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1. Introduction

The two basic questions an inventory manager usually answers are when and how much to order. Over the past decades,
many papers and books on inventory theory and management have been published presenting numerous models that
describe various conditions and assumptions [22]. Most of these models are based on the economic order/production quan-
tity (EOQ/EPQ) model developed by Harris [15].

EOQ-based inventory models minimize the sum of mainly two costs, which are the holding and the ordering costs. These
models assume that the input parameters and the decision variables are described as crisp values or having crisp statistical
distributions where their total inventory cost functions are minimized without ambiguity in the results. Although these
models provide some general understating of the behavior of inventory under different assumptions, they are not capable
of representing real-life situations. So, applying these models as they are, generally, leads to erroneous decisions. Further,
using these models require inventory managers to have some flexibility when deciding on the sizes of the order quantities
to reduce the cost of uncertainty. Hence, using fuzzy set theory to solve inventory problems, instead of the traditional prob-
ability theory, produces more accurate results (see for instance Guiffrida [13]).

Fuzzy set theory, introduced by Zadeh [29], has been receiving considerable attention from researchers in production and
inventory management (see for instance Guiffrida and Nagi, [14]), as well as in other fields. Here is a brief review of the lit-
erature. Sommer [24] applied a fuzzy dynamic programming approach to solve a production-inventory scheduling problem
with capacity constraints. Kacprzyk and Staniewski [17] investigated long-term inventory policy-making using fuzzy deci-
sion models for a multi-stage inventory planning problem. Park [21] proposed an EOQ model with the ordering and inven-
tory holding costs being trapezoidal fuzzy numbers. In his model, the mode and median rules were applied after scaling the
fuzzy cost inputs in conformance with the EOQ model. Roy and Maiti [23] transformed an EOQ model into a nonlinear
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programming problem after fuzzifying the objective function and the available storage space. Mandal and Maiti [20] pro-
posed a nonlinear fuzzy modeling for a multi-item EOQ model with ‘imprecise storage space’ and ‘number of production
run’ constraints where few input parameters were fuzzified. Yao and Chiang [28] developed an EOQ model with the total
demand and the unit carrying cost being triangular fuzzy numbers. They used the signed distance and the centroid as defuzz-
ification methods. Vijayan and Kumaran [27] considered inventory models with partial backorders and fuzzy stock-out peri-
ods. Chang [4] modified an EOQ model with imperfect quality items by fuzzyfying the defect and demand rates with no
shortages. Chang et al. [5] considered an EOQ model with triangular fuzzy backorder. Bjork and Carlsson [3] investigated
the effect of flexibility in lead times on the distributors’ performance in a supply chain. They handled the imprecision in lead
time using fuzzy sets. Bjork [2] fuzzified the decision variable, cycle time, in an EPQ model with no shortages. In a recent
paper, Bjork [1] investigated the EOQ model for demand and the lead time being triangular fuzzy numbers. A fairly extensive
review of the application of fuzzy sets to inventory management is provided in Guiffrida [13].

The literature review reveals that there is no EOQ model with an analytical solution that has both its input parameters
and decision variable(s) fuzzified, which is a limitation that this paper addresses. This paper chose a classic EOQ model that
has two decision variable; namely, the batch size and the maximum inventory level. It is unlike the work of Bjork [1] who
fuzzified one input parameters (demand) and one decision variable (maximum inventory level). Similar problems to that of
Bjork [1] and to the one in the paper are found in Chen and Wang [11], Chen et al. [12], Chen and Chang [7] and Vijayan and
Kumaran [26].

The next section, Section 2, provides a brief introduction and background to fuzzy set theory. This section is followed by a
brief introduction to the Kuhn-Tucker conditions and optimization method. Section 4 presents the mathematics for the crisp
case of an EOQ model with backorders. Section 5 presents the mathematics of the full-fuzzy version of the model described
in Section 4. Section 6 is for numerical examples and Section 7 is for summary and conclusions.

2. Fuzzy preliminaries

Fuzzy set theory has emerged as a powerful tool to quantitatively represent and manipulate the imprecision that some-
times governs the decision-making process. Fuzzy sets or fuzzy numbers can be used to encounter the imprecision by setting
the values of the input parameters to be functions of triangular or trapezoidal shapes [18]. Some basic definitions, taken from
[19,30], that are related to fuzzy set theory are briefly reviewed below for the interest of the readers.

