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INTRODUCTION

Rings and modules of quotients with respect to an additive topology FF

or a localizing subcategory of R y Mod were introduced by Gabriel in his
w xthesis 3 , and have been an important tool in ring theory for more than 20

years. If CC is the localizing subcategory of R y Mod associated to FF,FF

then we can consider the quotient category R y ModrCC and the canoni-FF

Ž w x w x.cal functor T : R y Mod ª R y ModrCC see 3 and 7 . It is wellFF FF

Žknown that T has a right adjoint S : R y ModrCC ª R y Mod in factFF FF FF

the existence of such a right adjoint functor is equivalent to the fact that
w x.the subcategory we factor by is localizing; see 3 . The quotient ring RFF

associated to FF is an approach to the quotient category in the sense that
under certain conditions R y Mod is equivalent to the quotient categoryFF

R y ModrCC . This situation represents the perfect localization of ringsFF

Ž w x.or the flat epimorphism of rings; see 7, p. 225 . Starting from the
localization for rings, we develop a theory of ‘‘localization’’ for coalgebras,
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giving reasonable answers in this paper. More exactly, if C is a coalgebra
Ž .over the field k, and TT is a dense subcategory or a Serre class of the

category M C of right C-comodules, we can consider the quotient category
M CrTT and the canonical functor T : M C ª M CrTT. The key step comes

Žnow: instead of considering that TT is a localizing subcategory i.e., TT is
.closed under arbitrary direct sums or, equivalently, T has a right adjoint ,

Žwe will ask TT to be a colocalizing subcategory i.e., the functor T has a left
.adjoint H . We will see later that a colocalizing subcategory is also

localizing. The colocalizing subcategory TT is called perfect if H is an exact
Žfunctor. This situation is dual to the perfect localization of rings or the

.flat epimorphism of rings .
This paper is divided into five sections. In Section 1 we give some

properties of left coflat monomorphisms of coalgebras. A study of colocal-
ization in an abelian category is made in Section 2. We apply these results,
in Section 3, to the category M C of right C-comodules, introducing the
quotient coalgebra with respect to a colocalization as an analogue of the
quotient ring. We also give the main properties of the quotient coalgebra.
In Section 4 we study perfect colocalization on M C, proving that a perfect

Ž .colocalization is given by a left coflat monomorphism. It follows from
Section 1 that we can associate a perfect colocalization to any coflat
monomorphism of coalgebras. The last section is concerned with applica-
tions. A relevant example is the Goldie torsion theory, to which case we
apply our theory.

NOTATION AND PRELIMINARIES

Ž . ŽLet k be a field. By k-space k-map we mean a k-vector space k-linear
.map . All unadorned tensor products, Hom, etc., will be over k. The reader

w x w xis referred to the books 1 and 8 for notions and notations concerning
coalgebras and comodules. The category of k-coalgebras is denoted by

Ž .Cog . If C is a coalgebra, the categories of right resp. left C-comodulesk
C Ž C .is denoted by M resp. M . The fact that a k-space M is an object of

Ž . Csuch a category is denoted by M resp. M . If M, N g M , the k-spaceC C
Ž .of C-comodules maps between M and N is denoted by Com M, N . IfC

Ž . ŽC, D are coalgebras, the category of C, D -bicomodules i.e., left C-
.comodules, right D-comodules with compatible structures is denoted by

C M D; an object in this category is represented by M .C D
Ž .We will freely use ‘‘sigma notation’’: D c s Ý c m c for the comulti-1 2

Ž .plication of a coalgebra C and r m s Ý m m m for the structure map0 1
of a right C-comodule M.

Ž .For any abelian category AA we denote Z AA its centre, i.e., the commu-
tative ring of all natural morphisms of the identity functor 1 : AA ª AA.AA
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Ž .AA is called a k-abelian category whenever there exists a preserving unit
Ž .ring morphism s : k ª Z AA . Giving such a s is equivalent to defining on

Ž .any Hom M, N a k-space structure such that the composition mapsAA

Ž . Ž . Ž . C CHom M, N = Hom N, P ª Hom M, P are k-bilinear. M , M,AA AA AA

and C M D are instances of k-abelian categories.
An abelian category AA is called locally finite if it has a family of

Ž w x. w xgenerators of finite length see 7 . Following Takeuchi 9 , a k-abelian
Ž .category AA is of finite type if AA is locally finite and Hom M, N is finiteAA

Ž . Ždimensional over k for any objects M, N of finite length. It is easily seen
Ž .that this last property is equivalent to End M is finite dimensional forAA

. w xany simple object M of AA. We recall from 9, Theorem 5.1 that a
k-abelian category is of finite type if and only if it is k-equivalent to a
category MC for some coalgebra C. If AA is of finite type, an object M g AA

Ž .is quasifinite if Hom S, M is finite dimensional for all simple objects SAA

Ž Ž .of AA or equivalently Hom X, M is finite dimensional for all objectsAA

.X g AA of finite length .
Let C be an arbitrary coalgebra, M be a right C-comodule, and N be a

left C-comodule. The cotensor product M I N is the kernel of the k-mapC
w xr m 1 y 1 m r : M m N ª M m C m N. Following 2 , the cotensorM N

product is a left exact functor and preserves inductive limits MC =C M ª
Ž .M M is the category of k-spaces . Moreover the mappings m m c ªk k

Ž . Ž .e c m and c m n ª e c n yield natural isomorphisms M I C , MC
and CI N , N. The cotensor product is associative. If N g MC hasC

