Colocalization on Grothendieck Categories with Applications to Coalgebras

C. Năstăsescu*

Facultatea de Matematică, Str. Academiei 14, R. 70109 Bucharest 1, Romania

etadata, citation and similar papers at core.ac.uk

B. Torrecillas[†]

Departamento de Algebra y Análisis, Universidad de Almería, 04071 Almería, Spain

Communicated by Richard G. Swan

Received June 28, 1995

INTRODUCTION

Rings and modules of quotients with respect to an additive topology \mathscr{F} or a localizing subcategory of R – Mod were introduced by Gabriel in his thesis [3], and have been an important tool in ring theory for more than 20 years. If $\mathscr{C}_{\mathscr{F}}$ is the localizing subcategory of R – Mod associated to \mathscr{F} , then we can consider the quotient category R – Mod/ $\mathscr{C}_{\mathscr{F}}$ and the canonical functor $T_{\mathscr{F}}$: R – Mod $\rightarrow R$ – Mod/ $\mathscr{C}_{\mathscr{F}}$ (see [3] and [7]). It is well known that $T_{\mathscr{F}}$ has a right adjoint $S_{\mathscr{F}}$: R – Mod/ $\mathscr{C}_{\mathscr{F}} \rightarrow R$ – Mod (in fact the existence of such a right adjoint functor is equivalent to the fact that the subcategory we factor by is localizing; see [3]). The quotient ring $R_{\mathscr{F}}$ associated to \mathscr{F} is an approach to the quotient category in the sense that under certain conditions $R_{\mathscr{F}}$ – Mod is equivalent to the quotient category R – Mod/ $\mathscr{C}_{\mathscr{F}}$. This situation represents the perfect localization of rings (or the flat epimorphism of rings; see [7, p. 225]). Starting from the localization for rings, we develop a theory of "localization" for coalgebras,

^{*} Part of this work was done while this author was visiting the University of Almería supported by DGICYT.

[†] Supported by the grant PB91-0706 from the DGICYT.

giving reasonable answers in this paper. More exactly, if *C* is a coalgebra over the field *k*, and \mathcal{T} is a dense subcategory (or a Serre class) of the category M^C of right *C*-comodules, we can consider the quotient category M^C/\mathcal{T} and the canonical functor $T: M^C \to M^C/\mathcal{T}$. The key step comes now: instead of considering that \mathcal{T} is a localizing subcategory (i.e., \mathcal{T} is closed under arbitrary direct sums or, equivalently, *T* has a right adjoint), we will ask \mathcal{T} to be a colocalizing subcategory (i.e., the functor *T* has a left adjoint *H*). We will see later that a colocalizing subcategory is also localizing. The colocalizing subcategory \mathcal{T} is called perfect if *H* is an exact functor. This situation is dual to the perfect localization of rings (or the flat epimorphism of rings).

This paper is divided into five sections. In Section 1 we give some properties of left coflat monomorphisms of coalgebras. A study of colocalization in an abelian category is made in Section 2. We apply these results, in Section 3, to the category M^C of right *C*-comodules, introducing the quotient coalgebra with respect to a colocalization as an analogue of the quotient ring. We also give the main properties of the quotient coalgebra. In Section 4 we study perfect colocalization on M^C , proving that a perfect colocalization is given by a (left) coflat monomorphism. It follows from Section 1 that we can associate a perfect colocalization to any coflat monomorphism of coalgebras. The last section is concerned with applications. A relevant example is the Goldie torsion theory, to which case we apply our theory.

NOTATION AND PRELIMINARIES

Let k be a field. By k-space (k-map) we mean a k-vector space (k-linear map). All unadorned tensor products, Hom, etc., will be over k. The reader is referred to the books [1] and [8] for notions and notations concerning coalgebras and comodules. The category of k-coalgebras is denoted by **Cog**_k. If C is a coalgebra, the categories of right (resp. left) C-comodules is denoted by \mathbf{M}^{C} (resp. $^{C}\mathbf{M}$). The fact that a k-space M is an object of such a category is denoted by M_{C} (resp. $_{C}M$). If $M, N \in \mathbf{M}^{C}$, the k-space of C-comodules maps between M and N is denoted by $\text{Com}_{C}(M, N)$. If C, D are coalgebras, the category of (C, D)-bicomodules (i.e., left C-comodules, right D-comodules with compatible structures) is denoted by $^{C}\mathbf{M}^{D}$; an object in this category is represented by $_{C}M_{D}$.

We will freely use "sigma notation": $\Delta(c) = \sum c_1 \otimes c_2$ for the comultiplication of a coalgebra C and $\rho(m) = \sum m_0 \otimes m_1$ for the structure map of a right C-comodule M.

For any abelian category \mathscr{A} we denote $Z(\mathscr{A})$ its centre, i.e., the commutative ring of all natural morphisms of the identity functor $1_{\mathscr{A}}: \mathscr{A} \to \mathscr{A}$. \mathscr{A} is called a *k*-abelian category whenever there exists a (preserving unit) ring morphism $\sigma: k \to Z(\mathscr{A})$. Giving such a σ is equivalent to defining on any $\operatorname{Hom}_{\mathscr{A}}(M, N)$ a *k*-space structure such that the composition maps $\operatorname{Hom}_{\mathscr{A}}(M, N) \times \operatorname{Hom}_{\mathscr{A}}(N, P) \to \operatorname{Hom}_{\mathscr{A}}(M, P)$ are *k*-bilinear. \mathbf{M}^{C} , ${}^{C}\mathbf{M}$, and ${}^{C}\mathbf{M}^{D}$ are instances of *k*-abelian categories.

An abelian category \mathscr{A} is called locally finite if it has a family of generators of finite length (see [7]). Following Takeuchi [9], a *k*-abelian category \mathscr{A} is of finite type if \mathscr{A} is locally finite and $\operatorname{Hom}_{\mathscr{A}}(M, N)$ is finite dimensional (over *k*) for any objects *M*, *N* of finite length. (It is easily seen that this last property is equivalent to $\operatorname{End}_{\mathscr{A}}(M)$ is finite dimensional for any simple object *M* of \mathscr{A} .) We recall from [9, Theorem 5.1] that a *k*-abelian category is of finite type if and only if it is *k*-equivalent to a category \mathbf{M}^C for some coalgebra *C*. If \mathscr{A} is of finite type, an object $M \in \mathscr{A}$ is quasifinite if $\operatorname{Hom}_{\mathscr{A}}(S, M)$ is finite dimensional for all simple objects *S* of \mathscr{A} (or equivalently $\operatorname{Hom}_{\mathscr{A}}(X, M)$ is finite dimensional for all objects $X \in \mathscr{A}$ of finite length).

Let *C* be an arbitrary coalgebra, *M* be a right *C*-comodule, and *N* be a left *C*-comodule. The *cotensor product* $M \square_C N$ is the kernel of the *k*-map $\rho_M \otimes 1 - 1 \otimes \rho_N$: $M \otimes N \to M \otimes C \otimes N$. Following [2], the cotensor product is a left exact functor and preserves inductive limits $\mathbf{M}^C \times^C \mathbf{M} \to \mathbf{M}_k$ (\mathbf{M}_k is the category of *k*-spaces). Moreover the mappings $m \otimes c \to \epsilon(c)m$ and $c \otimes n \to \epsilon(c)n$ yield natural isomorphisms $M \square_C C \simeq M$ and $C \square_C N \simeq N$. The cotensor product is associative. If $N \in \mathbf{M}^C$ has finite dimension, then $N^* = \operatorname{Hom}(N, k)$ has a natural structure of left *C*-comodule and $M \square_C N^* \simeq \operatorname{Com}_C(N, M)$. A left *C*-comodule *M* is called left coflat if the functor $- \square_C M$: $\mathbf{M}^C \to k - \operatorname{Mod}$ is exact. It is proved by Takeuchi that *M* is left coflat if and only if *M* is an injective object of ${}^C \mathbf{M}$ (cf. [2]).