Definition 1. A is a fuzzy set in a universe of discourse X. It is characterized by a membership function ~(x), which is
associated with each element x, where x is a real number in the interval [0, 1]. The function value ,u;(x) is termed as the grade
of membership of x in A.

Definition 2. The fuzzy set A of the universe of discourse X is convex, where u;(/lxl + (1 = 2)Xz) = min (,u;(xl ) ,u;(xz)) for
all x4, x, € X and for 1 €[0,1].

Definition 3. The fuzzy set A of the universe of discourse X is called a normal fuzzy set when 3x; € X, ,u;(xi) =1.

Definition 4. A fuzzy number is a fuzzy subset in the universe of discourse X that is both convex and normal.
A is said to be a trapezoidal fuzzy number represented by the crisp numbers (ay,as,ds,a4), where a; < a; < az < a4, when its
membership function is denoted as:

mx) == a1 <X <,
() = 1 4y <X <03, (1)
A n(x):% a3 < X < dy,
0 otherwise.

When a, = as, the trapezoidal fuzzy number described in Eq. (1) becomes a triangular, which is a special case of the first.
_ In this paper, the Function Principle Method, from [6], is used to simplify the model calculations. Now, define
A = (ay,a;2,03,0a4) and B = (by, by, b3, bs) as two trapezoidal fuzzy numbers with the following properties:

1. A +§ = ((11 +b1,a2 +b2,a3 +b3,a4 +b4)

INf ay, az, as, a4 and by, by, bs, by are all positive real numbers, then
2. A E = ((1]b1,(12bz7 (13b3,(14b4). _ ~

Let 4 be a real number, thgn for 2 > 0, 1A = (Laq,/a,, a3, 2a4) and A < 02A = (/aa, Aas, A0, 2a1)
3. E = (—b47 —bg, —b27 —bl), A— E = ((11 — b4,a2 — b3,03 — bz,a4 — b])

If ay, ay, as, a4 and by, by, bs, b4 are all positive real numbers, then

41— (1 1 1 1) A_ (u 6 g q
* B = \bs2b570;75; )7 B~ \byb37b, 7B )

The above principle also holds for trapezoidal fuzzy number.
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2.1. Graded mean integration (GMI) representation method

While most decision processes have some fuzzy properties, decision makers are more comfortable using crisp values in-
stead of fuzzy ones. Hence, a modeler should attempt converting fuzzy values into crisp. In order to defuzzify the fuzzy cost

function presented in a later section, the GMI representation method introduced by Chen and Hseih [8-10] is applied. As-
sume that A = (a1,a2,0as,0a4) is a trapezoidal fuzzy number as defined earlier and that m~!, n! are respectively the inverse
functions of m and n. Also, define the graded o-level value of A as w Then, the GMI representation of fuzzy number

A can be computed as
_ 1 a(m"(ac)Jrn’l(oc))da
19(A) — fO - 2
Jo ador

Substituting m~'(a) = a; + (a2 — a;)o and n~(a) = a4 — (a4 — as)o, which are trapezoidal fuzzy numbers, into Eq. (2),
reduces Eq. (2) to

_ /1 o(m (o) + 0 (@) do, 2)
0

1 of(a; +a4)+((ap+03) (a1 +04))9] dO{
2

ﬂ(ﬁ) - . fl ado
0

Since the triangular fuzzy number is a special case of the generalized trapezoidal fuzzy number when a, = as = a, then
from Eq. (1), the GMI representation of the triangular fuzzy number A(a;, ay,as;) becomes

((11 +2a, + 2as + (14) (3)

03\'—‘

:é(al +4a+ ay). (4)

J(A)
3. The Kuhn-Tucker conditions
Kuhn-Tucker (KKT) conditions is a method of finding optimal solutions for nonlinear programming problems (with dif-
ferentiable functions). Readers may refer to Taha [25] and Hillier and Liberman [16] for details. The basic result of the KKT
conditions is embodied in the following theorem [16]:

Theorem 1. Assume that an objective function f(X) and the constraints g;(X), g2(X), . ..,.g{(X) are differentiable satisfying certain

regularity conditions. Then X* = (x;,x3,...,x;) is the optimal solution for the nonlinear programming problem only if there exists r
numbers i, Ay, ...,Ar such that all the following conditions are satisfied: f " ,g’f' Oatx=x*forj=1,2, ..,s
*(af S :ﬁf):o' atx=x"forj=1,2,...,s
2.8(x)"—bi<0 fori=1,2,...,r1.
3. 7i(gix)"—b;)=0 fori=1,2,...,r1.
4.x 20 forj=1,2,...,s.
4 =0 fori=1,2,...,r.