Ž .finite dimension, then N* s Hom N, k has a natural structure of left
Ž .C-comodule and M I N* , Com N, M . A left C-comodule M isC C

called left coflat if the functor yI M: MC ª k y Mod is exact. It isC
proved by Takeuchi that M is left coflat if and only if M is an injective

C Ž w x.object of M cf. 2 .
Let now M gC M D. Then M is quasifinite if and only if the functorD

C D Ž . Žw x.yI M: M ª M has a left adjoint denoted by h M, } 9 . TheC yD
Ž .functor h M, } is called the co-hom functor. The following descrip-yD

w x Dtion is given in 9 : if Y g M , then

h M , Y s lim Com Y , M * s lim M I Y U *,Ž . Ž . Ž .yD D i D iªi ª i

Ž .where Y is the family of finite dimensional subcomodules of Y . Wei i D
Ž . Dhave in particular that h D, Y , Y for any Y g M . The functoryD

Ž .h M, } is right exact and commutes with inductive limits; it is an exactyD
Ž .functor if and only if M is injective. If M is quasifinite, then e M sD D yD

Ž .h M, M has a natural structure of coalgebra, called the co-endomor-yD
Ž w x. Ž Ž . .phism coalgebra of M see 9 ; M becomes then an e M , D -bico-yD

Ž .module. For any bi comodules M , N , and X , with quasifinite M ,C D D C C
Ž . Ž .there exists a canonical map d : h M, N I X ª N I h M, X ,yC D D yC
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which is an isomorphism if either N is injective or M is quasifinite andD C
Ž w x.injective see 9, 1.13 .

1. COFLAT MONOMORPHISMS

C ŽLet w : C ª D be a coalgebra morphism. Then any M g M with the
. Žstructure map r : M ª M m C becomes a right D-comodule by 1 mM

. Ž . C Dw r : M ª M m D. This defines an exact functor } : M ª M . InM w

particular, C itself may be regarded as a left and right D-comodule. Since
C gD MC, we can consider Nw s N I C g MC for any N g M D, whichD

Ž . w x Ž .is a right adjoint of } by 2, Proposition 6 . We observe that } sw w

Ž . Ž .yI C, where C is considered a C, D -bicomodule. C is a C, C -bico-C
Ž . Cmodule, thus it is also a D, D -bicomodule via w. Let now M g M . Since

Ž .Ž . Ž .Ž .1 m w m 1 r m 1 r s 1 m w m 1 1 m D r , we have thatM C M C M M C M M
Ž .r M : M I C. Denote by r : M ª M I C the co-restriction ofM w D M w D

C� 4r . Clearly the maps r , M g M define a natural morphism r :M M
Ž .w Ž .C1 ª } ( } .M w

For M s C we have r s D ; this yields a canonical morphism D:C C
Ž .C ª CI C, which is a C, C -bicomodule morphism. LetD

p1

CI C i CD
p2

be the restriction of the canonical maps C m C ª C defined by c m c ª1 2
Ž . Ž Ž .. Ž .e c c resp. c m c ª c e c . Clearly p is a D, C -bicomodule mor-1 2 1 2 1 2 1

Ž .phism and p is a C, D -bicomodule morphism. Also p D s p D s 1 .2 1 2 C
A characterization of monomorphism in the category of Cog was givenk
w xin 5, Theorem 3.5 . Assume now that w is left coflat morphism, i.e., the

� D < 4functor yI C is exact. In this case TT s M g M M I C s 0 is aD w D
localizing subcategory of M D. Let T : M D ª M DrTT be the canonicalw

w xfunctor. By 5, Theorem 4.2 , there exists a subcoalgebra A of D such that
� D < Ž . 4TT s M g M r M : M m A . Moreover, A is a co-idempotent coal-w M

gebra, i.e., A s A n A.

PROPOSITION 1.1. If w : C ª D is a left coflat monomorphism, then

Ž .1 Ker w and Coker w belong to TT ;w

Ž . D2 DrA is quasifinite in M ;
Ž . Ž . D3 If E DrA is the injectï e en¨elope of DrA in M and j: DrA ª

Ž .E DrA is the inclusion map, then Coker j belongs to TT ;w

Ž . Ž .4 T D is a quasifinite injectï e cogenerator of the quotient categoryD
M DrTT .w
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Ž .Proof. 1 We consider the functors

Ž .} w TC D D

6

6

6

6M M M rTT ,wwŽ . S}

Ž . Ž .wwhere S is the right adjoint of T. If F s T ( } and G s } (S, thenw

w xby 5, Theorem 6.1 , F and G give an equivalence of categories between
C D wM and M rTT . Since w is a monomorphism, we obtain by 5, Theoremw

x D3.5 that Ker w I C s 0, hence Ker w g M rTT . Next consider the exactD w

sequence in M D, C ª D ª Coker w ª 0. Applying yI C we getw D
C I C ª DI C ª Coker w I C ª 0. Identifying DI C with C,D w I D D DD

w I C is replaced by p : CI C ª C. Since p (D s 1 and D is anD 1 D 1 C
isomorphism, we obtain that p is an isomorphism; therefore1
Coker w I C s 0 and Coker w g TT .D w

Ž . Ž . Ž .4 Since A g TT , then T D s T DrA . Since Ker w, Coker w g TT ,w D w

Ž . Ž . Ž . Ž . Ž .we obtain that T C s T D . Therefore F C s T C s T DrA sD D C D
Ž . Ž .T D . However, F is an equivalence; hence F C is a quasifiniteD C

Ž .injective cogenerator. Thus T D has the same properties.D
Ž . D Ž .2 Let M be a simple object in M . Then Com M, DrA s 0 ifD