Let now $M \in^{C} \mathbf{M}^{D}$. Then M_{D} is quasifinite if and only if the functor $-\Box_{C}M$: $\mathbf{M}^{C} \to \mathbf{M}^{D}$ has a left adjoint denoted by $h_{-D}(M, -)$ ([9]). The functor $h_{-D}(M, -)$ is called the co-hom functor. The following description is given in [9]: if $Y \in \mathbf{M}^{D}$, then

$$h_{-D}(M,Y) = \lim_{\to i} \operatorname{Com}_D(Y_i,M)^* = \lim_{\to i} (M \square_D Y_i^*)^*,$$

where $(Y_i)_i$ is the family of finite dimensional subcomodules of Y_D . We have in particular that $h_{-D}(D, Y) \approx Y$ for any $Y \in \mathbf{M}^D$. The functor $h_{-D}(M, -)$ is right exact and commutes with inductive limits; it is an exact functor if and only if M_D is injective. If M_D is quasifinite, then $e_{-D}(M) = h_{-D}(M, M)$ has a natural structure of coalgebra, called the co-endomorphism coalgebra of M (see [9]); M becomes then an $(e_{-D}(M), D)$ -bicomodule. For any (bi)comodules M_C , N_D , and $_DX_C$, with quasifinite M_C , there exists a canonical map $\delta \colon h_{-C}(M, N \Box_D X) \to N \Box_D h_{-C}(M, X)$,

which is an isomorphism if either N_D is injective or M_C is quasifinite and injective (see [9, 1.13]).

1. COFLAT MONOMORPHISMS

Let $\varphi: C \to D$ be a coalgebra morphism. Then any $M \in \mathbf{M}^C$ (with the structure map $\rho_M: M \to M \otimes C$) becomes a right *D*-comodule by $(1 \otimes \varphi)\rho_M: M \to M \otimes D$. This defines an exact functor $(-)_{\varphi}: \mathbf{M}^C \to \mathbf{M}^D$. In particular, *C* itself may be regarded as a left and right *D*-comodule. Since $C \in^D \mathbf{M}^C$, we can consider $N^{\varphi} = N \square_D C \in \mathbf{M}^C$ for any $N \in \mathbf{M}^D$, which is a right adjoint of $(-)_{\varphi}$ by [2, Proposition 6]. We observe that $(-)_{\varphi} = - \square_C C$, where *C* is considered a (C, D)-bicomodule. *C* is a (C, C)-bicomodule, thus it is also a (D, D)-bicomodule via φ . Let now $M \in \mathbf{M}^C$. Since $(1_M \otimes \varphi \otimes 1_C)(\rho_M \otimes 1_C)\rho_M = (1_M \otimes \varphi \otimes 1_C)(1_M \otimes \Delta)\rho_M$, we have that $\rho_M(M) \subseteq M_{\varphi} \square_D C$. Denote by $\overline{\rho}_M: M \to M_{\varphi} \square_D C$ the co-restriction of ρ_M . Clearly the maps $\{\overline{\rho}_M, M \in \mathbf{M}^C\}$ define a natural morphism $\overline{\rho}: \mathbf{1}_{\mathbf{M}^C} \to (-)^{\varphi} \circ (-)_{\varphi}$.

For M = C we have $\rho_C = \Delta_C$; this yields a canonical morphism $\overline{\Delta}$: $C \to C \Box_D C$, which is a (C, C)-bicomodule morphism. Let

$$C \square_D C \stackrel{p_1}{\underset{p_2}{\Rightarrow}} C$$

be the restriction of the canonical maps $C \otimes C \to C$ defined by $c_1 \otimes c_2 \to \epsilon(c_1)c_2$ (resp. $c_1 \otimes c_2 \to c_1\epsilon(c_2)$). Clearly p_1 is a (D, C)-bicomodule morphism and p_2 is a (C, D)-bicomodule morphism. Also $p_1\overline{\Delta} = p_2\overline{\Delta} = 1_C$.

A characterization of monomorphism in the category of \mathbf{Cog}_k was given in [5, Theorem 3.5]. Assume now that φ is left coflat morphism, i.e., the functor $-\Box_D C$ is exact. In this case $\mathscr{T}_{\varphi} = \{M \in \mathbf{M}^D \mid M \Box_D C = 0\}$ is a localizing subcategory of \mathbf{M}^D . Let $T: \mathbf{M}^D \to \mathbf{M}^D / \mathscr{T}_{\varphi}$ be the canonical functor. By [5, Theorem 4.2], there exists a subcoalgebra A of D such that $\mathscr{T}_{\varphi} = \{M \in \mathbf{M}^D \mid \rho_M(M) \subseteq M \otimes A\}$. Moreover, A is a co-idempotent coalgebra, i.e., $A = A \land A$.

PROPOSITION 1.1. If $\varphi: C \to D$ is a left coflat monomorphism, then

- (1) Ker φ and Coker φ belong to \mathscr{T}_{φ} ;
- (2) D/A is quasifinite in \mathbf{M}^D ;

(3) If E(D/A) is the injective envelope of D/A in \mathbf{M}^D and $j: D/A \to E(D/A)$ is the inclusion map, then Coker j belongs to \mathcal{T}_{φ} ;

(4) $T(D_D)$ is a quasifinite injective cogenerator of the quotient category $\mathbf{M}^D/\mathcal{T}_{\alpha}$.

Proof. (1) We consider the functors

$$\mathbf{M}^{C} \xleftarrow{(-)_{\varphi}}{\longleftarrow} \mathbf{M}^{D} \xleftarrow{T}{\longleftrightarrow} \mathbf{M}^{D} / \mathscr{T}_{\varphi},$$

where *S* is the right adjoint of *T*. If $F = T \circ (-)_{\varphi}$ and $G = (-)^{\varphi} \circ S$, then by [5, Theorem 6.1], *F* and *G* give an equivalence of categories between \mathbf{M}^{C} and $\mathbf{M}^{D}/\mathscr{T}_{\varphi}$. Since φ is a monomorphism, we obtain by [5, Theorem 3.5] that Ker $\varphi \Box_{D} C = 0$, hence Ker $\varphi \in \mathbf{M}^{D}/\mathscr{T}_{\varphi}$. Next consider the exact sequence in \mathbf{M}^{D} , $C \to_{\varphi} D \to \operatorname{Coker} \varphi \to 0$. Applying $-\Box_{D}C$ we get $C \Box_{D} C \to_{\varphi \Box_{D}} D \Box_{D} C \to \operatorname{Coker} \varphi \Box_{D} C \to 0$. Identifying $D \Box_{D} C$ with *C*, $\varphi \Box_{D} C$ is replaced by $p_{1}: C \Box_{D} C \to C$. Since $p_{1} \circ \overline{\Delta} = 1_{C}$ and $\overline{\Delta}$ is an isomorphism, we obtain that p_{1} is an isomorphism; therefore $\operatorname{Coker} \varphi \Box_{D} C = 0$ and $\operatorname{Coker} \varphi \in \mathscr{T}_{\varphi}$.

