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Abstract-we Introduce a new numerical method mspuxd m the cellular automata methodology 
to study the transnusslon of waves m two-chmenslonal sohds The stalxhty of the second-order 
method IS mvestlgated and compared with that of a classIca fimte chfferences method for both wave 

and elastic equations @ 2001 Elsevler Science Ltd All rights reserved 
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1. INTRODUCTION 

In recent, years, the interest m understanding the inner phenomena that occur when stress waves 

propagate along materials has grown dramatically This 1s mainly due to the rise of apphcatlons 

m civil and military engineering and the mvestlgatlons m new materials [l-3] Moreover, geo- 

physlclsts need to understand how selsmlc signals travel through different paths to mvestlgate 

the inner structure of the Earth [4,5] This 1s an example of what 1s known as an inverse problem 

For many years, it has been well known how acoustic waves propagate along a homogeneous 

plate Although the acoustic wave equation 1s a slmphficatlon of the phenomena concerned m 

real materials, it actually 1s a good workbench to probe the sultablhty of a numerical method 

In Section 2, the stablhty of the proposed hexagonal method will be compared with the stability 

of the standard exphclt, square-cell method m the slmulatlon of the 2D wave equation In Sec- 

tion 3, we propose a hexagonal dlscretlsatlon for the elastic equation Finally, some conclustons 

are summarized m Section 4 

2. SIMULATION OF THE WAVE EQUATION 

The solutions of the 2D wave equation can be analytically derived The solutions obtained 

with our scheme will be compared with those obtained by means of a conventional exphclt square 

scheme 
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2.1. The Wave Equation 

The basrc governmg equation for a taut membrane under m-plane tension that describes the 

motion of small deflectrons normal to the membrane 1s the 2D wave equation 

a24 - = c2v2(p = c2 
at2 ($+g$), (1) 

where c represents the propagatron velocity along the membrane and C$ 1s the displacement along 

the normal to the membrane 

A plane wave propagating along the plane m the posrtrve z drrectron takes the form 

$(2, y, t) = f(z) ez(Ez-wt) (2) 

It 1s easily shown that the propagation velocity c 1s independent of the frequency w This 
means that for a grven disturbance, rt propagates without drstortron along the membrane 

2.2. Square Discretisation 

First, the conventronal exphcrt square drscretrsatron of a 2D wave equation 1s studied It 
corresponds to the tessellatron shown m Fr 
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(b) Hexagonal computatlonal molecules 

derrvatrve 1s drscretrsed m the usual exphcrt form 

824 un+r - 2,rJn + un-1 

FM 72 ’ (3) 

where r IS the time stepsrze and un IS the estimated value of the function 4 m the instant n r 

In order to approxrmate the Laplacian operator, a centered discrete scheme will be used, wrth h 
bemg the spatial stepsrze 

UE+UN+UW+Us-$,k h2 ) (4) 

where ?_$k represents the discrete value of the function 4 at coordmates (3 h, k h) Then the 

whole drscretrzatron rule of the wave equation 1s written as 

2 
un+l = 2Un 

j,k jtk - Uy+ c”$ (ug + ug + u& + u; - 4UFk) (5) 

From this iteration rule, by applying the VonNeumann method for stabrhty analysis, we find 
the well-known stab&y condrtron - 

7 < ,-l/2 
h- 2 (6) 
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2.3. Hexagonal Scheme 

Most two-drmensronal numerical methods use square grids for srmphcrty reasons However, the 

mam drsadvantage of these methods IS then mtrmsrc numerical amsotropy [6] Thus amsotropy 

appears, for example, m the srmulatron of a KdV equatron, 1s mherent to the square scheme, 

and cannot be avoided with a finer grid Hexagonal schemes, on the other hand, show a hrgher 

isotropy 

2.3.1. Discretisation 

The drscretrsatron of the wave equation can be obtamed from a Taylor expansion of the Lapla- 

clan operator 

(&+$)= (2/3) (213 + ‘LLNE + ‘llNW + UW + USW + ‘USE) - dt$,k 

h2 (7) 

The computatronal molecule 1s shown m Figure lb The space of srmulatron 1s drvrded mto 

regular hexagons and the magnitude 4 1s measured at the center of each element 

The drscretrsatron of the temporal derivative 1s srmrlar to (3), so the Iteration formula we are 

using is 

u,“;l = 2?& - u;ir + c 
2r2 2 

p 
[ 
3 (u; + u& + ukw + u?& + u&v + u&) - 4uj,knn 1 (8) 

2.3.2. Stability of the numerical scheme 

It 1s of interest to evaluate the stability condrtron of the previous scheme as a functron of the 

drscretrsatron parameters 7 and h 

Assummg that the solutron of (1) can be expressed by a Fourier expansion with separated time 

and space variables, a general term of the series can be written as 

4(x, y, t) = ezax ezPy ezwt 

= ewh ezokh etwnr (9) 

