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1. Introduction

Quite recently, in the study of differential and integral problems, many authors have focused their interest in obtaining
existence results or properties of solutions under hypothesis of integrability in a weaker sense than the classical Bochner
(respectively Lebesgue in the one-dimensional case) and Pettis integrals. Such an approach is appropriate when the equa-
tions are governed by highly oscillating functions. In this direction, we recall the results obtained on the real line in [4–6,
21] using the Henstock–Kurzweil integral and in the general case of Banach spaces in [22–24] under Henstock–Lebesgue
integrability assumptions or in [20] in Henstock setting.

On the other hand, the study of the dynamics of processes subjected to instantaneously perturbations (such as those ap-
pearing in physics, biology and many other fields) involves impulsive differential problems. These problems were extensively
studied in Bochner integrability case (see [2] and references therein) and, recently, using the Henstock–Lebesgue integral
(in [6]).

The goal of the present paper is to obtain, via Henstock-type integrals, the existence of global solutions to the differential
problem with impulse effects

ẋ(t) = f

(
t, x(t),

t∫
0

h(t, s)x(s)ds

)
, ∀t ∈ [0,1] \ {t1, . . . , tm}, (1)

�x(ti) = Ii
(
x(ti)

)
, ∀i ∈ {1, . . . ,m}, (2)

x(0) = x0. (3)
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Here 0 < t1 < · · · < tm � 1 are the pre-assigned moments of impulse, �x(t) = x(t+) − x(t−) denotes the jump of the
function x at t and the discontinuity at the point ti is described by the function Ii : X → X .

To achieve this, we apply a Darbo-type fixed point theorem established in [15], under some much weaker assumptions
than those previously imposed for similar results (see [15] and the papers cited there).

2. Notations and preliminary facts

Let [0,1] be the unit interval of the real line equipped with the usual topology and the Lebesgue measure μ. Through
this paper X is a separable Banach space with norm ‖ · ‖ and corresponding distance d and for some fixed point x0 ∈ X and
a fixed R > 0, the symbol T R(x0) denotes the closed X-ball of radius R and centered at x0. By C([0,1], X) we denote the
space of continuous functions endowed with the usual (Banach space) norm ‖ f ‖C = supt∈[0,1] ‖ f (t)‖ and by L∞([0,1],R)

the space of essentially bounded real functions with the essential supremum norm ‖ · ‖L∞ .
Let us now introduce some basic facts on Henstock-type integrals in Banach spaces, which are extensions of the notion

of real valued Henstock–Kurzweil integral (for which the reader is referred to [9]).
A tagged partition of [0,1], or simply a partition of [0,1] is a finite collection of pairs {(I i, ti): i = 1, . . . , p}, where

I1, . . . , I p are non-overlapping subintervals of [0,1], ti ∈ Ii , i = 1, . . . , p, and
⋃p

i=1 Ii = [0,1]. A gauge δ on [0,1] is a positive
function on [0,1]. For a given gauge δ we say that a partition {(Ii, ti): i = 1, . . . , p} is δ-fine if Ii ⊂ (ti − δ(ti), ti + δ(ti)),
i = 1, . . . , p. For any function Φ : [0,1] → X and for any subinterval I = [a,b] of [0,1], we set Φ(I) = Φ(b) − Φ(a).

Definition 1. 1) A function f : [0,1] → X is said to be Henstock-integrable on [0,1], if there exists a vector (H)
∫ 1

0 f (s)ds ∈ X
such that, for every ε > 0, there is a gauge δε on [0,1] satisfying∥∥∥∥∥

p∑
i=1

f (ti)μ(Ii) − (H)

1∫
0

f (s)ds

∥∥∥∥∥ < ε

for every δε-fine partition {(Ii, ti): i = 1, . . . , p} of [0,1].
If f is Henstock-integrable, then it has the same feature on any sub-interval of [0,1] (but in general not on any measur-

able subset of [0,1]). The function Φ(t) = (H)
∫ t

0 f (s)ds is called the Henstock-primitive of f on [0,1].
2) A function f : [0,1] → X is said to be Henstock–Lebesgue-integrable (see [3]) (shortly HL-integrable) on [0,1], if there

exists a function Φ : [0,1] → X such that, for every ε > 0, there is a gauge δε on [0,1] satisfying

p∑
i=1

∥∥ f (ti)μ(Ii) − Φ(Ii)
∥∥ < ε

for every δε-fine partition {(Ii, ti): i = 1, . . . , p} of [0,1].
Note that the HL-integral is also called in the literature variationally Henstock-integral (see [17]), or strongly Henstock–

Kurzweil-integral (see [21]).
Also in this case, if f is HL-integrable, then it is HL-integrable on any sub-interval of [0,1], but in general not on all

measurable subsets of [0,1]. We set Φ(t) = (HL)
∫ t

0 f (s)ds and call it the HL-primitive of f on [0,1].

