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Abstract—We introduce a new numerical method inspired 1n the cellular automata methodology
to study the transmussion of waves mn two-dimensional solids The stability of the second-order
method 1s investigated and compared with that of a classical fimite differences method for both wave
and elastic equations © 2001 Elsevier Science Ltd All rights reserved
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1. INTRODUCTION

In recent years, the interest 1n understanding the mner phenomena that occur when stress waves
propagate along materials has grown dramatically This 1s mainly due to the rise of applications
m civil and military engineering and the investigations in new materials [1-3] Moreover, geo-
physicists need to understand how seismic signals travel through different paths to investigate
the nner structure of the Earth [4,5] This 1s an example of what 1s known as an mverse problem

For many years, 1t has been well known how acoustic waves propagate along a homogeneous
plate Although the acoustic wave equation 1s a simplfication of the phenomena concerned n
real materials, it actually 1s a good workbench to probe the suitability of a numerical method

In Section 2, the stability of the proposed hexagonal method will be compared with the stability
of the standard explcit square-cell method in the simulation of the 2D wave equation In Sec-
tion 3, we propose a hexagonal discretisation for the elastic equation Finally, some conclusions
are summarized n Section 4

2. SIMULATION OF THE WAVE EQUATION

The solutions of the 2D wave equation can be analytically derived The solutions obtained
with our scheme will be compared with those obtained by means of a conventional explicit square
scheme
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2.1. The Wave Equation

The basic governing equation for a taut membrane under in-plane tension that describes the
motion of small deflections normal to the membrane 1s the 2D wave equation
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where c represents the propagation velocity along the membrane and ¢ 1s the displacement along

the normal to the membrane
A plane wave propagating along the plane n the positive = direction takes the form

Bz, y,t) = f(z) et (2)

It 15 easily shown that the propagation velocity ¢ 1s mndependent of the frequency w This
means that for a given disturbance, 1t propagates without distortion along the membrane

2.2. Square Discretisation

First, the conventional explicit square discretisation of a 2D wave equation 1s studied It
corresponds to the tessellation shown 1n F1§ure la

(a) Square computational molecules (b) Hexagonal computational molecules

Figure 1

The time derivative 1s discretised 1n the usual expheit form
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where 7 15 the time stepsize and u™ 1s the estimated value of the function ¢ in the mnstant n 7
In order to approximate the Laplacian operator, a centered (.ilscrete scheme will be used, with h
being the spatial stepsize
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where u,;, represents the discrete value of the function ¢ at coordinates (3 h, k& h) Then the
whole discretization rule of the wave equation 1s written as

2
h2
From this 1teration rule, by applying the Von Neumann method for stability analysts, we find
the well-known stabuility condition
V2
2
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2.3. Hexagonal Scheme

Most two-dimensional numerical methods use square grids for simphcity reasons However, the
main disadvantage of these methods 1s their intrinsic numerical anisotropy [6] This amsotropy
appears, for example, in the simulation of a KdV equation, 1s inherent to the square scheme,
and cannot be avoided with a finer grnd Hexagonal schemes, on the other hand, show a higher
1sotropy

2.3.1. Discretisation

The discretisation of the wave equation can be obtained from a Taylor expansion of the Lapla-
clan operator
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The computational molecule 1s shown 1n Figure 1b The space of simulation 1s divided into
regular hexagons and the magnitude ¢ 1s measured at the center of each element

The discretisation of the temporal derivative 1s similar to (3), so the iteration formula we are
using 1s

2 2
u;’}'c'l =2uj —uyy Lyl = [ (up + ung + unw + Ul + ugw + USE) — 4u,,kn"] (8)

2.3.2. Stability of the numerical scheme

It 1s of interest to evaluate the stability condition of the previous scheme as a function of the
discretisation parameters 7 and h

Assuming that the solution of (1) can be expressed by a Fourier expansion with separated time
and space variables, a general term of the series can be wnitten as