4. The EOQ model with backorders

The EOQ model with planned shortages (EOQ-S), or backorders, is perhaps the first extension of the model of Harris
(EOQ). The behavior of inventory for this model is depicted in Fig. 1.
The cost function for the EOQ-S is given as
KD M?h (y—M)?
KD Mh_(y-M)p
2y 2y
where y is the batch size (in units), M is the maximum inventory level (just after replenishment and measured in units), K is

the fixed cost per order, D is the demand rate (units per unit of time), h is the unit holding cost per unit per unit of time, and p
is the penalty cost due to shortages per unit per unit of time. The optimal values of y and M are computed using differential

calculus as
- 6)

h
(h+ KD(h+ 2KD 2KD
V=M < ) ¢ P)_ e (7)

TCU(y,M) (5)
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Inventory Level

} y-M Time

Fig. 1. The behavior of the inventory model.

Eq. (7) reduces to the EOQ formula in [15] as p approaches a very large value; i.e.,

— lim [2KD( h + p /2KD (8)
p—oo

5. Fuzzy Modeling of the EOQ model with backorders

In this section, the model presented in Section 4 is fully fuzzified; i.e., by fuzzifying the input parameters (K, D, h and p)
and the decision variables (y and M).
Assume now that each input parameter is a trapezoidal fuzzy number consisting of four components as:
Order cost : K = (K —81,K — 65, K + 53, K + 84),
Demand rate: D = (D —d5,D — 8s,D + 67,D + 3s),
Holdlrlg cost : Fl: (h*b‘g,h*510,h+5]]7h+512),

Penalty cost: p = (p— 13,p — d14,D + 15,D + 16),

where §;,i=1, 2, ..., 16, is the amount by which a parameter arbitrarily deviates (above or below) from its base value such
that 61 > 93, 03 < 84, 05 > g, 7 < dg, dg9 > 010, 611 < 012, 013 < J14, 015 < J16. Also assume that the decision variables are too fuzz-

ified according to the trapezoidal rule as
Maximum inventory level : M = M=y ,M=7,,M+7y3,M+7,),
Batch size: y=(y— A1,y — A2,y + A3,y + Ag),

where 7;>0,i=1,2,3,4,A;>0,i=1, 2, 3, 4, where y; > 7, 73 <74, A1 > Ay, A3 < A4 The values of ;, y; and A; are determined
by the inventory system’s decision maker. The full-fuzzy form of the annual inventory cost function in Eq. (5) is given as

. KD hM?2  (7-M)’p KD  (h+pM> §. =
TCU(y, M) = 2y T*TJFT 5P~ Mp, 9)
where

KD _ ((1@51)(1)7(55) (K — 8)(D — d6) (K + 3)(D + 87) (K+64)(D+<58)> 10)
y Y+ Aq ' y+As ' y—~4; ' y-»~N ’

- M2

(h+P) 55

_ ([(h=59)+(p = 6:12)[(M=,)* [(h=510) + (P = 310)|(M = 7,)* [(h+11) + (P+615)|(M+75)* [(h+0612) + (P +616)|(M+7,)°

2y +As) ’ 2(y+4s) ’ 2y-4) ’ 2(y— A1) ’

(11)
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y. /1 1 1 1
30= (30 =800~ 613). 50/~ AP~ 01), 50 +A3)(p+615). 5V + AP+ 1) ). (12)

—Mp = (—(M+7,)(p — 013), —(M+73)(p — d14), —(M = 7,)(p+ d15), —(M —7,)(P + d16)). (13)
Substituting Eqgs. (10)-(13) in Eq. (9), the fuzzy cost function is represented as

TCU(y,M) = (C1,Cs,C3,Cy),

where

_ (K=01)(D—0s5)  [(h—0d9)+ (p—d13)|(M— V)

ey v S .V R 20— AP~ 013) — (M4 7)(p — o13)
_(K—02)(D—d6)  [(h—d10) + (p—014)](M —7y ) ,

C=""h R : (y 82)(p = 814) = (M +73)(P — d14)