Remark 2. One of the main differences between the notions of Henstock-integral and HL-integral is the fact that the prim-
itive in HL-sense is continuous and differentiable a.e., while the Henstock primitive is continuous, but in general is not
differentiable a.e. (see [3]).

As about the relationship between these integrals and the classical ones, it is well known that:

(j) any Bochner integrable function is HL-integrable and the converse is not valid;
(jj) the HL-integrability implies the Henstock integrability;

(jjj) any Pettis integrable function, taking values in a separable Banach space, is Henstock integrable (see [8]), but the
implication in the other sense is not true even in the real case;

(jv) there exist Henstock–Lebesgue-integrable functions that are not Pettis integrable (see the real case) and vice-versa (as
Example 42 in [7] shows).

In finite dimensional spaces, the two notions (of Henstock-integral and HL-integral) are equivalent. In particular, in the
real case, the previous (equivalent) definitions give the Henstock–Kurzweil (shortly HK-) integral.

The space of all Henstock-integrable X-valued functions is denoted by H([0,1], X) and is endowed with the Alexiewicz
norm:

‖ f ‖A = sup
t∈[0,1]

∥∥∥∥∥(H)

t∫
f (s)ds

∥∥∥∥∥.
0
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We are concerned with the differential problem with impulse effects (1)–(3). Consider (in order to simplify the calculus)
t0 = 0 and tm+1 = 1.

In the sequel by the symbol C	
x0 ([0,1], X) we denote the collection of all functions x : [0,1] → X satisfying the following

properties:

(k) x is continuous at every t ∈ [0,1] \ {t1, . . . , tm};
(kk) x is left continuous at every t ∈ {t1, . . . , tm};

(kkk) at every t ∈ {t1, . . . , tm} there exists the right limit x(t+);
(kv) x(0) = x0.

C	
x0 ([0,1], X) becomes a Banach space when we endow it with the norm ‖ · ‖C (since it is a closed subspace of the space

of all regulated X-valued functions on [0,1] which, endowed with the specified norm, is complete, see [13]).
Moreover given a vector x0 ∈ X and a fixed R > 0, by the symbol B R(x0) we denote the closed ball of C	

x0 ([0,1], X) of

radius R and centered at the constant function x0.

Definition 3. A function x ∈ C	
x0 ([0,1], X) is called a solution of the problem (1)–(3) if it satisfies condition (1) for almost

every t ∈ [0,1] \ {t1, . . . , tm} and conditions (2) and (3).

For any subset E of a metric space Y we denote by α(E) the Hausdorff measure of non-compactness of E , i.e. the infimum
of all r > 0 such that there exists a finite number of balls covering E , of radius smaller than r. For its properties the reader
is referred to [12]. The measure of non-compactness α will play an essential role in establishing the main result.

Theorem 4. (See [1].) Let K ⊂ C([0,1], X) be bounded and equi-continuous. Then α(K) = supt∈[0,1] α(K(t)).

We deduce the following

Corollary 5. Let K ⊂ C	
x0 ([0,1], X) be bounded and equi-continuous on every interval ]ti, ti+1] where i ∈ {0, . . . ,m}. Then α(K) =

supt∈[0,1]α(K(t)).

Proof. Since it is not difficult to see that α(K) � supt∈[0,1]α(K(t)), only the other inequality has to be proved. On every
interval ]ti, ti+1], where i ∈ {0, . . . ,m}, K is equi-continuous, therefore on each closed interval J ⊂ ]ti, ti+1] one can apply
Theorem 4 in order to obtain that α(K/ J ) = supt∈ J α(K(t)) � supt∈[0,1]α(K(t)). It follows that, for each i ∈ {0, . . . ,m},
α(K/]ti, ti+1]) � supt∈[0,1]α(K(t)) and so, the assertion follows. �

Recall that

Proposition 6. (See [18, Proposition 1.4].) Let X be a separable Banach space and (Xq)q an increasing sequence of finite dimensional

subspaces with X = ⋃
q∈N

Xq. Then for every bounded countable set M = (am)m ⊂ X,

α(M) = lim
q→∞ lim

m→∞d(am, Xq).