(4) Since $A \in \mathscr{T}_{\varphi}$, then $T(D_D) \stackrel{\circ}{=} T(D/A)$. Since Ker φ , Coker $\varphi \in \mathscr{T}_{\varphi}$, we obtain that $T(C_D) = T(D_D)$. Therefore $F(C_C) = T(C_D) = T(D/A) = T(D_D)$. However, F is an equivalence; hence $F(C_C)$ is a quasifinite injective cogenerator. Thus $T(D_D)$ has the same properties.

(2) Let M be a simple object in \mathbf{M}^D . Then $\operatorname{Com}_D(M, D/A) = 0$ if $M \in \mathscr{T}_{\omega}$. Assume that M is \mathscr{T}_{ω} -torsion-free. Then the canonical morphism

$$\operatorname{Com}_{D}(M, D/A) \to \operatorname{Hom}_{\mathbf{M}^{D}/\mathcal{F}}(T(M), T(D/A)),$$

 $f \to Tf$, is injective. Since T(M) is simple in $\mathbf{M}^D / \mathcal{T}_{\varphi}$, $\operatorname{Hom}_{\mathbf{M}^D / \mathcal{T}_{\varphi}}(T(M), T(D/A))$ is finite dimensional. It follows that D/A is quasifinite.

(3) Applying *T* to the exact sequence $0 \to D/A \to_j E(D/A) \to Coker j \to 0$, we obtain the exact sequence $0 \to T(D/A) \to_{T(j)} T(E(D/A)) \to T(Coker j) \to 0$. Since $T(D/A) \simeq T(D_D)$ is injective, the essential monomorphism T(j) is an isomorphism; therefore T(Coker j) = 0, i.e., Coker $j \in \mathscr{T}_{a}$.

PROPOSITION 1.2. Let C be a coalgebra and \mathcal{T} a localizing subcategory of \mathbf{M}^{C} . Then the quotient category $\mathbf{M}^{C}/\mathcal{T}$ is a k-abelian category of finite type.

Proof. Let $T: \mathbf{M}^C \to \mathbf{M}^C / \mathcal{T}$ be the canonical functor and S its right adjoint. Following [9], it is sufficient to prove that $\operatorname{End}_{\mathbf{M}^C / \mathcal{T}}(X)$ is finite dimensional for any simple object $X \in \mathbf{M}^C / \mathcal{T}$. The functor S is fully faithful; thus $\operatorname{Hom}_{\mathbf{M}^C / \mathcal{T}}(X, X) \simeq \operatorname{Com}_C(S(X), S(X))$. However, S(X) contains a nonzero simple object M. Since $T(S(X)) \simeq X$, we have that $S(X) / M \in \mathcal{T}$ and $T(M) \simeq X$. Finally $\operatorname{Hom}_{\mathbf{M}^C / \mathcal{T}}(X, X) \simeq \operatorname{Hom}_{\mathbf{M}^C / \mathcal{T}}(T(M), X) \simeq \operatorname{Com}_C(M, S(X)) \simeq \operatorname{Com}_C(M, M)$, which is finite dimensional.

2. COLOCALIZATION IN ABELIAN CATEGORIES

Let \mathscr{A} be an abelian category and \mathscr{C} a dense subcategory (or a Serre class) of \mathscr{A} , i.e., for any exact sequence $0 \to M' \to M \to M'' \to 0$ in \mathscr{A} , $M \in \mathscr{C}$ if and only if $M', M'' \in \mathscr{C}$ (see [3, p. 365]). We can construct the quotient category \mathscr{A}/\mathscr{C} and the canonical exact functor $T: \mathscr{A} \to \mathscr{A}/\mathscr{C}$. We recall from [3] that the objects of \mathscr{A}/\mathscr{C} are just the objects of \mathscr{A} , and if $M, N \in \mathscr{A}$, then

$$\operatorname{Hom}_{\mathscr{A}/\mathscr{C}}(M,N) = \lim_{\to M',\,N'} \{\operatorname{Hom}_{\mathscr{A}}(M',N/N') \, \big| \, M/M' \in \mathscr{C}, \, N' \in \mathscr{C} \}.$$

The quotient category \mathscr{A}/\mathscr{C} is abelian. The dense subcategory \mathscr{C} is called localizing if T has a right adjoint. In the case where \mathscr{A} is a Grothendieck category, the dense subcategory \mathscr{C} is localizing if and only if \mathscr{C} is closed under arbitrary direct sums.

We are interested in the situation where \mathscr{C} is a colocalizing subcategory, i.e., the canonical functor *T* has a left adjoint $H: \mathscr{A}/\mathscr{C} \to \mathscr{A}$. The following result is not new; it is an exercise in [3, p. 369].

PROPOSITION 2.1. Let \mathscr{C} be a colocalizing subcategory of the abelian category \mathscr{A} and let X be an object of \mathscr{A}/\mathscr{C} . The following assertions hold:

(a) If $Y \in \mathscr{C}$ is a quotient object of H(X), then Y = 0.

(b) If $0 \to M \to_f P \to H(X) \to 0$ is an exact sequence in \mathscr{A} and $M \in \mathscr{C}$, then f splits.

(c) The canonical morphism $\operatorname{Hom}_{\mathscr{A}}(H(X), M) \to \operatorname{Hom}_{\mathscr{A}/\mathscr{C}}(TH(X), T(M))$ sending f to T(f) is an isomorphism for any $M \in \mathscr{A}$.

(d) If $\Psi: \mathbf{1}_{\mathscr{A}/\mathscr{C}} \to T \circ H$ and $\Phi: H \circ T \to \mathbf{1}_{\mathscr{A}}$ are the natural morphisms defined by the adjunction, then Ψ is an isomorphism and, for any $M \in \mathscr{A}$, there exists an exact sequence

$$\mathbf{0} \to \operatorname{Ker} \Phi(M) \to HT(M) \xrightarrow{\Phi(M)} M \to \operatorname{Coker} \Phi(M) \to \mathbf{0}$$

with Ker $\Phi(M)$, Coker $\Phi(M) \in \mathscr{C}$.

(e) *The functor H is fully faithful.*

Proof. Everything follows by [3, Lemmas 1 and 2 and Proposition 3, pp. 370, 371] using the dual category \mathscr{A}° . In this case \mathscr{C} remains a Serre class in \mathscr{A}° , but H becomes a right adjoint of the canonical functor $T: \mathscr{A}^{\circ} \to \mathscr{A}^{\circ}/\mathscr{C}$.

PROPOSITION 2.2. Let \mathscr{C} be a colocalizing subcategory of \mathscr{A} . Then the following statements hold:

(1) $M \in \mathscr{C}$ if and only if $\operatorname{Hom}_{\mathscr{A}}(H(X), M) = 0$ for any $X \in \mathscr{A}/\mathscr{C}$.

(2) If \mathscr{A} satisfies $AB3^*$ (i.e., \mathscr{A} has arbitrary direct products), then \mathscr{C} is closed to direct products.

(3) If moreover \mathscr{A} is a Grothendieck category, then \mathscr{C} is also a localizing subcategory.

Proof. (1) If $M \in \mathcal{C}$, the desired relation follows by Proposition 2.1(a). Conversely, if $M \notin \mathcal{C}$, then $T(M) \neq 0$. Hence $\operatorname{Hom}_{\mathscr{A}/\mathscr{C}}(T(M), T(M)) \neq 0$. However, $\operatorname{Hom}_{\mathscr{A}/\mathscr{C}}(T(M), T(M)) \simeq \operatorname{Hom}_{\mathscr{A}}(HT(M), M) = 0$, providing a contradiction.

