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In this note we give exact expressions for the norms of some inter
polating spline projection operators and establish some new error estimates 
in the approximation of continuous functions. 

We restrict our attention to the simplest case of spline interpolation, 
namely, the periodic cubic splines. Let 0 denote the Banach space (with 
supremum norm) of all continuous, periodic, real-valued functions on 
[0, 1]. In this context, "periodic" simply means that f(0)=/(1). To each 
division of the interval into n subintervals {0=xo<X1 < ... <Xn= 1} there 
corresponds an n-dimensional subspace S in 0 whose members are the 
periodic cubic spline functions with nodes Xt. Thus, s E S if and only if 
1) s" exists and belongs to 0, 
2) on each subinterval [x,, XtH], s coincides with a certain cubic poly

nomial q,. 
For the general theory of splines, the reader should refer to the treatise [1 ]. 

To each f E 0 there corresponds a uniquely determined element s E S 
with the interpolating property: s(xc) = f(xf) for i = 0, ... , n. The mapping 
L : f -+ s defined in this manner is a linear and idempotent operator 
from 0 onto S. In a previous paper [2], we gave estimates of the operator 
norm 

IlLII = sup {IlLII! : IIIII = 1, f E 0} 

in terms of the spacing numbers h, = x,- Xt-1· In the equally-spaced case, 
all the numbers h, are equal to n-1, and it is possible to compute IlLII 
exactly. This we do below in Theorem l. We show, for example, that 
IlLII < 1.549 for all n. In other results, we give estimates (which are best 
possible or nearly so) for the expression IlL/- fl!, in terms of the modulus 
of continuity of f. Finally, a result of NoRD [3] on the derivatives of a 
spline function at the nodes is improved to a form which is best possible. 

1) Presented to the American Mathematical Society, August 1968. 
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The second author was supported by the Office of Scientific Research of the United 
States Air Force. 
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Several basic results are needed for these calculations. First, if s = Lf 
and f-tt=s'(xt) then as in [1, p. 12] 

(1) 

Here /£ denotes f(xt). Next, if the two numbers #t-1 and #t are known 
then 8 can be given explicitly on the interval [Xt-1, x,] by the Hermite 
Interpolation Formula as in [2]: 

(2) 

Here the functions A,, ... , D, are certain cubic polynomials defined as 
follows 

(3) ) 

Ai(x)=n3(n-1+2x-2xt-1)(x-x,)2 
B,(x) =n3(n-1- 2x+ 2x,)(x-Xi-1)2 
Ot(x) = n2(x-Xt-1)(x -x,)2 
D.,(x) =n2(x-x.,)(x-xH)2. 

We note that A.,, B.,, O, and -D., are nonnegative on [Xt-1, x,]. Further
more, A,(x)+B,(x)= 1 and Ot(x)-Dt(x)=n(x-Xt-1)(x,-x). Next, we de
note by st the i-th cardinal spline. It is defined by the equation s'(xJ) = ~j .. 
for i, i = 1, ... , n. In terms of these functions, we have Lf= ~ fts' and · 

<=1 

" consequently IlLII =II ~ Is' I II· The purpose of the first two lemmas is to 
<=1 

compute the numbers (s')'(x1) by solving system (1) in an appropriate 
particular case. If n=2k or n=2k-1, we put At=(sk)'(x,). Since the 
functions st are periodic and the nodes are equally spaced, we have 
s'(x)=sk(x-Xt-k). Thus it is only necessary to compute one cardinal 
function, and we chose sk. Then (with P# denoting differentiation) 

Consequently, on the interval [XJ-1, x1] we have 

(4) ~ st(x) = c5f_ 1A,(x) + ~jB,(x) + P#st(xJ-1)0J(x) + P#s'(x,)D,(x) = 
( = c5j_ 1AJ(x) + ~}Bt(x) + AJ-i+k-10i(x) + AJ-i+kDJ(x). 

(Calculations involving the indices are carried out modulo n. Thus, for 
example, f n = fo, An+l = A1, etc.) 

Lemma 1. Definen=2k-1,ao=a1= 1,at+1=4at-at-1fori E{l, 2, ... }, 
At=( -I)kH+l3nak-1at for i E {0, 1, ... , k-1}, Ak=O, and At= -A2k-i for 
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i E {k + 1, ... , 2k -1 }. Then Ai-l+ 4At +At+l = 3n({lf+t- {lf_1) fori E {1, ... , n}, 
n 

and 2 1Atl=6nak-1(al+ ... +ak-1). 
i=1 

Proof. If i E {I, ... k-2} then 

Ai-l+ 4Ai + Ai+l = ( -1 )k+i3nak 1(ai-1- 4ai +at +I)= 0 = 3n({lf+l- {lf-1). 