The following result (proved in [22] under some different assumptions) generalizes a similar inequality available for
Bochner integrable functions, which can be found in [12] or [19]. By the symbol (H)

∫ t
0 M(s)ds we mean the collection of

all Henstock-integrals of elements of M.

Theorem 7. Let M ⊂ H([0,1], X) be a ‖ · ‖A -bounded and a.e. pointwisely bounded countable family. Assume that there is an
increasing sequence (Xq)q of finite dimensional subspaces with X = ⋃

q∈N
Xq, a natural q0 ∈ N and g ∈ L1([0,1],R) such that for

every q � q0 ,

d
(
x(t), Xq

)
� g(t) a.e. ∀x ∈ M.

Then α(M(·)) ∈ L1([0,1],R) and

α

(
(H)

t∫
0

M(s)ds

)
�

t∫
0

α
(

M(s)
)

ds, ∀t ∈ [0,1].

Proof. Let M = {xm, m ∈ N}. Then for every t ∈ [0,1],

(H)

t∫
M(s)ds =

{
(H)

t∫
xm(s)ds, m ∈ N

}
.

0 0
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By Proposition 6,

α

(
(H)

t∫
0

M(s)ds

)
= lim

q→∞ lim
m→∞d

(
(H)

t∫
0

xm(s)ds, Xq

)

and

α
(

M(s)
) = lim

q→∞ lim
m→∞d

(
xm(s), Xq

)
a.e. on [0,1].

I. Let us first prove that, for every x ∈ M and for each linear subspace Z of X ,

d

(
(H)

t∫
0

x(s)ds, Z

)
�

t∫
0

d
(
x(s), Z

)
ds, ∀t ∈ [0,1].

If
∫ t

0 d(x(s), Z)ds = +∞, the inequality holds true. If
∫ t

0 d(x(s), Z)ds < +∞, then the function d(x(·), Z) is Lebesgue inte-
grable and therefore Henstock–Kurzweil integrable. Because the function x is Henstock integrable, for every m ∈ N there is
a gauge δm on [0, t] satisfying∥∥∥∥∥(H)

t∫
0

x(s)ds −
p∑

i=1

x(ξi)μ(Ii)

∥∥∥∥∥ <
1

m

and ∣∣∣∣∣
t∫

0

d
(
x(s), Z

)
ds −

p∑
i=1

d
(
x(ξi), Z

)
μ(Ii)

∣∣∣∣∣ <
1

m
,

for any δm-fine partition {(Ii, ξi): i = 1, . . . , p} of [0, t]. From the linearity of Z one deduces that

d

( p∑
i=1

x(ξi)μ(Ii), Z

)
�

p∑
i=1

d
(
x(ξi), Z

)
μ(Ii).

Therefore,

d

(
(H)

t∫
0

x(s)ds, Z

)
�

t∫
0

d
(
x(s), Z

)
ds.

II. The positive function α(M(·)) = limq→∞ limm→∞d(xm(·), Xq) is measurable and bounded by g(·), so it is Lebesgue
integrable. By the first step of the proof,

lim
q→∞ lim

m→∞d

(
(H)

t∫
0

xm(s)ds, Xq

)
� lim

q→∞ lim
m→∞

t∫
0

d
(
xm(s), Xq

)
ds.

On the other hand, by the reverse Fatou’s lemma, for each q � q0,

lim
m→∞

t∫
0

d
(
xm(s), Xq

)
ds �

t∫
0

lim
m→∞d

(
xm(s), Xq

)
ds

and, by the monotone convergence theorem,

lim
q→∞

t∫
0

lim
m→∞d

(
xm(s), Xq

)
ds =

t∫
0

lim
q→∞ lim

m→∞d
(
xm(s), Xq

)
ds.