(2) Directly from (1).

(3) Let $(M_i)_{i \in I}$ be a family of objects of \mathscr{C} . We have by (2) that $\prod_{i \in I} M_i \in \mathscr{C}$, and since $\bigoplus_{i \in I} M_i$ is a subobject of $\prod_{i \in I} M_i$, we obtain that $\bigoplus_{i \in I} M_i \in \mathscr{C}$, i.e., \mathscr{C} is a localizing subcategory.

From now on, we assume in this section that \mathscr{A} is an abelian category with $AB3^*$, and \mathscr{C} is a colocalization subcategory of \mathscr{A} . If $M \in \mathscr{A}$ we can define $s(M) = \bigcap_i M_i$, where M_i are the subobjects of M with the property that $M/M_i \in \mathscr{C}$. Since \mathscr{C} is closed to direct product, we obtain from the exact sequence $0 \to M/s(M) \to \prod_i M/M_i$ that $M/s(M) \in \mathscr{C}$. The correspondence $M \to s(M)$ defines a subfunctor of the identity functor. Indeed, if $u: M \to N$ is a morphism in \mathscr{A} , we obtain from $s(M) \subseteq M$ $\to_u N \to_{\pi} N/s(N)$ that $\operatorname{Im}(\pi \circ u) \subseteq N/s(N)$, hence $\operatorname{Im}(\pi \circ u) \in \mathscr{C}$. Therefore $\operatorname{Ker}(\pi \circ u) \supseteq s(M)$. Thus $(\pi \circ u)(s(M)) = 0$, showing that $u(s(M)) \subseteq s(N)$.

PROPOSITION 2.3. Let $M \in \mathcal{A}$. Then there exists $X \in \mathcal{A}/\mathcal{C}$ such that $M \simeq H(X)$ if and only if s(M) = M and M is \mathcal{C} -projective, i.e., for any diagram

with Ker $u \in \mathcal{C}$, there exists $g: M \to P$ such that f = ug.

Proof. If $M \simeq H(X)$, Proposition 2.1(a) shows that s(M) = M. That M is \mathscr{C} -projective follows from the fact that H is a left adjoint of T.

Conversely, Coker $\phi(M) \in \mathscr{C}$ and s(M) = M imply that Coker $\phi(M) = 0$. The diagram

where Ker $\phi(M) \in \mathscr{C}$ shows that there is $g: M \to HT(M)$ such that $\phi(M)g = 1_M$. Hence $HT(M) \simeq M \oplus \text{Ker } \phi(M)$; that is, Ker $\phi(M)$ is a quotient object of HT(M). Therefore Ker $\phi(M) = 0$ and $HT(M) \simeq M$.

PROPOSITION 2.4. Let \mathscr{C} be a colocalizing subcategory of \mathscr{A} and $M \in \mathscr{A}$. The following properties hold:

(1) Im $\phi(M) = s(M)$ for any $M \in \mathscr{A}$.

(2) If \mathscr{C} is closed under taking injective envelopes, then $\phi(M)$ is a monomorphism for any M.

Proof. (1) Let $u: M \to Y$ be a morphism, where $Y \in \mathscr{C}$. Since $\operatorname{Im}(u \circ \phi(M)) \subseteq Y$, we obtain that $\operatorname{Im}(u \circ \phi(M)) = 0$. Hence $\operatorname{Im} \phi(M) \subseteq$ Ker u. Thus we have that $\operatorname{Im} \phi(M) \subseteq s(M)$. On the other hand $s(M) \subseteq$ Im $\phi(M)$, since Coker $\phi(M) \in \mathscr{C}$.

(2) We consider the diagram

$$0 \longrightarrow \operatorname{Ker} \phi(M) \xrightarrow{i} HT(M) \xrightarrow{\phi(M)} M,$$
$$\downarrow^{j} E(\operatorname{Ker} \phi(M))$$

where $E(\text{Ker }\phi(M)) \in \mathcal{C}$ is the injective envelope of $\text{Ker }\phi(M)$. There is some $u: HT(M) \to E(\text{Ker }\phi(M))$ such that ui = j. Proposition 2.1(a) shows that u = 0. Hence j = 0 and $\text{Ker }\phi(M) = 0$.

3. COLOCALIZATION IN THE CATEGORY \mathbf{M}^{C}

Let *C* be a *k*-coalgebra and \mathscr{T} a localizing subcategory of \mathbf{M}^{C} . We know [5] that there exists a subcoalgebra *A* of *C* such that $\mathscr{T}_{A} = \{M \in \mathbf{M}^{C} \mid \rho_{M}(M) \subseteq M \otimes A\} = \{M \in \mathbf{M}^{C} \mid A^{\perp}M = 0\}$, where $A^{\perp} = \{f \in C^{*} \mid f(A) = 0\}$ is a two-sided ideal of the dual algebra C^{*} . Moreover, *A* is a co-idempotent subcoalgebra, i.e., $A = A \wedge A$.

We denote by \mathcal{T}_A the localizing subcategory associated to a co-idempotent subcoalgebra A. It is also proved in [5] that \mathcal{T}_A is a T.T.F. class, i.e., \mathcal{T}_A is closed under direct products (cf. [7, VI.8]). Let us consider the canonical functor $T_A: \mathbf{M}^C \to \mathbf{M}^C/\mathcal{T}_A$, which has a right adjoint $S_A: \mathbf{M}^C/\mathcal{T}_A \to \mathbf{M}^C$, since \mathcal{T}_A is localizing.

PROPOSITION 3.1. With the above notation, the following assertions are equivalent:

- (1) T_A has left adjoint H_A (i.e., \mathcal{T}_A is a colocalizing subcategory).
- (2) C/A is a quasifinite right C-comodule.

Proof. By Proposition 1.2. Hence $\mathbf{M}^C / \mathcal{T}_A$ is a *k*-abelian category of finite type, then [9, Theorem 5.1] there exists a coalgebra *D* such that $\mathbf{M}^C / \mathcal{T}_A$ is equivalent via the pair of functors

$$\mathbf{M}^C / \mathscr{T}_A \xleftarrow{F}_{G} \mathbf{M}^D$$

Since T_A is exact and commutes with direct sums, the functor $F \circ T_A$: $\mathbf{M}^C \to \mathbf{M}^D$ also has these properties. By [9, Proposition 2.1] we obtain that $F \circ T_A \simeq - \Box_D P$, where $P_D = F(T_A(C_C))$. Now by [9, Proposition 1.9] $- \Box_D P$ has a left adjoint if and only if P_D is quasifinite in \mathbf{M}^D . Since F is an equivalence, P_D is quasifinite if and only if $T_A(C_C)$ is quasifinite in $\mathbf{M}^C/\mathcal{T}_A$. Clearly $T_A(C_C) = T_A(C/A)$. If X is a simple object in $\mathbf{M}^C/\mathcal{T}_A$, then there exists a simple object M in \mathbf{M}^C such that $X = T_A(M)$. Then $\operatorname{Hom}_{\mathbf{M}^C/\mathcal{T}_A}(X, T_A(C/A)) = \operatorname{Hom}_{\mathbf{M}^C/\mathcal{T}_A}(T_A(M), T_A(C/A)) \simeq \operatorname{Com}_C(M,$ $S_A T_A(C/A)) \simeq \operatorname{Com}_A(M, C/A)$, since C/A is an essential subobject of $S_A T_A(C/A)$. We conclude that $T_A(C_C)$ is quasifinite in $\mathbf{M}^C/\mathcal{T}_A$ if and only if C/A is so.