N . h . . 2 )
¢, = Qo) (O o) Z B QM) 4 2y + 8a)p + d1s) — (M - 23)(p + )
h 2
Cae (K +j4_)(§]+ J3) n [(h+ 612) *‘28 -i_- il]G))](M'f‘ Va) +%(y + AP+ b16) — (M= 7,)(p + re),

where C;, G, C3 and C4 are components of trapezoidal fuzzy numbers.
To defuzzify the all-fuzzy annual inventory cost function, the GMI method is applied as:

Y(TCU, M) :% (K—01)(D—d5)  [(h =)+ (p — 313)]My

2)’1 (P — 013) — Ma(p — d13)

V4 2y,
2[(K—6,)(D—56) [(h—610)+ (p— 514)] M2 _ 1
+6 - v, + 2, +2J’2(P o1a) — Ms(p 514)_
2[(K+353)(D+0 h+s +4 M 3
L2 ( 3)( 7)+[( 11) + (P + d15)] y (p + 615) — Ma(p + 615)
6| V2 2y, J
1[(K+6)(D+0 h+o o) M2 1 i ]
1 (K +4)(D + s)+[( 12) + (P + d16)] 4 4 2y4(p+ 016) — Mi(p + d16) |, (14)
6 2 2y, 2 ]

where 0 <M; <M, <Mz <Mgand 0<y; <Y2<Y3<Va
Thus, the optimal solution of ﬁ(TCU(y M)) given in Eq. (14), subject to the following inequality constraints:

M; -M; <0, M -M;<0, M3-My<0, -M;<0
and
Vi=Y2<0, y,-y3<0, y3-y,<0, -y, <0

The Kuhn-Tucker conditions were used to find the optimal solution of 9(TCU(¥, M)) subject to eight inequalities as im-
posed conditions. Kuhn-Tucker conditions based on Theorem 1 are:

1 <[(h —00)+ (P - oMy ) 516)> Uyt <0, (15.1)
6 2

<[(h d10) + (P —0w)lMa 5 ) Uy < (15.2)
6 Y3
2 ([(h+611) + (p+ d15) ]M3 )
it 14) |+ —u 153
6 ( v, (P — 614 2 3 < ( )
1 /[(h+012) +(p+ 016)]Ms >
i o13) ) +u 154
6 < v, (p—d13 3 < ( )
1 1 (K+8)(D+3s) [(h+6)+(p+oe)IME|
15 (P —0) +5 V2 27 us + ug <0, (15.5)
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1 2| (K+8)(D+56 h+s 515)| M2
sP—bu)+5 B, 3}); o) [0 ”)J;JSQH 3IMs 1L s s <0, (15.6)
2 2
1 2| (K=8)D-56 h = 610) + (p — 614)|M>
g(p+oms) + L 2}),5 6) _ [(h—w) 2555 15Mz| L s —uy <0, (15.7)
3 3
1 1| (K-6)(D=6 - — 513)|M?
5P +0) + 5 {( bl;g %) _[(h=2) 2;’2 oM}y, <o, (15.8)
4 4
M; x %([(h %) ;f_‘s”)wl —(p- 513)> - +u4} =0, (15.9)
M, x %(Kh O10) yip )Mz 614>+u1—u2} —0, (15.10)
Ms x %(Kh ou1) y(2p+515) —(p+d15 ) + Uy —U3} =0, (15.11)
M x %([(h S12) y(p+<>16) (0 + 1) ) +u2,u3} 0, (15.12)
L 1
1 1( (K+65)(D+6 h+6 + 816)]M?
Jx 12@,5””6(( 4;( 5) [(h+1) 2)(5 16)] ) s tus| =0, (15.13)
L 1 1
1 2( (K+85)D+6 h+o b
Vo X 6(p—514)+6<—( * 33)/2 1) [+ o) Zy’” 15)] )+u5—u5] =0, (15.14)
L 2 2
1 2( (K-3)D-3 h—o P
Vs % g(p+515) = <_( 2)( 6) 10) 2yp 14)] > " —W} _o, (15.15)
3
'1 2( (K-5) fos h—6 B
Y4 X |75 P+(316 6 ( ) 5) [ ) Zyp 13) ) Ug — U7} =0, (15.16)
4
M; -~ M, <0, i=1,2,3 (15.17)
-M,; <0, (15.18)
yi_yi+]<0’ i:17273a (1519)
—y, <0, (15.20)
u(M; —Mi.1) =0, i=1,2,3, (15.21)
Uy — My =0, (15.22)
Uy (Vi —¥in)0, 1=1,2,3, (15.23)
ug —y; =0, (15.24)
Mi>0, y,>20, i=1,2,3,4 anduy; >0, j=1,...,8. (15.25)