¢(m,y,t) = etz ezﬂy ezwt

1ayh ezﬁk:h WnT (9)
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We substitute this solution 1n (8), and taking into account the following relations

ug __ezah ?k’ uﬁE =6Z(1/2)ah61(\/§/2)ﬁhu;k, uﬁw=e—z(1/2)ahez(ﬁ/2)ﬂhu;k’ (10)
ufy = e—1hy, ?k’ Wy = e-z(1/2)ahe-z(ﬁ/2)ﬂhu2k, ulg = ez(l/2)ahe—z(\/§/2)5hu:k’
and 1earranging terms, we obtain
2
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2cos{wt) =2+¢ h: l (2 cos{ah) + 4 cos (%ah) cos (?ﬂh)) - 4] (12)

Since —1 < cos (wT) < 1, then

-1<1+ c2;_: [% (2 cos (ah) + 4 cos (%ah) cos (?ﬁh)) — 2] <1, (13)

or
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and we get
, 72 ,
~6< 5 (s 6) <0, (14)
where
s = 2cos (ah) + 4 cos (%ah) cos (?ﬁh) (15)

The extrema of the function s(a, 3) are

max (s) = 6, (16)
mn (s) = -3 1

From (16), 1t 1s found that the right-hand mequality in (14) 1s always satisfied From the

left-hand inequity and (17),
2

r
—6 gczﬁ(—:%—(s), (18)
and therefore,
2
9T 2
<13 < 3 (19)

Finally, the hexagonal scheme 1s stable 1f

T 2
— < -1 —
A <c \/;, (20)

which compares favourably with (6)

3. ELASTIC 2D EQUATION

The wave equation studied 1n the previous section describes wave propagation in a medium
that cannot sustain finite shear stress, such as fluids or membranes vibrating normally to their
surface In general 2D solids, however, two kinds of waves can exist propagating simultaneously
dilatational (primary) waves and shear (secondary) waves These waves propagate with different
velocities and 1t 1s known that when a wave of either type reaches a boundary or discontinuty
in the solid, waves of both types are generated

In Cartesian coordinates, the 2D elastic equation can be written as (7]

82¢ a2¢ 82(}5 32,¢)
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where ¢, ¢ are the displacements along = and y directions, p 1s the material density, and A, p
are the Lamé parameters

3.1. Hexagonal Scheme

Equation (21) 1s approximated using a hexagonal tessellation
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3.1.1. Hexagonal discretisation

The temporal derivative 1s again approximated as (3) The spatial derivatives are approximated
by the following formulae

62¢ 62'¢J
1 22
=7 [—Aouyk + A1 (UNE + unw + usw + usg) (22)
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with the coefficients
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1= 3 ) 2= 3 ) 1= \/g
These coefficients have been obtamned after a Taylor expansion and ensure a truncation error
of O(h?)
Hence, the 1teration formulae used in the scheme are written as
uﬁ'l = 2uy — u;",';l + _EEF
(25)
v;"zl =20} — "“ + _ﬁiG

3.1.2. Numerical stability

By means of a method of Von Neumann similar to the method used in the previous section,
the following stability condition 1s obtained

T 3 p
—<.l2
h"\/; X+ 24 (26)

This condition has been numerically tested, and when compared with stabihty conditions
obtamed by other methods [8], 1t 1s seen that (26) represents a less restrictive condition In
particular, using the same number of nodes 1n the (2,2)-order method of [8] and in our scheme,
the last one allows us to increase the time stepsize by a factor of ¥/3 ~ 1 32

4. CONCLUSIONS

An explicit numerical scheme has been proposed for the approximation of the 2D elastic equa-
tion over a hexagonal tessellation

Numerical stability and 1sotropy are enhanced with a similar computational work when com-
pared with the standard numerical methods In the simulation of heterogeneous and random
media, the proposed method shows excellent behaviour with regard to stability and 1sotropy To
the best of our knowledge, equation (26) 1s the least restrictive condition for an expheit fimte
difference method for the 2D elastic equation

Moreover, the same techniques which are applied to other usual numerical schemes (automatic
refining, multigrid, etc ) can likely be used mn this new family of numerical schemes based on
hexagonal tessellation

Other equations, such as the nonlinear 2D+1 Sine-Gordon equation, are currently being inves-
tigated by means of similar methods based on hexagonal schemes
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