Remark 3.2. With the above notations $T_A(C_C)$ is a cogenerator of the category $\mathbf{M}^C/\mathcal{T}_A$. Indeed, if $X \in \mathbf{M}^C/\mathcal{T}_A$, then $X = T_A(M)$ for some $M \in \mathbf{M}^C$. We have an exact sequence $\mathbf{0} \to M \to (C_C)^{(I)}$ in \mathbf{M}^C for some set *I*. Since T_A is exact and commutes with direct sums, we obtain an exact sequence $\mathbf{0} \to T_A(M) \to T_A((C_C))^{(I)}$ in $\mathbf{M}^C/\mathcal{T}_A$. Thus $T_A(C_C)$ is a cogenerator in $\mathbf{M}^C/\mathcal{T}_A$.

For the rest of the section we assume that C/A is quasifinite in \mathbf{M}^{C} . With the above notations we have two pairs of adjoint functors:

$$\mathbf{M}^{C} \xleftarrow{T_{A}}{H_{A}} \mathbf{M}^{C} / \mathscr{T}_{A} \xleftarrow{F}{G} \mathbf{M}^{D}$$

and the isomorphisms $H_A \circ T_A \simeq (H_A \circ G) \circ (F \circ T_A)$ and $T_A \circ H_A \simeq (F \circ T_A) \circ (H_A \circ G) \simeq \mathbf{1}_{\mathbf{M}^C/\mathscr{F}_A}$. Moreover $H_A \circ G$ is a left adjoint of the functor $F \circ T_A$. Therefore the object $(H_A \circ T_A)(C_C)$ does not depend on the choice of the coalgebra D and the functors F, G. Let us denote $P_D =$

 $(F \circ T_A)(C_C)$. Since C/A is quasifinite, P_D is a quasifinite D-comodule; also P_D is a cogenerator of \mathbf{M}^D . We obtain by [9, Proposition 1.10] that $H_A \circ G$ is the co-hom functor sending $Y_D \in \mathbf{M}^D$ to $h_{-D}(P_D, Y_D)$. In particular $(H_A \circ T_A)(C_C) \simeq h_{-D}(P_D, P_D) = e_{-D}(P_D)$, which has a natural coalgebra structure. This coalgebra structure does not depend on the choice of D. Indeed, D' is another coalgebra such that there exists an equivalence $U: \mathbf{M}^D \to \mathbf{M}^{D'}$ such that $F' = U \circ F$. If $P'_{D'} = (F' \circ T_A)(C_C)$, then $P'_{D'} = U(P_D)$. Since U is an equivalence we clearly have $e_{-D}(P_D) \simeq e_{-D'}(P'_D)$.

As a consequence we can assume that $\mathbf{M}^C/\mathcal{T}_A = \mathbf{M}^D$. Since T_A is exact and commutes with inductive limits, we have that $T_A = -\Box_C P_D$, where $P_D = T_A(C_C)$ and $H_A = h_{-D}(P_D, -)$. If $X_D \in \mathbf{M}^D$ the natural morphism $\psi(X)$: $X_D \to h_{-D}(P_D, X_D) \Box_C P_D$ is an isomorphism (from Section 2). In fact $\psi(X)$ is just the natural morphism defined in [9, 1.7]. Let $M \in \mathbf{M}^C$. From Section 2 we have the canonical map $\phi(M)$: $h_{-d}(P_D, M \Box_C P_D) \to$ M, with Ker $\phi(M)$, Coker $\phi(M) \in \mathcal{T}$. We can write $M = \bigcup_{\lambda} M_{\lambda}$, where M_{λ} s are the finite dimensional subcomodules of M. Then $M \Box_C P_D =$ $\lim_{\lambda} (M_{\lambda} \Box_C P_D)$. Since the functor $h_{-D}(P_d, -)$ commutes with inductive limits, we obtain that $h_{-D}(P_D, M \Box_C P_D) = \lim_{\lambda} h_{-D}(P_D, M_{\lambda} \Box_C P_D)$. On the other hand the functor T_A sends any simple object S of \mathbf{M}^C either to 0 or a simple object of $\mathbf{M}^C/\mathcal{T}_A$. Therefore $T_A(M)$ has finite dimension for any finite dimensional D-comodule for any λ . Hence $h_{-D}(P_D, M \Box_C P_D)$ $= \lim_{\Delta} \lambda \operatorname{Com}_D(M_{\lambda} \Box_C P_D, P_D)^*$.

On the other hand $M = h_{-C}(C, M) = \lim_{\to \lambda} \operatorname{Com}_C(M_{\lambda}, C)^*$. Since $P_D = C \square_C P_D$, then we have for each λ a natural morphism $\operatorname{Com}_C(M_{\lambda}, C) \to \operatorname{Com}_D(M_{\lambda} \square_C P_D, P_D)$, $u \to u \square_C \mathbf{1}_{P_D}$. By dualizing we obtain a natural morphism $\operatorname{Com}_D(M_{\lambda} \square_C P_D, P_D)^* \to \operatorname{Com}_C(M_{\lambda}, C)^*$. Taking inductive limits we just obtain the morphism $\phi(M)$: $h_{-D}(P_D, M \square_C P_D) \to M$. In particular, for $M = C_C$ we obtain the morphism $\phi(C)$: $e_{-D}(P_D) \to C$. Since $T_A = - \square_C P_D$, it follows from the above facts that $\phi(C)$ is a coalgebra morphism. By [9, 1.13] we have a natural morphism δ : $h_{-D}(P_D, M \square_C P_D) \to M$. In particular, f(M) = 0, $h \square_C e_{-D}(P_D)$. Then for any $M \in \mathbf{M}^C$, the morphism $\phi(M)$ can be obtained as follows: $h_{-D}(P_D, M \square_C P_D) \to_{\delta} M \square_C h_{-D}(P_D, P_D) = M \square_C e_{-D}(P_D) \to_{1 \square_C \phi(C)} M \square_C C \cong M$. Hence $\phi(M) = (1 \square_C \phi(C)) \circ \delta$. Moreover $HT(M) = h_{-D}(P_D, M \square_C P_D)$ is a right $e_{-D}(P_D)$ -comodule, and the right C-comodule structure that HT(M) has via $\phi(C)$ is just the original C-comodule structure. Summarizing we have the following result:

PROPOSITION 3.3. Assume that C/A is quasifinite in \mathbf{M}^{C} . With the preceding notation we have:

(1) $E = (H_A \circ T_A)(C)$ has a natural coalgebra structure and $\phi(C)$: $E \to C$ is a coalgebra morphism. Moreover Ker $\phi(C)$, Coker $\phi(C) \in \mathcal{T}_A$. (2) Im $\phi(C) = s(C) = \bigcap_{f \in \operatorname{Com}_{C}(C, A)} \operatorname{Ker} f = A^{\perp}C$, where A is regarded as a right C-comodule.

(3) $(H_A \circ T_A)(M)$ has a natural right E-comodule structure for any $M \in \mathbf{M}^C$.

Proof. It remains to show only the second assertion. Clearly $s(C) \subseteq \bigcap_{f \in \text{Com}_{C}(C, A)} \text{Ker } f$.