From constraints (15-18) and (15-22), we have M; > 0 and u4 — M; = 0, implying that u, = 0. If u; = 4+ = 0 in (15-21) and
(15-23), respectively, then 0<M; <M, < M3 < My. Hence, M;=M,, M,=M3; and M3=M, in Eq. (15-19) suggesting
M, = My = M3 = M4 = M*. Since y; >0 then from constraint (15-24), ug=0. If uy.; =0, then 0<y; <y, <¥3 < y4 Therefore,
Y1=Y2, Y2 =Yy3 and y3 =y, that y, =y, = y3 =y, = y* With these interpretations, the solution of the model is determined by
solving Eqs. (15-1)-(15-25) as:

¥ :(h*fie)+2(h*510)+2(h+f5n)+(h+f5‘lz)+(1’*513‘)+2( —014) +2(p+15) + (P + di6)
(p—013) +2(p—014) +2(p+015) + (P +d16)
_ 20K —61)(D—65) +4(K = 6,)(D — ) +4(K +5)(D+97) +2(K + 34) (D +03)] x L(pjélz)+2§p7<314>+2<p+<515)+(g3+5,e)] _ (16)
[(h=09)+2(h—0d10) +2(h+011) + (h+612) + (P — 013) + 2(p — d14) + 2(p + d15) + (P + 016)] x [(h— o) +2(h = 010) + 2(R+ 011) + (h+012)]

y= [2(K—61)(D—65) +4(K —62)(D — 06) +4(K+03)(D+67) + 2(K+ 64) (D + 03)] x [(h—d9) + (P — 613) + 2(h — d10) + 2(p — 014) + 2(h + 011) + 2(p + 015) + (h+ 612) + (P + S16)]
[(h—09) +2(h—d10) +2(h+011) + (h+12)] X [(P = 013) +2(P — 014) +2(P+ 15) + (P + 016)] )

M,

(17)

Note that when substituting for y;=0,i=1, 2,3,4,A;=0,i=1,2,3,4,and §;=0,i=1, 2, ..., 16, in Egs. (16) and (17) they
reduce to Eqgs. (6) and (7), respectively. With some modifications, the above model can be used for the case when the input
parameters and decision variables are triangular fuzzy numbers as: K= (K= 061,K,K + 04), D= (D—6s5,D,D + 58)f1 =
(h—d9,h,h 4 612)p = (p — 013,P,P + d16), M= (M —7,M,M +7,) and y = (y —A1,y,y +As) where k>3;, D>Js, h>Js,
p > d13, M>vq, and y > A;. The triangular fuzzy forms of Eqs. (16) and (17) are then given as:

o JRK=31)(D —b5) + 2(K — 54)(D + 39) + 8KD] x [(h — 39) & (h + 612) + (P —b13) + (P +016) B4 P)] 1,
[(h —d9) + (h+ 612) +4h] x [(p — 613) + (P + d16) + 4D ’
2(K — 01)(D — 65) + 2(K + 64)(D + J9) + 8KDJ] x [(p — 013) + (P + 16) + 4P (19)

[h d9) + (h+d12) + (P — d13) + (P + 016) + 4(h + p)] x [(h = do) + (h + b12) + 4h]’
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6. Numerical examples

In this section, numerical examples are presented to illustrate the behavior of the model developed in Section 5 with the
results compared to those of the crisp case using the parameters in Bjork [1].

Consider an inventory situation with crisp parameters having the following values (from Bjork [1]): D=50,000 kg/year,
C=1 Euro/kg (purchase price per each unit), h =% 25 of the purchase price, K =200 Euros in each purchase, p=5 Euros/kg
in a year. According to Bjork [1, Table 2], the optimal order quantity, the optimal maximum inventory and the optimal total
cost for this inventory system are y* = 9165.15, M* = 8728.72 and TCU* = 2128.18 respectively. In Tables 1 and 2, we set some
trapezoidal fuzzy numbers of the input parameters (K, D, h,p) only, a special case of the model developed in Section 5, to test
the model. For each of these parameters, the variations in the values are arranged arbitrary and their defuzzified values are
determined by applying the GMI method are shown in the second and fifth columns of Tables 1 and 2. Furthermore, the third
and sixth columns in these tables display the percentage difference between the optimal crisp and fuzzy cost values. Based
on these values from Egs. (16) and (17), we can ascertain these two optimal policies for each set of trapezoidal fuzzy num-
bers. The results are summarized in Table 3.