We substrtute this solutron m (8), and taking mto account the followmg relatrons 

Un = ezahun 
E 3,k’ 

g& = ,wbhe~(~12)mu” 
j>k, 

uEw = e-w)ahe4 dv2)Ohun 

jtk’ (10) 
n _ uW-e -aah n 

%kr 
u;w = e-~(1/2bhe-~( &i/2)&p 

j,kr 
$n = et(r/2)ahe-z( @)8hun 

J,k, 

and rearranging terms, we obtam 

or 

u;zl + u;,l = { 2 + c2; [; (ezah + e--2ah + eW’)~he~(~/2)~h 

+,-41/2)ahe@/2)ph + e-z(1/2)ahe-z(d/2)Bh 

= (ezwr + e--lwT) uFk 

(11) 

2r2 2 
2COS(WT) =2+c 77 3 

[( 
2cos@h)+4cos(joh)cos(+3h)) -41 (12) 

Since -1 5 cos(wr) 5 1, then 

2 1 
-1 2 1 +c2$ 3 

[( 
2cos(ah) +4cos (+) cos @Oh)) -21 51, (13) 
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and we get 

-6 5 c2$ (s - 6) 5 0, (14 

where 

s = 2cos(ah) +4cos (&A) COS ($Bh) (15) 

The extrema of the function ~(a,@) are 

max (s) = 6, (16) 

mm(s) = -3 (17) 

From (16), it 1s found that the right-hand mequahty m (14) 1s always satisfied From the 

left-hand inequity and (17), 

-6<c2$-3-6), 

and therefore, 

r2 2 
c2-<- 

h2 - 3 

Finally, the hexagonal scheme 1s stable If 

which compares favourably with (6) 

(19) 

3. ELASTIC 2D EQUATION 

The wave equation studied m the previous section describes wave propagation m a medium 

that cannot sustain finite shear stress, such as fluids or membranes vibrating normally to their 

surface In general 2D solids, however, two kmds of waves can exist propagating simultaneously 

dllatatlonal (primary) waves and shear (secondary) waves These waves propagate with different 

velocltles and It 1s known that when a wave of either type reaches a boundary or dlscontmulty 

m the solid, waves of both types are generated 

In Cartesian coordmates, the 2D elastic equation can be written as [7] 

p$=(h+Pp)$+p$+(h+p)* 
dxdy ’ 

p$$$+(X+2p)g+(X+IL)* 

(21) 

axay ’ 

where 4, $J are the displacements along x and y dlrectlons, p 1s the material density, and A, P 

are the Lame parameters 

3.1. Hexagonal Scheme 

Equation (21) 1s approximated usmg a hexagonal tessellation 
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3.1.1. Hexagonal discretisation 

The temporal derlvatlve 1s agam approximated as (3) The spatial derlvatlves are approximated 

by the followmg formulae 

= $ [--Ao~~,lc + AI(~NE+uNW+U~~+U~E) 

+ A~(uE +~w)+~I(~NE - vow +vsw -vsE)], 

= $ [--Aov3,1e +& (VNE+~NW+~SW +VSE) 

(22) 

(23) 

+ B2 (VE +WV) +G(UNE - UNW +USW -USE)], 

with the coefficients 

A0 = 2X + 6/_~, A =?!! 
1 

3’ 
A = 3x + 5p 
2- 

3 ’ 
(24) 

B 
1 

= 2x+4~ 
-1 

3 
B2=P-X 

3 ’ 
Cl = s 

These coefficients have been obtamed after a Taylor expansion and ensure a truncation error 

of O(P) 

Hence, the lteratlon formulae used m the scheme are written as 

(25) 

3.1.2. Numerical stability 

By means of a method of VonNeumann slmllar to the method used m the previous section, 

the followmg stablhty condltlon 1s obtained 

This condltlon has been numerically tested, and when compared with stablhty condltlons 

obtained by other methods [8], it 1s seen that (26) represents a less restrictive condltlon In 

particular, using the same number of nodes m the (2,2)-order method of [8] and m our scheme, 

the last one allows us to increase the time stepslze by a factor of fly 1 32 

4. CONCLUSIONS 

An exphclt numerical scheme has been proposed for the approxlmatlon of the 2D elastic equa- 

tion over a hexagonal tessellation 

Numerical stability and isotropy are enhanced with a similar computational work when com- 

pared with the standard numerlcal methods In the slmulatlon of heterogeneous and random 

media, the proposed method shows excellent behavlour with regard to stablhty and isotropy To 
the best of our knowledge, equation (26) 1s the least restrlctlve condltlon for an exphclt fimte 

difference method for the 2D elastic equation 

Moreover, the same techmques which are apphed to other usual numerical schemes (automatic 

lefinmg, multlgrld, etc ) can hkely be used m this new family of numerical schemes based on 
hexagonal tessellation 

Other equations, such as the nonlinear 2D+l Sine-Gordon equation, are currently bemg mves- 
tlgated by means of similar methods based on hexagonal schemes 
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