For the case i=k-I we have 

Ak-2+ 4Ak-1 + Ak=- 3nak 1(ak-2- 4ak-l) = - 3nak 1( -ak) = 3n= 3n((l~- (l~_ 2 ). 

For the case i = k we have 

Ak-1 + 4Ak + Ak+l = Ak-1 + Ak+l = 0 = 3n((l~+t- (l~_ 1 ). 

For the case i=k+I we have 

Ak + 4Ak+l +AH2 = -Ak-2- 4Ak-1 -Ak=- 3n= 3n((l~+2 -{l~). 

If i E {k+2, ... , 2k-I} then 

At-1 + 4Ai + At+l = - (A2k-i+l + 4A2k-t + A2k-t-1) = 
- (AJ-1 + 4AJ + AJ+I) = 0 = 3n((lf+t- {lf-1), , 

where j=2k-i and j E {I, ... , k-2}. 
In exactly the same way one can prove a similar result when n is even. 

Lemma 2. If n=2k, bo=O, b1=I, bi+1=4bt-bi-1 fori E {I, 2, ... }, 
At=(-1)k+i+13nbk1bi for i E {0, I, ... , k-I}, Ak=O, and Ai= -An-i for 
i E {k+ 1, ... , n}, then Ai-l +4Ai+Ai+l=3n((l~+l-{l~_ 1 ) fori E {I, ... , n}, and 

n 

2 lAd= 6nbk 1(b1 + ... + bk-1)· 
i=1 

Theorem I. In the equally-spaced case, the norm of Ln is as follows, 
with .8= 2 + V3, 
(a) 11Lnii=I+!(.8k-.8)(.8k+l)-1(.8-l)-l, (n=2k) 
(b) IILnll = 1 + !(.Bk- ,8)(,8k + ,8)(.82k + !'1)-1(.8 -I )-1, (n = 2k -I). 

n n 
Proof. We have IILII=II 2 lsilll· Select x so that IlLII= 2 lsi(x)l and 

i=1 i=1 
select j so that x1- 1,;;;.x,;;;.x1. By equation (4) 

n 

2 lsi(x)l = 
i=1 

n 

= 2 l(l}-1At(x) + (l1BJ(x) + AJ-i+k-lCJ(x) + AJ-i+kDJ(x) I= 
i=1 

= IAJ(x) + AkCJ(x) + Ak+IDJ(x)l + IBJ(x) + Ak-lCJ(x) + AkDJ(x) I+ 

+ C% + i=~2) IAt-lCj(X) + AtDj(X) I· 
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By Lemmas 1 and 2, the coefficients At alternate in sign as i runs through 
the sets {0, ... , k-1} and {k+1, ... , n}. Furthermore, Ak=O, Ak-1>0, and 
Ak+l < 0. These facts together with the properties of A,, ... , D, imply that 

" Since x was chosen to make I lsi(x)l a maximum, it also makes 
i~l 

O,(x)-D,(x) a maximum. Then we obtain 

(5) 

In the odd case, we use Lemma 1 to obtain 

3 k-I at 
11Lnll=1+ 2 i~ ak · 

The numbers ai satisfy a linear difference equation and can be determined 
explicitly by the formula at= (J-i((J2i + (J)( 1 + (J)-1. If we sum the geometric 
series appearing in the formula for IILnll and perform algebraic manipu
lations, the result is the formula in the theorem. The analysis for the 
even case is similar, the formula for bt being bt = (!)((J- 2)-1((JL (J-i). 

The next theorem is proved by direct calculations based upon Theorem 1. 

Theorem 2. In the equally-spaced case, the norms IILnll are ordered 
as follows: 

(a) 11£311 <IlLs II< IlL? II< ... < !(1 + 3V3) = 1.548 .. . 
(b) IIL2II < 11£411 < 11£611 < ... < !(1 + 3V3) = 1.548 .. . 
(c) 11£311 = 11£611, !ILs!l = !!LIO!!, !IL?!I = 1!£1411, ... 