Conversely, let us take some $M \in \mathcal{T}_A$ and $g: C \to M$ a comodule morphism. We have a monomorphism $u: M \to A^{(I)} \subseteq A^I$ for some set *I*. Then Ker $g = \bigcap_{i \in I} \text{Ker}(\pi_i ug)$, where π_i is the canonical projection. Hence $\bigcap_{f \in \text{Com}_C(C, A)} \text{Ker } f \subseteq \bigcap_{g \in \text{Com}_C(C, M), M \in \mathcal{T}_A} \text{Ker } g = s(C)$. Next $A^{\perp}(C/A^{\perp}C) = 0$ implies that $C/A^{\perp}C \in \mathcal{T}_A$. Thus $s(C) \subseteq A^{\perp}C$.

On the other hand if $f: C \to A$ is a comodule morphism then $f(A^{\perp}C) \subseteq A^{\perp}f(C) \subseteq A^{\perp}A = 0$. Hence $A^{\perp}C \subseteq \text{Ker } f$. This shows that $A^{\perp}C \subseteq s(C)$, proving the desired equality.

The coalgebra *E* is called the *quotient coalgebra* with respect to the localizing subcategory \mathcal{T}_A .

We recall that a coalgebra C is called *right semiperfect* if the category \mathbf{M}^{C} has enough projective objects (see [4]). The next result characterizes the localizing subcategories for these coalgebras.

PROPOSITION 3.4. If C is a right semiperfect coalgebra, then C/A is a right quasifinite comodule, i.e., \mathcal{T}_A is a colocalizing subcategory.

Proof. Let *M* be a simple object of \mathbf{M}^{C} . Since *C* is right semiperfect, *M* has a projective cover $P \to M \to \mathbf{0}$ [4]. Moreover, since *M* is finite dimensional, *P* is also finite dimensional. The fact that *C* is quasifinite yields that $\operatorname{Com}_{C}(P, C)$ is finite dimensional. The exact sequence $C \to C/A \to \mathbf{0}$ produces the exact sequence $\operatorname{Com}_{C}(P, C) \to \operatorname{Com}_{C}(P, C/A) \to \mathbf{0}$ (since *P* is projective). Hence $\operatorname{Com}_{C}(P, C/A)$ is finite dimensional. From the exact sequence $\mathbf{0} \to \operatorname{Com}_{C}(M, C/A) \to \operatorname{Com}_{C}(P, C/A)$, we conclude that $\operatorname{Com}_{C}(M, C/A)$ is finite dimensional. Thus C/A is quasifinite.

4. PERFECT (EXACT) COLOCALIZATION

Through this section we keep the notations of Section 3.

PROPOSITION 4.1. The following assertions are equivalent:

(1) The functor $T_A: \mathbf{M}^C \to \mathbf{M}^C / \mathcal{T}_A$ has an exact left adjoint $H_A: \mathbf{M}^C / \mathcal{T}_A \to \mathbf{M}^C$.

(2) (i) C/A is quasifinite right C-comodule and (ii) Coker $j \in \mathcal{T}_A$, where $j: C/A \to E(C/A)$ is the inclusion morphism of C/A into its injective envelope.

Proof. (1) \Rightarrow (2). Clearly (i) follows from Proposition 3.1. Since H_A is exact, then T_A carries injective objects to injective objects. In particular $T_A(C_C)$ is injective. However, $T_A(C_C) = T_A(C/A)$; therefore $T_A(A/C)$ is injective. The morphism *j* is essential, so $T_A(j)$ is essential. Since $T_A(E(C/A))$ is injective, we obtain that $T_A(j)$ is an isomorphism. Thus Coker $j \in \mathcal{T}_A$.

(2) \Rightarrow (1). By Proposition 3.1, T_A has a left adjoint H_A . Let $Q \in \mathbf{M}^C$ be an injective object. Then Q is a direct summand of $(C_C)^{(I)}$ for some nonempty set (I). Since T_A commutes with direct sums, we obtain that $T_A(Q)$ is a direct summand of $(T_A(C_C))^{(I)}$. Now $T_A(C_C) = T_A(C/A)$ and by (ii) they are equal to $T_A(E(C/A))$. Since E(C/A) is \mathcal{F} -torsion-free, we obtain that $T_A(E(C/A))$ is injective in \mathcal{T}_A (see [3, Chapter III]). We have seen that T_A carries injectives to injectives; therefore H_A is an exact functor.

The colocalizing subcategory \mathcal{T} of \mathbf{M}^{C} will be called *perfect* (or *exact*) if any of the equivalent conditions in the last proposition holds.

PROPOSITION 4.2. The condition Coker $j \in \mathcal{T}$ is satisfied in the following cases:

- (1) *C* is a hereditary coalgebra (i.e., gl.dim $C \le 1$, [6]).
- (2) \mathcal{T}_A is closed under injective envelopes.
- (3) The quotient category $\mathbf{M}^C / \mathcal{T}_A$ is a semisimple category.

Proof. (1) C/A is a right (and left) injective *C*-comodule since *C* is a hereditary coalgebra.

(2) Since \mathcal{T} is closed under injective envelopes, we obtain that A is an injective right C-comodule and $C_C = A \oplus C/A$. Therefore C/A is also an injective right C-comodule.

(3) \mathcal{T}_A semisimple implies that $T_A(j)$ is an isomorphism; therefore Coker $j \in \mathcal{T}$.

We can state now the main result of this section.

THEOREM 4.3. Let C be a coalgebra and A be a co-idempotent subcoalgebra such that \mathcal{T}_A is a colocalizing subcategory (i.e., C/A is a quasifinite right C-comodule). Then the following assertions are equivalent:

(1) \mathcal{T}_A is a perfect colocalizing subcategory.

(2) If E is the quotient coalgebra associated to \mathcal{T}_A , then the natural coalgebra morphism $\varphi: E \to C$ is a left coflat monomorphism.

Moreover, if (1) and (2) hold, the localizing subcategory \mathcal{T}_{φ} associated to φ is \mathcal{T}_{A} .

Proof. (2) \Rightarrow (1). Follows from Propositions 1.1 and 4.1.

(1) \Rightarrow (2). With the notations from Section 3, we have $T_A = -\Box_C P_D$. Since Ker φ , Coker $\varphi \in \mathscr{T}_A$, then Ker $\varphi \Box_C P_D = 0$. Since P_D is injective and quasifinite, [9, Proposition 1.14] shows that the natural morphism (*)

$$\delta: h_{-D}(P_D, M \square_C P_D) \to M \square_C e_{-D}(P_D)$$

is an isomorphism for any $M_C \in \mathbf{M}^C$. Then P_D is an injective cogenerator. Hence $M \square_C P_D = 0$ if and only if $M \square_C E = 0$. Indeed, $M \square_C P_D = 0$ implies $M \square_C E = 0$. The converse follows from the fact that $h_{-D}(P_D, X) = 0$ if and only if X = 0. This is clear since $h_{-D}(P_D, X) = \lim_{d \to i \in I} \operatorname{Com}_C(X_i, P_D)^*$, where $X = \bigcup_{i \in I} X_i$ and $(X_i)_{i \in I}$ is the family of all finite dimensional subcomodules of X (ordered by inclusion). If $X \neq 0$, since P_D is an injective cogenerator we have $\operatorname{Com}_C(X_i, P_D)^* \neq 0$ for some $i \in I$. However, this implies that $h_{-D}(P_D, X) \neq 0$.

Since Ker $\varphi \square_C P_D = 0$, then Ker $\varphi \square_C E = 0$. By [5, Proposition 3.5] we obtain that φ is a monomorphism in the category **Cog**_k.

Let us consider the diagram

The isomorphism (*) shows that $-\Box_C E \simeq h_{-D}(P_D, -) \circ T_A$. Since $h_{-D}(P_D, -)$ is an equivalence [9, Theorem 3.5], then the functor $-\Box_C E$ is exact, i.e., E is a left coflat C-comodule.