In Table 3, columns 2 and 4 present the difference in the optimal values of the decision variables, y* and M*, between the
fuzzy and the crisp cases, which were found to be identical. The range of change for the input parameters was set to be —30
to + 30% corresponding to a change in the TCU* value (computed from (15)) ranging from —34.5 to 58.69%. This shows that
assuming crisp values can lead to erroneous inventory policies that may be a cause in business failure. This also suggests that
using fuzzy theory may help in reducing the uncertainty that governs setting some of the input parameters (e.g., holding and
stock-out costs). The advantage of the non-classical approach of using fuzzy sets to model and analyze inventory systems
have been discussed in Guiffrida [13]. The results in Table 3 show that the model is more sensitive to negative levels of fuzz-
iness. For example, a —30% in the values of the input parameters results in a reduction in the y* and M* values of —3.01%,
corresponding to a reduction in the TCU* value of —34.5%, whereas an increase of 20.8% in the value of y*(M*) increases
the TCU* value by 58.69%; i.e., —34.5/—3.01 = 11.46 > 58.69/20.8 = 2.82. Furthermore, a simple linear regression analysis
was performed and we found that the change in TCU* (ATCU*) increased linearly; i.e., ATCU* = —0.1614 + 0.3994 x Ay*
where R?=97.7%. Similarly, the Ay* increased linearly as the fuzziness of the input parameter (K,Dh,p) increased;
Ay* =0.06775 + 0.4125 x A (K,Dh,p) where R? = 94.2%. These linear relationships may help develop simpler fuzzy inventory
models that managers can implement and interpret their results easily.

The results in Table 4 were reproduced form Tables 1 and 2 where triangular fuzzy numbers were used instead of the
trapezoidal ones. Similar to the previous analysis, a simple linear regression analysis was performed and we found
ATCU* = —0.0249 + 1.877* AM* where R? = 81.4%, and a poor linear relationship (R? < 40%) between ATCU* and Ay*. Compar-
ing the results in Tables 3 and 5, shows that ATCU* is more sensitive (ATCU* in Table 5; from —34.5 to 58.69%) to A(K,Dh,p)
(from —30 to +30) for triangular than it is for trapezoidal fuzzy number (ATCU* in Table 5; from —9.28 to 26.59%). Fuzzifying
the decision variables produced almost identical results to those presented above.

Table 1

Fuzzy trapezoidal values for the input parameters K and D.
K I(K) Change (%) D ¥(D) Change (%)
(20,90,210,220) 140 -30 (5000, 18000,50500,68000) 35000 -30
(60,110,220,240) 160 -20 (12000, 22000,53000,78000) 40000 -20
(120,130,230,260) 180 -10 (20000, 35000,55000,70000) 45000 -10
(100,140,240,280) 190 -5 (32000,34000,60000,65000) 47500 -5
(145,170,250,275) 210 5 (30000, 35000,70000,75000) 52500 5
(150,180,255,300) 220 10 (29000,41000,63000,93000) 55000 10
(150,185,295,330) 240 20 (42000,47000,75000,94000) 60000 20
(185,195,300,385) 260 30 (33000,42000,81000,111000) 65000 30

Table 2

Fuzzy trapezoidal values for the input parameters h and p.
h d(h) Change (%) p J(p) Change (%)
(0.05,0.07,0.26,0.34) 0.1750 -30 (0.5,1.5,5.6,6.5) 3.500 -30
(0.06,0.12,0.27,0.36) 0.2000 -20 (1,2,5.7,7.6) 4.000 -20
(0.11,0.13,0.3,0.38) 0.2250 -10 (1.5,3,6,7.5) 4.500 -10
(0.09,0.2,0.28,0.375) 0.2375 -5 (2.6,3.4,6.3,6.5) 4.750 -5
(0.1,0.15,0.35,0.475) 0.2625 5 (2.4,4.1,6.2,8.5) 5.250 5
(0.13,0.17,0.33,0.52) 0.2750 10 (3.6,4.2,6.3,8.4) 5.500 10
(0.16,0.21,0.4,0.42) 0.3000 20 (3.7,4.1,7.1,9.9) 6.000 20
(