Theorem 3. The following error-estimate is valid for all f E 0, the nodes 
being equally spaced: 

!(Lnf-f)(x)! <Cnw(f; !5) 

where <5= min !x-xtl and IILnll<cn<2IILnll· 
i 

Proof. Let n=2k or n=2k-1. Let x be any point, and select j so 
that x1_1<x<x1• From equation (4), together with the equation 
A1(x)+B1(x)=1, we obtain 

" s = (Lnf- f)(x) = I ftsi(x)- f(x)A,(x)- f(x)B,(x) = 
i=l 

(6) = U1-1- f(x) ]A,(x) +Eli- f(x) ]B,(x) + 
" + I /i[AJ+k-HOJ(X) + AJ+k-iD,(x)]. 

i=l 
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In order to simplify the notation we abbreviate li+k-t by F,, l(x) by lz, 
A 1(x) by A, etc. We also note from Lemmas 1 and 2 that Ak+t= -Ak-t 
for i=O, ... , k-1. Furthermore, A.o=O when n is even. Hence 

" e= U1-1- fz)A + (f,- lz)B + ! Fi(Ai-10+A.iD) = 
i=1 
k-1 k 

=Ut-1-lz)A+(!J-Iz)B+ ! FiA.tD+ !FtA.i-10+ 
i=1 i=2 

(7) 

k-1 k-1 
- ! F2k-iAiD- ! F2k-HIAt0. 

i=1 i=1 

Now define O'o=O and O't=A1 + ... +A.i for i= 1, ... , k. We apply to (7) 
the formula for partial summation, !f <XiAi = !f-1 (<Xi- <XH1)0'i + <XpO'p. The 
result is 

k-1 
e= ! (Fi-FH1)(0'tD+O"t-10)+ (f,- fz}(B+11kO +O'kD)+ 

i=1 

(8) + (/z- IJ-1)( -A +O'k0+0'kD)+ 
k-1 

+ ! (FkH-Fk+i+1)(0'k-HD+O'k-i0). 
i=1 

Now let 15= min lx-xtl =min {x-XJ-1, x1-x}. If 15=0 then xis a node 
i 

and the inequality in question is trivial. We assume therefore that 15>0. 
If w(f; 15)=0 then I is constant and Ll=l. We assume therefore that 
w(f; 15) > 0. Since the inequality in question is homogeneous in I, ·it is 
sufficient to give the proof for functions I such that w(f; 15)= 1. Now let 
p denote the smallest integer satisfying p;;;.(nl5)-1. Since each interval of 
length 1/n can be subdivided into p intervals of length at most 15, we 
have IFt-Ft+ll <.p. Assume now that x-x1-1=15 and that x,-x=n-1-15. 
(The analysis of the other case, when x1-x=l5, is almost exactly the same.) 
Then llz-IJ-11 <. 1 and lli-lzl <.p-1. Thus 

(9) l
e<.p :% IO'iD+O'i-101 + IB+O'kO+O'kDI(p-1)+ 1-A +O'k0+0'kDI + 

k-1 
+p ! IO'k-1-iD+O'k-iOI. 

i-1 

The sum on the right in inequality (9) is analysed in Lemmas 3 and 5 
below. The result is 

k-1 
e<.p ! IA.ii(O-D)+2-n!5. 

i-1 

We evaluate 0-D at the point X=XJ-1 +15 and obtain 15(1-nl5). Also 
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k-1 
we note from the proof of Theorem 1 that L [A.i[ = 2n([[Ln!!-1). Finally, 

i~l 

we use the inequality p < 1 + (nb)-1. Thus 

s< [1 + (nb)-1]2n([[Ln!!-I)b(1-nb) + 2-nb= 

= 2(1 +nb)(I-nb)([[Ln!!-1) + 2-nb= 

= 2[[Ln!l + 2n2b2(I-[[Ln[[) -nb < 2[[Ln[[. 

In the special case that b=(2n)-1, we have p=2, and the bound from 
Lemma 5 is I. Hence in this case s < !!Ln[!. 

In order to see that Cn> !!Ln!! we construct a particular function f by 
specifying Fk-i=Fk+i+1=P for i=O, 2, 4, ... and Fk-i=Fk+i+1=0 for 
i= I, 3, 5, ... Also, we let fx=p-1. The function f varies linearly between 
the specified values, is periodic, and satisfies w(f; b)= l. For this function, 

k-1 
s=p(C-D) L IA.t!+(B+akC+akD)-(-A+akC+akD)= 

i~1 

= 2nbp(I-nb)([[Ln[[-I) +I> [[Ln[[. 

(This example is satisfactory when n is odd. If n is even, it is modified 
by defining Fo to be equal to Flo) 

Corollary. In the equally-spaced case the estimate 

!!f-Lnf!! < [[Ln[[ OJ (t; 2~) 
is valid. It is not possible to introduce a constant factor < I on the right
hand side. 