M g TT . Assume that M is TT -torsion-free. Then the canonical morphismw w

Com M , DrA ª Hom D T M , T DrA ,Ž . Ž . Ž .Ž .D M r TTw

Ž . Df ª Tf , is injective. Since T M is simple in M rTT ,w

Ž Ž . Ž ..DHom T M , T DrA is finite dimensional. It follows that DrA isM r TTw

quasifinite.
Ž . Ž .3 Applying T to the exact sequence 0 ª DrA ª E DrA ªj

Ž .Coker j ª 0, we obtain the exact sequence 0 ª T DrA ªT Ž j.
Ž Ž .. Ž . Ž . Ž .T E DrA ª T Coker j ª 0. Since T DrA , T D is injective, theD

Ž . Ž .essential monomorphism T j is an isomorphism; therefore T Coker j s
0, i.e., Coker j g TT .w

PROPOSITION 1.2. Let C be a coalgebra and TT a localizing subcategory of
MC. Then the quotient category MCrTT is a k-abelian category of finite type.

Proof. Let T : MC ª MCrTT be the canonical functor and S its right
w x Ž .Cadjoint. Following 9 , it is sufficient to prove that End X is finiteM r TT

dimensional for any simple object X g MCrTT. The functor S is fully
Ž . Ž Ž . Ž .. Ž .Cfaithful; thus Hom X, X , Com S X , S X . However, S XM r TT C

Ž Ž ..contains a nonzero simple object M. Since T S X , X, we have that
Ž . Ž . Ž .CS X rM g TT and T M , X . Finally Hom X , X ,M r TT

Ž Ž . . Ž Ž .. Ž .CHom T M , X , Com M, S X , Com M, M , which is finiteM r TT C C
dimensional.
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2. COLOCALIZATION IN ABELIAN CATEGORIES

ŽLet AA be an abelian category and CC a dense subcategory or a Serre
.class of AA, i.e., for any exact sequence 0 ª M9 ª M ª M0 ª 0 in AA,

Ž w x.M g CC if and only if M9, M0 g CC see 3, p. 365 . We can construct the
quotient category AArCC and the canonical exact functor T : AA ª AArCC. We

w xrecall from 3 that the objects of AArCC are just the objects of AA, and if
M, N g AA, then

Hom M , N s lim Hom M9, NrN9 MrM9 g CC , N9 g CC .� 4Ž . Ž .AAr CC AAªM 9 , N 9

The quotient category AArCC is abelian. The dense subcategory CC is called
localizing if T has a right adjoint. In the case where AA is a Grothendieck
category, the dense subcategory CC is localizing if and only if CC is closed
under arbitrary direct sums.

We are interested in the situation where CC is a colocalizing subcategory,
i.e., the canonical functor T has a left adjoint H: AArCC ª AA. The follow-

w xing result is not new; it is an exercise in 3, p. 369 .

PROPOSITION 2.1. Let CC be a colocalizing subcategory of the abelian
category AA and let X be an object of AArCC. The following assertions hold:

Ž . Ž .a If Y g CC is a quotient object of H X , then Y s 0.
Ž . Ž .b If 0 ª M ª P ª H X ª 0 is an exact sequence in AA andf

M g CC, then f splits.
Ž . Ž Ž . . Ž Ž .c The canonical morphism Hom H X , M ª Hom TH X ,AA AAr CC

Ž .. Ž .T M sending f to T f is an isomorphism for any M g AA.
Ž .d If C: 1 ª T ( H and F: H(T ª 1 are the natural mor-AAr CC AA

phisms defined by the adjunction, then C is an isomorphism and, for any
M g AA, there exists an exact sequence

Ž .F M 6

0 ª Ker F M ª HT M M ª Coker F M ª 0Ž . Ž . Ž .

Ž . Ž .with Ker F M , Coker F M g CC.
Ž .e The functor H is fully faithful.

wProof. Everything follows by 3, Lemmas 1 and 2 and Proposition 3, pp.
x o370, 371 using the dual category AA . In this case CC remains a Serre class

in AAo, but H becomes a right adjoint of the canonical functor T :
AAo ª AAorCC.
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PROPOSITION 2.2. Let CC be a colocalizing subcategory of AA. Then the
following statements hold:

Ž . Ž Ž . .1 M g CC if and only if Hom H X , M s 0 for any X g AArCC.AA

Ž . Ž .2 If AA satisfies AB3* i.e., AA has arbitrary direct products , then CC is
closed to direct products.

Ž .3 If moreo¨er AA is a Grothendieck category, then CC is also a
localizing subcategory.

Ž . Ž .Proof. 1 If M g CC, the desired relation follows by Proposition 2.1 a .
Ž . Ž Ž . Ž ..Conversely, if M f CC, then T M / 0. Hence Hom T M , T M /AAr CC

Ž Ž . Ž .. Ž Ž . .0. However, Hom T M , T M , Hom HT M , M s 0, providingAAr CC AA

a contradiction.
Ž . Ž .2 Directly from 1 .
Ž . Ž . Ž .3 Let M be a family of objects of CC. We have by 2 thati ig I

Ł M g CC, and since [ M is a subobject of Ł M , we obtainig I i i ig I iig I
that [ M g CC, i.e., CC is a localizing subcategory.iig I

From now on, we assume in this section that AA is an abelian category
with AB3*, and CC is a colocalization subcategory of AA. If M g AA we can

Ž .define s M s F M , where M are the subobjects of M with thei i i
property that MrM g CC. Since CC is closed to direct product, we obtaini

Ž . Ž .from the exact sequence 0 ª Mrs M ª Ł MrM that Mrs M g CC.i i
Ž .The correspondence M ª s M defines a subfunctor of the identity func-

Ž .tor. Indeed, if u: M ª N is a morphism in AA, we obtain from s M : M
Ž . Ž . Ž . Ž .ª N ª Nrs N that Im p (u : Nrs N , hence Im p (u g CC.u p

Ž . Ž . Ž .Ž Ž ..Therefore Ker p (u = s M . Thus p (u s M s 0, showing that
Ž Ž .. Ž .u s M : s N .