0.18,0.22,0.43,0.47) 0.3550 30 (4,4.6,8.1,9.6) 6.500 30
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Table 3
The change in optimal policy from the crisp case using the trapezoidal fuzzy number in Tables 1 and 2.
y* Change in y* (%) M* Change in M* (%) TCU* Change in TCU* (%)
8889.32 -3.01 8466.02 -3.01 756.28 —34.5
9126.88 -0.42 8692.27 -0.42 1738.46 -2033
9249.62 0.92 88091.17 0.92 1982.79 -9.14
9381.28 2.36 8934.55 2.36 2121.98 -2.76
9789.45 6.81 9323.29 6.81 2472.75 13.31
10036.12 9.5 9558.21 9.5 2619.46 20.03
10744.92 17.24 10233.26 17.24 3069.89 40.68
11071.38 20.8 10544.17 20.8 3426.84 58.69
Table 4
Triangular fuzzy numbers corresponding to trapezoidal fuzzy number.
K D h p
(20,200,220) (5000,50,000,68,000) (0.05,0.25,0.34) (0.5,5,6.5)
(60,200,240) (12,000,50,000,78000) (0.06,0.25,0.36) (1,5,7.6)
(120,200,260) (20,000,50,000,70,000) (0.11,0.25,0.38) (1.5,5,7.5)
(100,200,280) (32,000,50,000,65,000) (0.09,0.25,0.375) (2.6,5,6.5)
(145,200,275) (30,000,50,000,75000) (0.1,0.25,0.475) (2.4,5,8.5)
(150,200,300) (29,000,50,000,93,000) (0.13,0.25,0.52) (3.6,5,8.4)
(150,200,330) (42,000,50,000,94,000) (0.16,0.25,0.42) (3.7,5,9.9)
(185,200,385) (33,000,50,000,111,000) (0.18,0.25,0.47) (4,5,9.6)
Table 5
Optimal policy by using triangular fuzzy number.
y* Change in Y* (%) M* Change in M* (%) TCU* Change in TCU* (%)
12038.25 31.35 8680.1 -0.56 1979.75 -9.28
12220.74 33.34 8930.75 2.26 2114.36 3.11
12017.68 31.12 8795.86 0.71 2184.55 0.11
12197.45 33.09 8933.36 2.34 2180.84 -0.99
11949.34 30.38 8860.38 1.51 2325.62 6.57
12229.59 33.44 9125.87 4.55 2506.17 14.85
12792.45 39.58 9668.70 10.77 2532.30 16.04
13426.69 46.50 10131.35 16.07 2762.41 26.59

7. Summary and conclusions

In this paper, an inventory model with planned backorder with fuzzy parameters and decision variables was developed.
The model was solved for triangular and trapezoidal fuzzy numbers using Kuhn-Tucker conditions. The results showed that
the changes in the values of the decision variables (the maximum inventory level and the batch size) to changes in the costs
between the crisp (deterministic) and fuzzy cases demonstrated a linear relationship. That is, increasing the values of the
decision variables increases the difference in the cost between the crisp and the fuzzy case linearly. This may be an entice-
ment to benefit from this relationship and develop simpler fuzzy inventory models that can be easily utilized by managers.
The results also showed that the cost and the values of the decision variables were more sensitive to changes in the input
parameters when triangular fuzzy numbers were used. The full-fuzzy approach presented in this paper could be applied to
other inventory models with crisp and/or fuzzy conditions. For example, applying the full-fuzzy approach to the works of
Chang et al. [5], Bjork [2] and Bjork and Carlsson [3] would be interesting immediate extensions.

References

[1] K.-M. Bjork, An analytical solution to a fuzzy economic order quantity problem, International Journal of Approximate Reasoning 50 (2009) 485-493.

[2] K.-M. Bjork, The economic production quantity problem with a finite production rate and fuzzy cycle time, in: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, 2008, pp. 68-77.

[3] K.-M. Bjork, C. Carlsson, The outcome of imprecise lead times on the distributors, in: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS’05), 2005, p. 81a (10 pp.).

[4] H.-C. Chang, An application of fuzzy sets theory to the EOQ model with imperfect quality items, Computers & Operations Research 31 (2004) 2079-
2092.

[5] S.-C. Chang, J.-S. Yao, H.-M. Lee, Economic reorder point for fuzzy backorder quantity, European Journal of Operational Research 109 (1998) 183-202.

[6] S.-H. Chen, Operations on fuzzy numbers with function principle, Tamkang Journal of Management Sciences 6 (1) (1985) 13-26.