k-1 k-1 
Lemma 3. L {!atD+ai-10! + !ak-1-iD+ak-iC!}=(C-D) L [A.il· 

i~1 i~1 

Proof. In the notation of Lemmas 1 and 2 we have ai+l > 3ai > 0 and 
bi+l > 3bi > 0 for all i E {1, 2, ... }. This is readily proved by induction. 
It then follows that 2[A.i[ < [Ai+l[ for all i E {I, ... , k- 2}. Another induction 
establishes that [ai[<[Ai+l[ fori E {0, ... , k-2}. It follows that sgn ai= 
sgn (A.i+ai-1)= sgn Ai=( -I)k+l+i for i E {I, ... , k-I}. Since 0;;,0 and 
D < 0, we have sgn (aiD+ ai-10) = sgn ai-1 = ( -I)k+i. 
The sum on the left side in the statement of the lemma therefore is 

k-1 
L {!aiD+ ai-10! +laiC+ ai-1D!} = 
i~1 

k--1 
= L ( -I)k+i+l{ -aiD-ai-1C+aiC+ai-1D}= 

i~1 

k-1 
=(0-D) L (-l)k+i+l(ai-O'i-1)= 

i~1 
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Lemma 4. On the interval [x1-1. x1] the functions A-ak(a+D) and 
B + O'k( a+ D) are nonnegative. 

Proof. Put J =A-ak(a+D). It is enough to prove that O.;;;;;J.;;;;; 1 be
cause then B+ak(a+D)= 1-J;;;.O. Put x=XJ-1 +On-1. From equations 
(3} we obtain 

J = (1-0}[(1 + 20)(1- 0)- akn-10(1- 20)]. 

If O.;;;;;O.;;;;;l then O'kn-10(1-20);;;.0. (See the proof of Lemma 3). Hence 
J.;;;;;(1-0)2(1+20).;;;;;1. From Lemma 1 and the proof of Lemma 3, 

O'k=O'k-1 = O'k-2 +A.k-1 = IA.k-11-lak-21 < IA.k-11 = 3nak-1/ak < 3n(1/3) =n. 

Hence J;;;-(1-0)[(1 +20}(1-0)-0(1-20)]= 1-0;;;.0. On the other hand, 
if !<0<1 then O'kn-10(1-20}.;;;;;0 and J;;;.O. Since O'k.;;;;;n, 

J <(1-0}[(1+20)(1-0}+0(20-1)]= 1-0< 1. 

The analysis when n is even is similar. 

Lemma 5. If X=X1-1+~ and 0.;;;;;~.;;;;;(2n}-1 then 

(p-1}IB+aka+akDI + IA-aka-akDI <2-n~. 

If ~=(2n)-1, the bound can be lowered to 1. 

Proof. By Lemma 4, the left side of the asserted inequality is 

J = (p-1}(B+aka+akD)+A-aka-akD= 
=A+(p-1)B+ak(p-2)(a+D). 

If we insert the values of A, B, a, and D from equations (3) and simplify, 
the result is 

J = 1 +n~(p- 2}(3n~- 2n2~2) + O'k~(p- 2}(1- 3n~ + 2n2~2). 

From the proof of Lemma 4, O'k<n. Also, p;;;-2 and 1-3n~+2n2~2= 
= (1- 2n~}(1-n~);;;. 0. Hence J.;;;;; 1 +n~(p- 2}. Since p < 1 + (n~)-1, we have 
pn~<n~+1 so that J<1+(n~+1}-2n~=2-n~. Note that if ~=(2n)-1 
then p=2, J=1, and the bound 2-n~ can be improved to 1. 

Theorem 4. Every periodic cubic spline function s having n equally
spaced nodes, x, = ifn, satisfies the inequality 

max ls'(x,)l <V3 n max ls(xi) -s(Xi-t)l. 
i 

The constant v3 cannot be improved. 

" Proof. Let s=Lf so that s= I fis'. We assume, without loss of 
i-1 
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generality, that max /It- /t-11 = 1. Since (s'~)'(xJ) =AJ-Hk, we can proceed 
as in the proof of Theorem 3, and obtain 

" " s'(xt)= 1 /tAJ-i+k= 1 FiA.i= 
i~1 i~1 

k k-1 
1 (Fi-Ft+I)ai+ 1 (F~c+i-Fk+i+I)a~c-t-1· 
i~1 i~1 

We obtain immediately the upper bound 

k-1 
ls'(xt)l<2 1lail= 

i~l 

= 2(A.k-1 + Ak-3 + ... + A.p), where p = 1 or p = 2. 

If n = 2k- 1 and k is odd, this upper bound is attained by the following 
extremal function: F~c-t = F1cH = 0 if i is even and - Fk-i = Fk+t = l if 
i E {1, 3, ... , k-2}. The proof of Theorem 4 is completed by establishing 
that 

and that the limit of the left hand side, as n = 2k- l and k = 1, 3, 5, ... , 
is !V3. These calculations, based upon the explicit formulas of A.i given 
in Lemma 1, are straightforward and hence omitted. 
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