PROPOSITION 2.3. Let M g AA. Then there exists X g AArCC such that
Ž . Ž .M , H X if and only if s M s M and M is CC-projectï e, i.e., for any

diagram

M

f

66 6

P P9 0u

with Ker u g CC, there exists g : M ª P such that f s ug.

Ž . Ž . Ž .Proof. If M , H X , Proposition 2.1 a shows that s M s M. That M
is CC-projective follows from the fact that H is a left adjoint of T.
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Ž . Ž . Ž .Conversely, Coker f M g CC and s M s M imply that Coker f M
s 0. The diagram

M

1M

6 66

HT M M 0 ,Ž .
Ž .f M

Ž . Ž .where Ker f M g CC shows that there is g : M ª HT M such that
Ž . Ž . Ž . Ž .f M g s 1 . Hence HT M , M [ Ker f M ; that is, Ker f M is aM

Ž . Ž . Ž .quotient object of HT M . Therefore Ker f M s 0 and HT M , M.

PROPOSITION 2.4. Let CC be a colocalizing subcategory of AA and M g AA.
The following properties hold:

Ž . Ž . Ž .1 Im f M s s M for any M g AA.
Ž . Ž .2 If CC is closed under taking injectï e en¨elopes, then f M is a

monomorphism for any M.

Ž .Proof. 1 Let u: M ª Y be a morphism, where Y g CC. Since
Ž Ž .. Ž Ž .. Ž .Im u(f M : Y, we obtain that Im u(f M s 0. Hence Im f M :

Ž . Ž . Ž .Ker u. Thus we have that Im f M : s M . On the other hand s M :
Ž . Ž .Im f M , since Coker f M g CC.
Ž .2 We consider the diagram

Ž .f Mi6 6 6

0 Ker f M HT M M ,Ž . Ž .

6

j

E Ker f MŽ .Ž .

Ž Ž .. Ž .where E Ker f M g CC is the injective envelope of Ker f M . There is
Ž . Ž Ž .. Ž .some u: HT M ª E Ker f M such that ui s j. Proposition 2.1 a

Ž .shows that u s 0. Hence j s 0 and Ker f M s 0.

3. COLOCALIZATION IN THE CATEGORY MC

Let C be a k-coalgebra and TT a localizing subcategory of MC. We know
w x �5 that there exists a subcoalgebra A of C such that TT s M gA

C < Ž . 4 � C < H 4 H �M r M : M m A s M g M A M s 0 , where A s f gM
< Ž . 4C* f A s 0 is a two-sided ideal of the dual algebra C*. Moreover, A is

a co-idempotent subcoalgebra, i.e., A s A n A.
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We denote by TT the localizing subcategory associated to a co-idempo-A
w xtent subcoalgebra A. It is also proved in 5 that TT is a T.T.F. class, i.e.,A

Ž w x.TT is closed under direct products cf. 7, VI.8 . Let us consider theA
canonical functor T : MC ª MCrTT , which has a right adjoint S : MCrTTA A A A
ª MC, since TT is localizing.A

PROPOSITION 3.1. With the abo¨e notation, the following assertions are
equï alent:

Ž . Ž .1 T has left adjoint H i.e., TT is a colocalizing subcategory .A A A

Ž .2 CrA is a quasifinite right C-comodule.

Proof. By Proposition 1.2. Hence MCrTT is a k-abelian category of finiteA
w x Ctype, then 9, Theorem 5.1 there exists a coalgebra D such that M rTT isA

equivalent via the pair of functors
FC D6

6M rTT M .A G

Since T is exact and commutes with direct sums, the functor F (T :A A
C D w xM ª M also has these properties. By 9, Proposition 2.1 we obtain that

Ž Ž .. w xF (T , yI P, where P s F T C . Now by 9, Proposition 1.9A D D A C
yI P has a left adjoint if and only if P is quasifinite in M D. Since F isD D

Ž .an equivalence, P is quasifinite if and only if T C is quasifinite inD A C
C Ž . Ž . CM rTT . Clearly T C s T CrA . If X is a simple object in M rTT ,A A C A A

C Ž .then there exists a simple object M in M such that X s T M . ThenA
Ž Ž .. Ž Ž . Ž .. ŽC CHom X, T CrA s Hom T M , T CrA , Com M,M r TT A M r TT A A CA A

Ž .. Ž .S T CrA , Com M, CrA , since CrA is an essential subobject ofA A A
Ž . Ž . CS T CrA . We conclude that T C is quasifinite in M rTT if and onlyA A A C A

if CrA is so.

