

te

e
(see
he
ost
1,
t
il
ost

ing
we

l

nd
r

1–
ium
al
eter
opy

is

of
FunctionsF andB are defined by

(7)F1(y, y
′)=D(y,y ′)+E(y,y ′)exp

(
− y ′

xT

)
,

(8)

F2(y, y
′)=D(y ′, y)exp

(
y − y ′

xT

)

+E(y,y ′)
(

− y ′

xT

)
,

(9)B1(y, y
′)= F2(y

′, y),
(10)B2(y, y

′)= F1(y
′, y),

where

(11)

D(y,y ′)= 2T 4

x2

{
y2 + y ′2 + 2(y − y ′)xT + 4x2T 2},

(12)

E(y,y ′)= −T
2

x4

{
y2y ′2 + 2yy ′(y + y ′)xT

+ 2(y + y ′)2x2T 2 + 4(y + y ′)x3T 3

+ 8x4T 4}.
As for Ca , the expressions in Ref. [8] have n

included neutrino degeneracy so we need to mo
the annihilation term to be

Caν (y)

= −4G2
F [(CV + 1)2 + (CA + 1)2]

9π3x5

×
∫
dy ′ yy ′3

{
fν(y)fν̄(y

′)− [
1− fν(y)

]
(13)× [

1− fν̄(y ′)
]
exp

(
−y + y ′

xT

)}
.

For antineutrinos collision terms, we have to ju
exchangefν andfν̄ in Eqs. (6) and (13).

The derivative of the temperature is obtained fr
the covariant energy conservationdρ/dx = −3(ρ +
P)/x. Since our simulation includes photons, ele
trons (approximated to be massless), muons, two ty
of neutrinos with no degeneracy and one type with
generacy,

dT

dx
= −

(
1

x

{
9× 4ργ + 3(ρµ +Pµ)

}
+ 1

2π2x4

∫
dy y3dfν

dx
+ 1

2π2x4

∫
dy y3dfν̄

dx

)

(14)×
(

9× ∂ργ

∂T
+ ∂ρµ

∂T

)−1

.

Fig. 1. This figure shows the evolution ofξν (y). ξ is computed as
in the text. The appearance of the horizontal lines indicates tha
neutrino distribution takes equilibrium form at each temperature.
plot ξν at several temperatures. The greater line intervals corres
to the faster decrease in the muon relativistic degree of freedom

As the initial condition, we takex = 10 which
corresponds toT = 100 MeV and assume degenera
neutrinos have equilibrium distribution withξν =
−ξν̄ = 10. Actually, for this condition, since th
annihilation rate exceeds cosmic expansion rate
Ref. [2]), neutrinos are in chemical equilibrium. T
muon mass is about 106 MeV so they are alm
fully relativistic (relativistic degree of freedom is 3.1
while fully relativistic particle would have 3.5) a
100 MeV. We follow the evolution down to unt
about 10 MeV at which temperature the muons alm
annihilate away.

We note here some technical detail concern
numerical calculation. To discretize momentum,
take equally spaced 100 points in 0< y < 20. Time
step is fixed to-x = 10−4. Since the differentia
equations forf ’s are stiff but not forT , f ’s are first
evolved with second-order semi-implicit method a
then, using that results,T is evolved with second-orde
Runge–Kutta method.

The simulation results are summarized in Figs.
3. Figs. 1 and 2 indicate the spectra keep equilibr
form with well-defined temperature and chemic
potential. Fig. 3 shows how the degeneracy param
evolves which can be reproduced using the entr
conservation and the lepton number conservation.

For Figs. 1 and 2, what we actually evolve
the distribution functionsfν(y), fν̄ (y) and photon
temperatureT but we express the results in terms
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Fig. 2. This figure shows the evolution ofξν̄ with similar features
to Fig. 1. We seēν also keeps the equilibrium distribution. Togeth
with Fig. 1, they indicate the relationξν + ξν̄ = 0 holds.

Fig. 3. The evolution of the neutrino degeneracy parameter. We
ξν at y = 7 but it has practically no dependence ony as shown in
Fig. 1.ξν̄ evolves with opposite sign but the same absolute valu

momentum dependent degeneracy parametersξν(y)

andξν̄(y) which are calculated using the relations

(15)

fν(ν̄) = 1

exp
(p−µν(ν̄)

T

) + 1
= 1

exp
( y
xT

− ξν(ν̄)
) + 1

,

or ξν(ν̄) = y/(xT )− ln(f−1
ν(ν̄)−1). Note that we do no

assume neutrinos and antineutrinos have equilibr
distribution at this stage. The result thatξ ’s computed
by such a way are independent of momentumy (in-
dicated by the horizontal lines which appear in th
figures) tells the realization of the equilibrium distri
ution with the temperatureT and the degeneracy par
metersξν(ν̄).
In addition tofν andfν̄ are described by therma
equilibrium distribution with the same temperature
the photons, we see that the sum of their degene
parameters is accurately zero:ξν + ξν̄ = 0 (to be
more precise, the sum never exceeds 10−3). This
relation is supposed to ensure the entropy conserva
as discussed above so we should check whethe
final value of the degeneracy parameter calculated
the numerical simulation is also obtained from t
conservation laws. The relativistic degree of freed
of fermion with massm (ignoring spin and anti
particle) is

gs,mass= 45

π2

s

T 3

(16)= 45

4π4

∞∫
0

dx
x2

exp(ε)+ 1

(
ε + x2

3ε

)
,

where ε = √
x2 + (m/T )2. Then gs,muon decreases

from 3.11 at T = 100 MeV to 0.00782 at T =
10 MeV. As for degenerate neutrinos, it is well appro
imated asgs,ν = (7/4){(15/7)(ξ/π)2 + 1} andgs,ν̄ =
(45/2π4)(4 + ξ)e−ξ so the latter can be neglected
the present case. The other particle species inc
photon, electron and two types of non-degenerate
trinos (gs,others= 9). Requiringηl ≡ nl/s ∝ (ξ3 +
π2ξ)/(gs,muon+ gs,ν(ξ) + gs,others) to conserve,ξ is
found to decrease from 10 to 9.526. This reprodu
the numerical simulation results very well.

4. Conclusion

In summary, under the existence of neutrino deg
eracy in the early universe, we show the total entr
indeed conserves. This is not trivial after the neutr
annihilation process which establishes the chem
equilibrium freezes out. We argue that it does as lo
as the neutrinos are kinematically coupled to the
of the plasma so that the relationξν + ξν̄ = 0 holds.
To confirm this argument, we simulate the degen
ate neutrino spectrum evolution. As the result, we fi
neutrinos and antineutrinos have the thermal equ
rium distributions with the same temperature as
rest of the plasma and with the degeneracy para
ters satisfyingξν + ξν̄ = 0. Consistently, we see th
simulated evolution of the degeneracy parameters
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be reproduced using the entropy conservation and
lepton number conservation.

Neutrinos with so strong degeneracy that ann
lation freezes out before muons annihilate have b
thought to necessiate some special thermodyna
treatments since Ref. [4] and to these days. Howe
as we discussed in this Letter, that is not necessary
the degeneracy parameter evolution is calculated u
the entropy conservation and the lepton number c
servation, no matter when their annihilation free
out.
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