972 N. Kazemi et al./International Journal of Approximate Reasoning 51 (2010) 964-972

[7] S.-H. Chen, S.-M. Chang, Optimization of fuzzy production inventory model with unrepairable defective products, International Journal of Production
Economics 113 (2008) 887-894.
[8] S.-H. Chen, C.-H. Hseih, Graded mean integration representation of generalized fuzzy number, Journal of Chinese Fuzzy Systems 5 (1999) 1-7.
[9] S.-H. Chen, C.-H. Hseih, Graded mean integration representation of generalized fuzzy numbers, in: Proceedings of the Sixth Conference on Fuzzy Theory
and Its Applications, Chinese Fuzzy Systems Association, Taiwan, 1998, pp. 1-6.
[10] S.-H. Chen, C.-H. Hseih, Representation, ranking, distance, and similarity of L-R type fuzzy number and application, Australian Journal of Intelligent
Processing Systems 6 (2000) 217-229.
[11] S.-H. Chen, C.-C. Wang, Fuzzy economic production quantity model for items with imperfect quality, International Journal of Innovative Computing,
Information and Control 3 (2007) 85-95.
[12] S.-H. Chen, S.-T. Wang, S.-M. Chang, Optimization of fuzzy production inventory model with repairable defective products under crisp or fuzzy
production quantity, International Journal of Operations Research 2 (2005) 31-37.
[13] A.L. Guiffrida, Fuzzy inventory models, in: M.Y. Jaber (Ed.), Inventory Management: Non-Classical Views, CRC Press, FL, Boca Raton, pp. 173-190
(Chapter 8).
[14] A.L. Guiffrida, R. Nagi, Fuzzy set theory applications in production management research: a literature survey, Journal of Intelligent Manufacturing 9
(1988) 39-56.
[15] F.W. Harris, How many parts to make at once, Factory, The Magazine of Management 10 (1913) 135-136. 152. Reprinted in: Operations Research 38
(1990) 947-950.
[16] E.S. Hillier, G.J. Lieberman, Introduction to Operations Research, McGraw-Hill, USA, 2001.
[17] J. Kacprzyk, P. Staniewski, Long-term inventory policymaking through fuzzy decision-making models, Fuzzy Sets and Systems 8 (1982) 117-132.
[18] C. Kahraman, M. Giilbay, O. Kabak, Applications of Fuzzy Sets in Industrial Engineering: A Topical Classification, Springer StudFuzz 201 (2006) 1-55.
[19] A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand Reinhold, New York, 1985.
[20] S. Mandal, M. Maiti, Multi-item fuzzy EOQ models using genetic algorithm, Computers and Industrial Engineering 44 (2003) 105-117.
[21] K. Park, Fuzzy-set theoretic interpretation of economic order quantity, I[EEE Transactions on Systems, Man and Cybernetics 17 (1987) 1082-1084.
[22] D.W. Pentico, M. Drake, The deterministic EOQ with partial backordering: a new approach, European Journal of Operational Research 194 (2009) 102-
113.
[23] T.K. Roy, M.A. Maiti, Fuzzy EOQ model with demand dependent unit cost under limited storage capacity, European Journal of Operational Research 99
(1997) 425-432.
[24] G. Sommer, Fuzzy inventory scheduling, in: G. Lasker (Ed.), Applied Systems and Cybernetics, Pergamon Press, New York, 1981, pp. 3052-3060.
[25] H.A. Taha, Operations Research, Prentice Hall, New Jersey, USA, 1997.
[26] T.Vijayan, M. Kumaran, Fuzzy economic order time models with random demand, International Journal of Approximate Reasoning 50 (2009) 529-540.
[27] T. Vijayan, M. Kumaran, Inventory models with a mixture of backorders and lost sales under fuzzy cost, European Journal of Operational Research 189
(2008) 105-119.
[28] J.-S. Yao, J. Chiang, Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance, European
Journal of Operational Research 148 (2003) 401-409.
[29] L. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-356.
[30] H.-J. Zimmermann, Fuzzy Set Theory and its Applications, second ed., Kluwer Academic Publishers, Boston, Dordrecht, London, 1991.



	An inventory model with backorders with fuzzy parameters  and decision variables
	Introduction
	Fuzzy preliminaries
	Graded mean integration (GMI) representation method

	The Kuhn–Tucker conditions
	The EOQ model with backorders
	Fuzzy Modeling of the EOQ model with backorders
	Numerical examples
	Summary and conclusions
	References