Ž .Remark 3.2. With the above notations T C is a cogenerator of theA C
C C Ž .category M rTT . Indeed, if X g M rTT , then X s T M for someA A A

C Ž .Ž I . CM g M . We have an exact sequence 0 ª M ª C in M for someC
set I. Since T is exact and commutes with direct sums, we obtain an exactA

Ž . ŽŽ ..Ž I . C Ž .sequence 0 ª T M ª T C in M rTT . Thus T C is a cogener-A A C A A C
ator in MCrTT .A

For the rest of the section we assume that CrA is quasifinite in MC.
With the above notations we have two pairs of adjoint functors:

TA FC C D

6

6
6

6M M rTT MAH GA

Ž . Ž .and the isomorphisms H (T , H (G ( F (T and T ( H ,A A A A A A
Ž . Ž . CF (T ( H (G , 1 . Moreover H (G is a left adjoint of theA A M r TT AA

Ž .Ž .functor F (T . Therefore the object H (T C does not depend on theA A A C
choice of the coalgebra D and the functors F, G. Let us denote P sD
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Ž .Ž .F (T C . Since CrA is quasifinite, P is a quasifinite D-comodule;A C D
D w xalso P is a cogenerator of M . We obtain by 9, Proposition 1.10 thatD

D Ž .H (G is the co-hom functor sending Y g M to h P , Y . In partic-A D yD D D
Ž .Ž . Ž . Ž .ular H (T C , h P , P s e P , which has a natural coalge-A A C yD D D yD D

bra structure. This coalgebra structure does not depend on the choice of
D. Indeed, D9 is another coalgebra such that there exists an equivalence

D D 9 X Ž .Ž . XU: M ª M such that F9 s U( F. If P s F9(T C , then P sD 9 A C D 9

Ž . Ž . Ž X .U P . Since U is an equivalence we clearly have e P , e P .D yD D yD 9 D 9

As a consequence we can assume that MCrTT s M D. Since T is exactA A
and commutes with inductive limits, we have that T s yI P , whereA C D

Ž . Ž . DP s T C and H s h P , } . If X g M the natural morphismD A C A yD D D
Ž . Ž . Ž .c X : X ª h P , X I P is an isomorphism from Section 2 . InD yD D D C D

Ž . w x Cfact c X is just the natural morphism defined in 9, 1.7 . Let M g M .
Ž . Ž .From Section 2 we have the canonical map f M : h P , M I P ªyd D C D

Ž . Ž .M, with Ker f M , Coker f M g TT. We can write M s D M , wherel l

M s are the finite dimensional subcomodules of M. Then M I P sl C D
Ž . Ž .lim M I P . Since the functor h P , } commutes with inductiveª l l C D yD d

Ž . Ž .limits, we obtain that h P , M I P s lim h P , M I P . OnyD D C D ª l yD D l C D
the other hand the functor T sends any simple object S of MC either to 0A

C Ž .or a simple object of M rTT . Therefore T M has finite dimension forA A
any finite dimensional M g MC. However, T s yI P ; thus M I PA C D l C D

Ž .is a finite dimensional D-comodule for any l. Hence h P , M I PyD D C D
Ž .s lim Com M I P , P *.ª l D l C D D

Ž . Ž .On the other hand M s h C, M s lim Com M , C *. Since PyC ª l C l D
Ž .s CI P , then we have for each l a natural morphism Com M , C ªC D C l

Ž .Com M I P , P , u ª uI 1 . By dualizing we obtain a naturalD l C D D C PD
Ž . Ž .morphism Com M I P , P * ª Com M , C *. Taking inductive lim-D l C D D C l

Ž . Ž .its we just obtain the morphism f M : h P , M I P ª M. In par-yD D C D
Ž . Ž .ticular, for M s C we obtain the morphism f C : e P ª C. SinceC yD D

Ž .T s yI P , it follows from the above facts that f C is a coalgebraA C D
w x Ž .morphism. By 9, 1.13 we have a natural morphism d : h P , M I PyD D C D
Ž . Ž . Cª M I h P , P s M I e P . Then for any M g M , the mor-C yD D D C yD D

Ž . Ž .phism f M can be obtained as follows: h P , M I P ªyD D C D d

Ž . Ž .M I h P , P s M I e P ª M I C , M. HenceC yD D D C yD D 1I f ŽC . CC
Ž . Ž Ž .. Ž . Ž .f M s 1I f C (d . Moreover HT M s h P , M I P is a rightC yD D C D
Ž . Ž .e P -comodule, and the right C-comodule structure that HT M hasyD D
Ž .via f C is just the original C-comodule structure. Summarizing we have

the following result:

PROPOSITION 3.3. Assume that CrA is quasifinite in MC. With the
preceding notation we ha¨e:

Ž . Ž .Ž . Ž .1 E s H (T C has a natural coalgebra structure and f C :A A
Ž . Ž .E ª C is a coalgebra morphism. Moreo¨er Ker f C , Coker f C g TT .A
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Ž . Ž . Ž . H2 Im f C s s C s F Ker f s A C, where A is re-f g Com ŽC , A.C

garded as a right C-comodule.
Ž . Ž .Ž .3 H (T M has a natural right E-comodule structure for anyA A

M g MC.

Ž .Proof. It remains to show only the second assertion. Clearly s C :
F Ker f.f g Com ŽC , A.C

Conversely, let us take some M g TT and g : C ª M a comoduleA
morphism. We have a monomorphism u: M ª AŽ I . : AI for some set

Ž .I. Then Ker g s F Ker p ug , where p is the canonical projec-ig I i i
Ž .tion. Hence F Ker f : F Ker g s s C .f g Com ŽC , A. g g Com ŽC , M ., M g TTC C AHŽ H . H Ž . HNext A CrA C s 0 implies that CrA C g TT . Thus s C : A C.A

Ž H .On the other hand if f : C ª A is a comodule morphism then f A C
H Ž . H H H Ž .: A f C : A A s 0. Hence A C : Ker f. This shows that A C : s C ,

proving the desired equality.