The isomorphism (*) also shows that $\mathscr{T}_{\varphi} = \{M \in \mathbf{M}^C \mid M \Box_C E = \mathbf{0}\} = \{M \in \mathbf{M}^C \mid M \Box_C P_D = \mathbf{0}\} = \text{Ker } T_A = \mathscr{T}_A.$

COROLLARY 4.4. Let C be a right semiperfect coalgebra and suppose that \mathcal{T}_A is a localizing subcategory of \mathbf{M}^C . If $\mathbf{M}^C/\mathcal{T}_A$ is a semisimple category, then \mathcal{T}_A is a perfect colocalizing subcategory.

Proof. By Propositions 4.2 and 3.4.

COROLLARY 4.5. Let C be a hereditary coalgebra. If \mathcal{T}_A is a colocalizing subcategory in \mathbf{M}^C , then \mathcal{T}_A is a perfect localizing subcategory.

COROLLARY 4.6. Let \mathcal{T}_A be a localizing subcategory closed under injective envelopes. Then \mathcal{T}_A is a perfect colocalizing subcategory. Moreover the associated quotient coalgebra is a subcoalgebra E of C such that E is a left coflat C-comodule and $E \cap A = 0$.

Proof. Since \mathcal{T}_A is closed under injective envelopes, then A = E(A), where A is regarded as a right C-comodule. Then $C = A \oplus C/A$ in \mathbf{M}^C . Hence C/A is an injective and quasifinite right C-comodule. This means that \mathcal{T}_A is a perfect colocalizing subcategory. The second part follows from Proposition 2.4 and Theorem 4.3. Also $E \cap A = \mathbf{0}$ since A and E are subcoalgebras with $A \square_C E = \mathbf{0}$.

5. GOLDIE TORSION THEORY

Let \mathscr{A} be a Grothendieck category and \mathscr{P} be the class of all objects of \mathscr{A} of the form M/L, where $M, L \in \mathscr{A}$ and L is an essential subobject of M. Then \mathscr{P} is closed under homomorphic images. Let \mathscr{G} be the smallest localizing subcategory of \mathscr{A} containing \mathscr{P} . It is easily seen that \mathscr{G} is the class of all $M \in \mathscr{A}$ with the property that M/M' has a subobject belonging to \mathscr{P} for any $M' \subset M$. The localizing subcategory \mathscr{G} is called the *Goldie* torsion theory of \mathscr{A} . If $M \in \mathscr{G}$, since M is essential in E(M) i.e., $E(M)/M \in \mathscr{P}$, the exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$ yields that $E(M) \in \mathscr{G}$. Thus \mathscr{G} is closed under injective envelopes.

We focus our attention on the case $\mathscr{A} = \mathbf{M}^C$, C a coalgebra. Let us denote by Spec(*C*) the class of all types of simple right *C*-comodules, i.e., Spec(*C*) = {[*S*] | *S* \in \mathbf{M}^C , *S* is a simple right comodule}, where [*S*] = {*S'* \in \mathbf{M}^C | *S'* \simeq *S*}. Clearly Spec(*C*) is a set. If *X* is a subset of Spec(*C*), we denote by \mathscr{C}_X the smallest localizing subcategory containing *X*. It is easily seen that $\mathscr{C}_X = \{M \in \mathbf{M}^C | \text{ for any strict subobject } M' \text{ of } M, M/M'$ has a subobject isomorphic with an object in *X* for any $X' \subseteq M$ }. We denote by *P* the set of all types of simple projective objects of \mathbf{M}^C . The following example shows that it is possible to have $P = \emptyset$.

EXAMPLE 5.1. Let $S = \{c_0, c_1, ...\}$ be a countable set and C = kS, the free *k*-module of basis *S*. Then *C* is a coalgebra with the comultiplication $\Delta(c_n) = \sum_{i+j=n} c_i \otimes c_j$ and co-unit $\epsilon(c_n) = \delta_{n,0}$ for $n \in \mathcal{N}$. The dual algebra C^* is isomorphic to the algebra k[[x]] of formal series in the indeterminate *X*. Also \mathbf{M}^C is isomorphic to the category Tors of all torsion modules over the algebra k[[x]], but the only projective object of Tors is zero.

PROPOSITION 5.2. The Goldie torsion theory \mathscr{G} of \mathbf{M}^{C} is generated by the simple objects of \mathbf{M}^{C} , which are not projective, i.e., $\mathscr{G} = \mathscr{C}_{\text{Spec}(C)-P}$. In particular if $P = \emptyset$, then $\mathscr{G} = \mathbf{M}^{C}$.

Proof. Let $M \in \mathbf{M}^C$ be a simple projective object such that $M \in \mathcal{G}$. Then $M \simeq X/Y$, where Y is essential in X. The exact sequence $\mathbf{0} \to Y \to X \to X/Y \to \mathbf{0}$ shows that Y is a direct summand of X. Hence X = Y and M = 0, which is a contradiction. It remains to show that any simple M with $M \notin \mathcal{G}$ is projective. Let us consider the following diagram in \mathbf{M}^{C} :

Consider the pullback diagram of $M \prod_{X''} X$:

This shows that Ker q_M is not essential in $M \prod_{X''} X$. However, M is simple. Then there exits a morphism $v: M \to M \prod_{X''} X$ such that $q_M v = 1_M$. If $g = q_X v$, then $ug = uq_X v = fq_M v = f$. Thus M is projective.

Since \mathscr{G} is closed under injective envelopes, Corollary 4.6 shows that \mathscr{G} is a perfect colocalizing subcategory. We denote $E = s_{\mathscr{G}}(C)$. Then $\mathscr{G} = \{M \in \mathbf{M}^C \mid M \square_C E = 0\}$ and E is a subcoalgebra with E a left coflat C-comodule.

PROPOSITION 5.3. Let C be a coalgebra, \mathscr{G} the Goldie torsion theory, and $E = s_{\mathscr{G}}(C)$. The following properties hold:

- (1) E is a cosemisimple subcoalgebra of C.
- (2) $\mathbf{M}^C / \mathcal{G}$ is equivalent to \mathbf{M}^E .

(3) *E* is the sum of all simple subcoalgebras *B* of *C* with the property that *B* is a sum of minimal left co-ideals isomorphic with simple left *C*-comodules of the form $M^* = \text{Hom}(M, k)$, where *M* is a simple projective right *C*-comodule.

Proof. (1) and (2). Any object of $\mathbf{M}^C / \mathscr{G}$ is injective (i.e., $\mathbf{M}^C / \mathscr{G}$ is a spectral category, [7]) and contains a nonzero simple object. Thus $\mathbf{M}^C / \mathscr{G}$ is a semisimple category. Since \mathscr{G} is a perfect colocalizing subcategory, $\mathbf{M}^C / \mathscr{G}$ is equivalent to \mathbf{M}^E . Hence \mathbf{M}^E is also a semisimple category and E is a cosemisimple coalgebra.

(3) Let E' be the sum of all the coalgebras with the mentioned property in (3). If M is a projective right C-comodule, then M^* is an injective left C-comodule. Therefore E' is an injective left C-comodule and it is left coflat. Let $\mathscr{G}' = \{M \in \mathbf{M}^C \mid M \square_C E' = 0\}$, which is clearly a perfect colocaling subcategory. Since $s_{\mathscr{G}}(C) = E$ and $s_{\mathscr{G}'}(C) = E'$, we only

have to prove that $\mathscr{G} = \mathscr{G}'$. Let $M \in \mathbf{M}^C$. Then $M \in \mathscr{G}$ if and only if $\operatorname{Com}_C(S, M) = \mathbf{0}$ for any simple projective right comodule *S*. However, $\operatorname{Com}_C(S, M) = M \square_C S^*$. Thus $M \in \mathscr{G}$ if and only if $M \square_C S^* = \mathbf{0}$ for any projective right comodule *S*, which coincides with $M \square_C E' = \mathbf{0}$, i.e., $M \in \mathscr{G}'$.