Consequently,

lim
q→∞ lim

m→∞d

(
(H)

t∫
0

xm(s)ds, Xq

)
�

t∫
0

lim
q→∞ lim

m→∞d
(
xm(s), Xq

)
ds

or, otherwise stated,

α

(
(H)

t∫
0

M(s)ds

)
�

t∫
0

α
(

M(s)
)

ds, ∀t ∈ [0,1]. �



958 L. Di Piazza, B. Satco / J. Math. Anal. Appl. 352 (2009) 954–963
Remark 8. Previous result generalizes those already known in Bochner setting (see [19, Proposition 1.4]), where it is assumed
‖x(t)‖ � g(t), for every x ∈ M with g ∈ L1([0,1],R). Indeed, obviously, this hypothesis implies that M is pointwisely
bounded and also ‖ · ‖A -bounded, and that for every q ∈ N,

d
(
x(t), Xq

)
�

∥∥x(t)
∥∥ � g(t), ∀x ∈ M.

We will also need

Lemma 9. Let γ : X → X satisfy, for some a > 0, the property that∥∥γ (x) − γ (y)
∥∥ � a‖x − y‖, ∀x, y ∈ X .

Then

α
(
γ (A)

)
� aα(A), ∀A ⊂ X bounded.

Proof. Consider A ⊂ X a bounded subset and ε > 0. Then A is contained in a finite union of balls of radius smaller than
α(A)+ ε. It follows that there are x1, . . . , xp ∈ X such that, for each x ∈ A, one can find xi with ‖x − xi‖ < α(A)+ ε, whence
‖γ (x) − γ (xi)‖ < a(α(A) + ε) and so, γ (A) is contained in a finite union of balls of radius smaller than a(α(A) + ε). As ε is
arbitrary, the inequality is proved. �

Our main existence result will be proved by applying the following generalization of the Darbo’s fixed point theorem
given in [15]:

Lemma 10. Let F be a closed convex subset of a Banach space and the operator A : F → F be continuous with A(F ) bounded. For any
bounded B ⊂ F set

Ã1(B) = A(B) and Ãn(B) = A
(
co

(
Ãn−1(B)

))
, ∀n � 2.

If there exist a constant 0 � k < 1 and a natural number n0 such that α( Ãn0 (B)) � kα(B) for every bounded B ⊂ F , then A has a fixed
point.

3. Main result

With the same notations in the presentation of the differential problem (1)–(3), we give the main result of the paper.

Theorem 11. Let X be a real separable Banach space, f : [0,1] × X2 → X, h : [0,1]2 → R and I : X → X satisfy the following
conditions:

(i) for each t ∈ [0,1], h(t, ·) ∈ L∞([0,1],R) and t 
→ h(t, ·) is ‖ · ‖L∞ -bounded;
(ii) for each R > 0 and each i ∈ {1, . . . ,m}, there exists ai,R > 0 such that, for any x1, x2 ∈ T R(x0),∥∥Ii(x1) − Ii(x2)

∥∥ � ai,R‖x1 − x2‖;
(iii) for every pair of functions x, y ∈ C	

x0 ([0,1], X), f (·, x(·), y(·)) is Henstock-integrable and:

(iii)(1) for each R > 0 and ε > 0, one can find kR > 0 and 0 < δε,R < 1 such that

∥∥∥∥∥(H)

t2∫
t1

f
(
s, x(s), y(s)

)
ds

∥∥∥∥∥ � ε, ∀|t1 − t2| � δε,R , ∀x, y ∈ B R
(
x0),

and

lim sup
R→∞

2

Rδ1,R
< lim inf

R→∞
kR

supt∈[0,1]
∥∥h(t, ·)∥∥L∞ + 1

with

kR +
m∑

i=1

ai,R < 1;

(iii)(2) the map (x, y) 
→ f (·, x(·), y(·)) from C	
x0 × C	

x0 to H([0,1], X) is ‖ · ‖A -uniformly continuous;

(iii)(3) for every s ∈ [0,1] and every countable bounded A, B ⊂ X, f (s, A, B) is bounded;
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(iv) there exist two positive integrable functions Li : [0,1] → R, i = 1,2, an increasing sequence (Xq)q of finite dimensional subspaces

with X = ⋃
q∈N

Xq and a natural q0 ∈ N such that for every q � q0 , t ∈ [0,1], x, y ∈ X,

d
(

f (t, x, y), Xq
)
� L1(t)d(x, Xq) + L2(t)d(y, Xq).

Then the integral equation with impulse effects

x(t) = x0 + (H)

t∫
0

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds +

∑
0<ti<t

(
x(ti+) − x(ti)

)
(4)

possess solutions in C	
x0 ([0,1], X).