The coalgebra E is called the quotient coalgebra with respect to the
localizing subcategory TT .A

We recall that a coalgebra C is called right semiperfect if the category
C Ž w x.M has enough projective objects see 4 . The next result characterizes

the localizing subcategories for these coalgebras.

PROPOSITION 3.4. If C is a right semiperfect coalgebra, then CrA is a
right quasifinite comodule, i.e., TT is a colocalizing subcategory.A

Proof. Let M be a simple object of MC. Since C is right semiperfect,
w xM has a projective cover P ª M ª 0 4 . Moreover, since M is finite

dimensional, P is also finite dimensional. The fact that C is quasifinite
Ž .yields that Com P, C is finite dimensional. The exact sequence C ªC

Ž . Ž .CrA ª 0 produces the exact sequence Com P, C ª Com P, CrA ªC C
Ž . Ž .0 since P is projective . Hence Com P, CrA is finite dimensional. FromC

Ž . Ž .the exact sequence 0 ª Com M, CrA ª Com P, CrA , we concludeC C
Ž .that Com M, CrA is finite dimensional. Thus CrA is quasifinite.C

Ž .4. PERFECT EXACT COLOCALIZATION

Through this section we keep the notations of Section 3.

PROPOSITION 4.1. The following assertions are equï alent:

Ž . C C1 The functor T : M ª M r TT has an exact left adjoint H :A A A
MCrTT ª MC.A

Ž . Ž . Ž .2 i CrA is quasifinite right C-comodule and ii Coker j g TT ,A
Ž .where j: CrA ª E CrA is the inclusion morphism of CrA into its injectï e

en¨elope.
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Ž . Ž . Ž .Proof. 1 « 2 . Clearly i follows from Proposition 3.1. Since H isA
exact, then T carries injective objects to injective objects. In particularA

Ž . Ž . Ž . Ž .T C is injective. However, T C s T CrA ; therefore T ArC isA C A C A A
Ž .injective. The morphism j is essential, so T j is essential. SinceA

Ž Ž .. Ž .T E CrA is injective, we obtain that T j is an isomorphism. ThusA A
Coker j g TT .A

Ž . Ž . C2 « 1 . By Proposition 3.1, T has a left adjoint H . Let Q g MA A
Ž .Ž I .be an injective object. Then Q is a direct summand of C for someC

Ž .nonempty set I . Since T commutes with direct sums, we obtain thatA
Ž . Ž Ž ..Ž I . Ž . Ž .T Q is a direct summand of T C . Now T C s T CrA and byA A C A C A

Ž . Ž Ž .. Ž .ii they are equal to T E CrA . Since E CrA is TT-torsion-free, weA
Ž Ž .. Ž w x.obtain that T E CrA is injective in TT see 3, Chapter III . We haveA A

seen that T carries injectives to injectives; therefore H is an exactA A
functor.

C Ž .The colocalizing subcategory TT of M will be called perfect or exact if
any of the equivalent conditions in the last proposition holds.

PROPOSITION 4.2. The condition Coker j g TT is satisfied in the following
cases:

Ž . Ž w x.1 C is a hereditary coalgebra i.e., gl.dim C F 1, 6 .
Ž .2 TT is closed under injectï e en¨elopes.A

Ž . C3 The quotient category M rTT is a semisimple category.A

Ž . Ž .Proof. 1 CrA is a right and left injective C-comodule since C is a
hereditary coalgebra.

Ž .2 Since TT is closed under injective envelopes, we obtain that A is
an injective right C-comodule and C s A [ CrA. Therefore CrA is alsoC
an injective right C-comodule.

Ž . Ž .3 TT semisimple implies that T j is an isomorphism; thereforeA A
Coker j g TT.

We can state now the main result of this section.

THEOREM 4.3. Let C be a coalgebra and A be a co-idempotent subcoalge-
Žbra such that TT is a colocalizing subcategory i.e., CrA is a quasifinite rightA

.C-comodule . Then the following assertions are equï alent:

Ž .1 TT is a perfect colocalizing subcategory.A

Ž .2 If E is the quotient coalgebra associated to TT , then the naturalA
coalgebra morphism w : E ª C is a left coflat monomorphism.

Ž . Ž .Moreo¨er, if 1 and 2 hold, the localizing subcategory TT associated to ww

is TT .A
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Ž . Ž .Proof. 2 « 1 . Follows from Propositions 1.1 and 4.1.
Ž . Ž .1 « 2 . With the notations from Section 3, we have T s yI P .A C D

Since Ker w, Coker w g TT , then Ker w I P s 0. Since P is injectiveA C D D
w x Ž .and quasifinite, 9, Proposition 1.14 shows that the natural morphism *

d : h P , M I P ª M I e PŽ . Ž .yD D C D C yD D

is an isomorphism for any M g MC. Then P is an injective cogenerator.C D
Hence M I P s 0 if and only if M I E s 0. Indeed, M I P s 0C D C C D

Ž .implies M I E s 0. The converse follows from the fact that h P , XC yD D
Ž .s 0 if and only if X s 0. This is clear since h P , X syD D

Ž . Ž .lim Com X , P *, where X s D X and X is the family ofª ig I C i D ig I i i ig I
Ž .all finite dimensional subcomodules of X ordered by inclusion . If X / 0,

Ž .since P is an injective cogenerator we have Com X , P * / 0 for someD c i D
Ž .i g I. However, this implies that h P , X / 0.yD D

w xSince Ker w I P s 0, then Ker w I E s 0. By 5, Proposition 3.5 weC D C
obtain that w is a monomorphism in the category Cog .k

Let us consider the diagram

Ž .h P , }yD DE D6

M M
6

6
Ž .}yI E wC

TA

6

CM

Ž . Ž .The isomorphism * shows that yI E , h P , } (T . SinceC yD D A
Ž . w xh P , } is an equivalence 9, Theorem 3.5 , then the functor yI EyD D C

is exact, i.e., E is a left coflat C-comodule.
Ž . � C < 4The isomorphism * also shows that TT s M g M M I E s 0 sw C

� C < 4M g M M I P s 0 s Ker T s TT .C D A A

COROLLARY 4.4. Let C be a right semiperfect coalgebra and suppose that
TT is a localizing subcategory of MC. If MCrTT is a semisimple category,A A
then TT is a perfect colocalizing subcategory.A

Proof. By Propositions 4.2 and 3.4.