The next result gives a sufficient condition in order to have that the coalgebra E is a direct summand (as coalgebra) of C. Let \mathscr{A} be a Grothendieck category and let \mathscr{C} be a localizing subcategory of \mathscr{A} . We denote by $t_{\mathscr{C}}(M)$ the sum of all subobjects $N \subseteq M$ such that $N \in \mathscr{C}$. Since C is closed under direct sums and quotients it is clear that $t_{\mathscr{C}}(M) \in \mathscr{C}$. Also $t_{\mathscr{C}}(M/t_{\mathscr{C}}(M)) = 0$. Therefore the left exact functor $t_{\mathscr{C}}$ is a radical [7].

LEMMA 5.4. Let \mathscr{A} be a locally finite Grothendieck category and let \mathscr{C}_1 and \mathscr{C}_2 be two localizing subcategories of \mathscr{A} with the following properties:

(1) $\mathscr{C}_1 \cap \mathscr{C}_2 = \mathbf{0}.$

(2) If S is a simple object in \mathscr{A} , then $S \in \mathscr{C}_1$ or $S \in \mathscr{C}_2$.

(3) \mathscr{C}_1 and \mathscr{C}_2 are closed under injective envelopes.

Then we have the decomposition $M = M_1 \oplus M_2$, where $M_1 = t_{\mathscr{C}_1}(M)$ and $M_2 = t_{\mathscr{C}_2}(M)$.

Proof. By (1) and (2) clearly $M_1 \cap M_2 = 0$. Assume that $M_1 \oplus M_2 \neq M$. Then there exists a nonzero simple object $S \in \mathcal{C}$ and $M' \subseteq M$ such that $M_1 \oplus M_2 \subseteq M'$ and $M'/M_1 \oplus M_2 \simeq S$. Since $M_i = t_{\mathcal{C}_i}(M)$ for i = 1, 2, we can assume M' = M.

Let N_1 be a maximal subobject with the properties $M_1 \subseteq N_1$ and $N_1 \cap M_2 = 0$ (N_1 always exits by Zorn's lemma). If $X \subseteq N_1$ is a nonzero simple object, then $X \cap M_2 = 0$. Hence $X \in \mathscr{C}_1$ and $X \subseteq M_1$. Thus N_1 is an essential extension of M_1 and by (3) it follows that $N_1 \in \mathscr{C}_1$. We obtain that $M_1 = N_1$. Analogously it results that M_2 is maximal with the property that $M_2 \cap M_1 = 0$.

Assume now that $S \in \mathscr{C}_1$. Since M_1 is maximal with the property $M_1 \cap M_2 = 0$, then the canonical monomorphism $0 \to M_2 \to M/M_1$ is essential. By (3) it follows that $M/M_1 \in \mathscr{C}_2$. The exact sequence $M/M_1 \to M/M_1 \oplus M_2 \simeq S \to 0$ yields $S \in \mathscr{C}_2$. Hence $S \in \mathscr{C}_1 \cap \mathscr{C}_2 = 0$. This is a contradiction.

If *C* is a coalgebra with the property that the Goldie torsion theory \mathscr{G} of \mathbf{M}^{C} is exactly the whole category \mathbf{M}^{C} , then we say that *C* is a *singular right* coalgebra. Following [1] or [8], $C^* = \text{Hom}_k(C, k)$ has a natural ring structure. Indeed if $f, g \in C^*$, then $fg = (f \otimes g)\Delta$ (here $k \otimes k \simeq k$). The co-unit ϵ is the identity element of this ring. In [1] or [8] it is proved that the category \mathbf{M}^{C} is isomorphic with a subcategory of left C^* -modules,

denoted by Rat(C^* – Mod). The objects of Rat(C^* – Mod) are called left rational C^* -modules. In the case when dim $C < \infty$, then \mathbf{M}^C is isomorphic to C^* – Mod. In this case C is a singular right coalgebra if and only if the ring C^* is left singular [7]. We have the very satisfactory decomposition:

PROPOSITION 5.5. If the ring C^* is reduced (i.e., C^* has no nonzero nilpotent elements), then the coalgebra C is a direct sum of two subcoalgebras $C = D \oplus E$, where D is right singular coalgebra and E is cosemisimple.

Proof. We first show that if *S* is a simple projective right *C*-comodule, then *S* is also an injective object in \mathbf{M}^C . By [2, Proposition 4] it follows that *S* is a left projective simple *C**-module. Therefore $C^* = I \oplus J$, where *I* and *J* are left ideals in *C** and $I \simeq S$ (as left *C**-modules). Then there exit two orthogonal idempotents $e, f \in C^*$ such that 1 = e + f, $I = C^*e, J =$ C^*f , and ef = fe = 0. If $b \in J$ then $b = \lambda f$ for some $\lambda \in C^*$. Since $(e\lambda f)^2 = e\lambda fe\lambda f = 0$, by hypothesis $e\lambda f = 0$; hence IJ = 0. Analogously we have JI = 0; hence *I* and *J* are two-sided ideals. Since JS = 0, then *S* is a left C^*/J -module. However, $C^*/J \simeq I \simeq S$ is a division ring; therefore *S* is a left (and right) projective module over the ring C^*/J . On the other hand the canonical ring morphism $\pi: C^* \to C^*/J$ is left and right flat. Hence *S* is also left injective as the *C**-module. Thus *S* is injective in \mathbf{M}^C .

We denote by \mathscr{C} the localizing subcategory of \mathbf{M}^C generated by simple projective right *C*-comodules. By Proposition 5.2 it follows that $\mathscr{G} \cap \mathscr{C} = \mathbf{0}$. The preceding result implies that \mathscr{C} is closed under injective envelopes. Now we can apply Lemma 5.4, $C = D \oplus E$ where $D = t_{\mathscr{G}}(C_C)$ and $E = t_{\mathscr{C}}(C_C)$. By [5, Theorem 4.2], *D* and *E* are subcoalgebras. Clearly *D* is a right singular coalgebra and *E* is a cosemisimple coalgebra.

REFERENCES

- 1. E. Abe, "Hopf Algebras," Cambridge Univ. Press, 1977.
- 2. Y. Doi, Homological coalgebra, J. Math. Soc. Japan 33 (1981), 31-50.
- 3. P. Gabriel, Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- 4. I-P. Lin, Semiperfect coalgebras, J. Algebra 49 (1977), 357-373.
- 5. C. Năstăsescu and B. Torrecillas, Torsion theories for coalgebras, J. Pure Appl. Algebra 97 (1994), 203–220.
- C. Năstăsescu, B. Torrecillas, and Y. Zhang, Hereditary coalgebras, Comm. Algebra, 24 (1996) 1521–1528.
- 7. B. Stenström, "Rings of Quotients," Springer-Verlag, Berlin/New York, 1975.
- 8. M. E. Sweedler, "Hopf Algebras," Benjamin, New York, 1969.
- 9. M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 629-644.
- 10. B. Torrecillas, F. Van Oystaeyen, and Y. Zhang, Coflat monomorphism of coalgebras, preprint.