COROLLARY 4.5. Let C be a hereditary coalgebra. If TT is a colocalizingA
subcategory in MC, then TT is a perfect localizing subcategory.A

COROLLARY 4.6. Let TT be a localizing subcategory closed under injectï eA
en¨elopes. Then TT is a perfect colocalizing subcategory. Moreo¨er the associ-A
ated quotient coalgebra is a subcoalgebra E of C such that E is a left coflat
C-comodule and E l A s 0.
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Ž .Proof. Since TT is closed under injective envelopes, then A s E A ,A
where A is regarded as a right C-comodule. Then C s A [ CrA in MC.
Hence CrA is an injective and quasifinite right C-comodule. This means
that TT is a perfect colocalizing subcategory. The second part follows fromA
Proposition 2.4 and Theorem 4.3. Also E l A s 0 since A and E are
subcoalgebras with AI E s 0.C

5. GOLDIE TORSION THEORY

Let AA be a Grothendieck category and PP be the class of all objects of
AA of the form MrL, where M, L g AA and L is an essential subobject of
M. Then PP is closed under homomorphic images. Let GG be the smallest
localizing subcategory of AA containing PP. It is easily seen that GG is the
class of all M g AA with the property that MrM9 has a subobject belonging
to PP for any M9 ; M. The localizing subcategory GG is called the Goldie

Ž . Ž .torsion theory of AA. If M g GG, since M is essential in E M i.e., E M rM
Ž . Ž .g PP, the exact sequence 0 ª M ª E M ª E M rM ª 0 yields that

Ž .E M g GG. Thus GG is closed under injective envelopes.
We focus our attention on the case AA s MC, C a coalgebra. Let us

Ž .denote by Spec C the class of all types of simple right C-comodules,
Ž . �w x < C 4 w xi.e., Spec C s S S g M , S is a simple right comodule , where S s

� C < 4 Ž . Ž .S9 g M S9 , S . Clearly Spec C is a set. If X is a subset of Spec C ,
we denote by CC the smallest localizing subcategory containing X. It isX

� C <easily seen that CC s M g M for any strict subobject M9 of M, MrM9X
4has a subobject isomorphic with an object in X for any X 9 : M . We

denote by P the set of all types of simple projective objects of MC. The
following example shows that it is possible to have P s B.

� 4EXAMPLE 5.1. Let S s c , c , . . . be a countable set and C s kS, the0 1
free k-module of basis S. Then C is a coalgebra with the comultiplication
Ž . Ž .D c s Ý c m c and co-unit e c s d for n g NN. The dual alge-n iqjsn i j n n, 0

ww xxbra C* is isomorphic to the algebra k x of formal series in the indeter-
minate X. Also MC is isomorphic to the category Tors of all torsion

ww xxmodules over the algebra k x , but the only projective object of Tors is
zero.

PROPOSITION 5.2. The Goldie torsion theory GG of MC is generated by the
simple objects of MC, which are not projectï e, i.e., GG s CC . InSpecŽC .yP
particular if P s B, then GG s MC.

Proof. Let M g MC be a simple projective object such that M g GG.
Then M , XrY, where Y is essential in X. The exact sequence 0 ª Y ª
X ª XrY ª 0 shows that Y is a direct summand of X. Hence X s Y and
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M s 0, which is a contradiction. It remains to show that any simple M
with M f GG is projective. Let us consider the following diagram in MC:

M

f

6

u6 6 6 6

0 Ker u X X 0 0.

Consider the pullback diagram of M Ł X :X 0

qMM X6 6 6 6Ł0 Ker q M 0M

6

X 0

6 6

fr qX

u6 6 6 6

Ker u0 X X 0 0.

This shows that Ker q is not essential in M Ł X. However, M isM X 0

simple. Then there exits a morphism ¨ : M ª M Ł X such that q ¨ sX 0 M
1 . If g s q ¨ , then ug s uq ¨ s fq ¨ s f. Thus M is projective.M X X M

Since GG is closed under injective envelopes, Corollary 4.6 shows that GG

Ž .is a perfect colocalizing subcategory. We denote E s s C . Then GG sGG

� C < 4M g M M I E s 0 and E is a subcoalgebra with E a left coflat C-C
comodule.

PROPOSITION 5.3. Let C be a coalgebra, GG the Goldie torsion theory, and
Ž .E s s C . The following properties hold:GG

Ž .1 E is a cosemisimple subcoalgebra of C.
Ž . C E2 M rGG is equï alent to M .
Ž .3 E is the sum of all simple subcoalgebras B of C with the prop-

erty that B is a sum of minimal left co-ideals isomorphic with simple left C-
Ž .comodules of the form M* s Hom M, k , where M is a simple projectï e

right C-comodule.

Ž . Ž . C Ž CProof. 1 and 2 . Any object of M rGG is injective i.e., M rGG is a
w x. Cspectral category, 7 and contains a nonzero simple object. Thus M rGG is

a semisimple category. Since GG is a perfect colocalizing subcategory,
MCrGG is equivalent to M E. Hence M E is also a semisimple category and
E is a cosemisimple coalgebra.

Ž .3 Let E9 be the sum of all the coalgebras with the mentioned
Ž .property in 3 . If M is a projective right C-comodule, then M* is an

injective left C-comodule. Therefore E9 is an injective left C-comodule
� C < 4and it is left coflat. Let GG9 s M g M M I E9 s 0 , which is clearly aC

Ž . Ž .perfect colocaling subcategory. Since s C s E and s C s E9, we onlyGG GG 9
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have to prove that GG s GG9. Let M g MC. Then M g GG if and only if
Ž .Com S, M s 0 for any simple projective right comodule S. However,C
Ž .Com S, M s M I S*. Thus M g GG if and only if M I S* s 0 for anyC C C

projective right comodule S, which coincides with M I E9 s 0, i.e.,C
M g GG9.

The next result gives a sufficient condition in order to have that the
Ž .coalgebra E is a direct summand as coalgebra of C. Let AA be a

Grothendieck category and let CC be a localizing subcategory of AA. We
Ž .denote by t M the sum of all subobjects N : M such that N g CC. SinceCC

Ž .C is closed under direct sums and quotients it is clear that t M g CC.CC

Ž Ž .. w xAlso t Mrt M s 0. Therefore the left exact functor t is a radical 7 .CC CC CC

LEMMA 5.4. Let AA be a locally finite Grothendieck category and let CC1
and CC be two localizing subcategories of AA with the following properties:2

Ž .1 CC l CC s 0.1 2

Ž .2 If S is a simple object in AA, then S g CC or S g CC .1 2

Ž .3 CC and CC are closed under injectï e en¨elopes.1 2

Ž .Then we ha¨e the decomposition M s M [ M , where M s t M and1 2 1 CC1
Ž .M s t M .2 CC2

Ž . Ž .Proof. By 1 and 2 clearly M l M s 0. Assume that M [ M / M.1 2 1 2
Then there exists a nonzero simple object S g CC and M9 : M such that

Ž .M [ M : M9 and M9rM [ M , S. Since M s t M for i s 1, 2, we1 2 1 2 i CC i

can assume M9 s M.
Let N be a maximal subobject with the properties M : N and1 1 1

Ž .N l M s 0 N always exits by Zorn’s lemma . If X : N is a nonzero1 2 1 1
simple object, then X l M s 0. Hence X g CC and X : M . Thus N is2 1 1 1

Ž .an essential extension of M and by 3 it follows that N g CC . We obtain1 1 1
that M s N . Analogously it results that M is maximal with the property1 1 2
that M l M s 0.2 1

Assume now that S g CC . Since M is maximal with the property1 1
M l M s 0, then the canonical monomorphism 0 ª M ª MrM is1 2 2 1

Ž .essential. By 3 it follows that MrM g CC . The exact sequence MrM1 2 1
ª MrM [ M , S ª 0 yields S g CC . Hence S g CC l CC s 0. This is1 2 2 1 2
a contradiction.

If C is a coalgebra with the property that the Goldie torsion theory GG of
MC is exactly the whole category MC, then we say that C is a singular right

w x w x Ž .coalgebra. Following 1 or 8 , C* s Hom C, k has a natural ring struc-k
Ž . Ž .ture. Indeed if f , g g C*, then fg s f m g D here k m k , k . The

w x w xco-unit e is the identity element of this ring. In 1 or 8 it is proved that
the category MC is isomorphic with a subcategory of left C*-modules,
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Ž . Ž .denoted by Rat C* y Mod . The objects of Rat C* y Mod are called left
rational C*-modules. In the case when dim C - `, then MC is isomorphic
to C* y Mod. In this case C is a singular right coalgebra if and only if the

w xring C* is left singular 7 . We have the very satisfactory decomposition:

ŽPROPOSITION 5.5. If the ring C* is reduced i.e., C* has no nonzero
.nilpotent elements , then the coalgebra C is a direct sum of two subcoalgebras

C s D [ E, where D is right singular coalgebra and E is cosemisimple.

Proof. We first show that if S is a simple projective right C-comodule,
C w xthen S is also an injective object in M . By 2, Proposition 4 it follows that

S is a left projective simple C*-module. Therefore C* s I [ J, where I
Ž .and J are left ideals in C* and I , S as left C*-modules . Then there exit

two orthogonal idempotents e, f g C* such that 1 s e q f , I s C*e, J s
C*f , and ef s fe s 0. If b g J then b s l f for some l g C*. Since
Ž .2el f s el fel f s 0, by hypothesis el f s 0; hence IJ s 0. Analogously
we have JI s 0; hence I and J are two-sided ideals. Since JS s 0, then S
is a left C*rJ-module. However, C*rJ , I , S is a division ring; therefore

Ž .S is a left and right projective module over the ring C*rJ. On the other
hand the canonical ring morphism p : C* ª C*rJ is left and right flat.
Hence S is also left injective as the C*-module. Thus S is injective in MC.

We denote by CC the localizing subcategory of MC generated by simple
projective right C-comodules. By Proposition 5.2 it follows that GG l CC s 0.
The preceding result implies that CC is closed under injective envelopes.

Ž .Now we can apply Lemma 5.4, C s D [ E where D s t C and E sGG C
Ž . w xt C . By 5, Theorem 4.2 , D and E are subcoalgebras. Clearly D is aCC C

right singular coalgebra and E is a cosemisimple coalgebra.
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