Proof. Let us begin by showing

Lemma 12. The hypotheses (iv) and (iii)(3) of Theorem 11 imply that for any bounded countable D1, D2 ⊂ X and any t ∈ [0,1],

α
(

f (t, D1, D2)
)
�

2∑
i=1

Li(t)α(Di).

Proof. Let D1 = {xn, n ∈ N} and D2 = {yp, p ∈ N}. By assumption (iii)(3), one can apply Proposition 6. Therefore, taking
into account also assumption (iv), we obtain

α
(

f (t, D1, D2)
) = lim

q→∞ lim
n,p→∞d

(
f (t, xn, yp), Xq

)
� lim

q→∞ lim
n,p→∞

(
L1(t)d(xn, Xq) + L2(t)d(yp, Xq)

)

= L1(t) lim
q→∞ lim

n→∞d(xn, Xq) + L2(t) lim
q→∞ lim

p→∞d(yp, Xq) =
2∑

i=1

Li(t)α(Di). �

Proceed now to prove the main theorem. We follow the ideas of proof of Theorem 3.1 in [15]. By the hypothesis (i),
t 
→ h(t, ·) is ‖ · ‖L∞ -bounded, and so, we can set b = supt∈[0,1]‖h(t, ·)‖L∞ .

From (iii)(1), one can find R0 > ‖x0‖(b + 1) and 0 < r <
kR0
b+1 such that for any R � max{R0,bR0 + ‖x0‖(b + 1)},

2

δ1,R
< rR.

Consider A : C	
x0 ([0,1], X) → C	

x0 ([0,1], X) defined by

Ax(t) = x0 + (H)

t∫
0

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds +

∑
0<ti<t

(
x(ti+) − x(ti)

)
.

We claim that A is a continuous operator that maps the closed ball B R0(x0) of C	
x0 ([0,1], X) into itself.

Let us firstly prove that its values are in C	
x0 ([0,1], X).

In order to show that the property (k) is satisfied, consider t ∈ [0,1] \ {t1, . . . , tm}. One can find i0 ∈ {0,1, . . . ,m} such
that t ∈ ]ti0 , ti0+1[ (let us remind that t0 = 0 and tm+1 = 1). Take t′ ∈ ]ti0 , ti0+1[. Then

∥∥Ax(t) − Ax(t′)
∥∥ =

∥∥∥∥∥(H)

t′∫
t

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds

∥∥∥∥∥
which, thanks to the continuity of the primitive in the Henstock-sense, becomes less than some fixed ε for t′ sufficiently
close to t .

To prove the property (kk), take t = ti where i ∈ {1, . . . ,m} and t′ ∈ ]ti−1, ti[. Then

∥∥Ax(t) − Ax(t′)
∥∥ =

∥∥∥∥∥(H)

t∫
t′

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds

∥∥∥∥∥
and so, it becomes less than some fixed ε for t′ sufficiently close to t . Finally, to show property (kkk), fix i ∈ {1, . . . ,m} and
take t > ti ,
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Ax(t) − Ax(ti) = (H)

t∫
ti

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds + (

x(ti+) − x(ti)
)
,

and so, there exists limt→t+i
(Ax(t) − Ax(ti)) = x(ti+) − x(ti).

Let us now prove that the operator A maps the ball B R0 (x0) into itself. The hypothesis (iii)(1) implies that for R =
max{R0,bR0 + ‖x0‖(b + 1)} one can find 1 > δ1,max{R0,bR0+‖x0‖(b+1)} > 0 such that

∥∥∥∥∥(H)

t2∫
t1

f
(
s, x(s), y(s)

)
ds

∥∥∥∥∥ � 1, ∀|t1 − t2| � δ1,max{R0,bR0+‖x0‖(b+1)}, ∀x, y ∈ Bmax{R0,bR0+‖x0‖(b+1)}
(
x0).

For every t ∈ [0,1] and for all x, y ∈ Bmax{R0,bR0+‖x0‖(b+1)}(x0), let N ∈ N be the integer part of t
δ1,max{R0,bR0+‖x0‖(b+1)}

. Then

∥∥∥∥∥(H)

t∫
0

f
(
s, x(s), y(s)

)
ds

∥∥∥∥∥ �
∥∥∥∥∥(H)

δ1,max{R0,bR0+‖x0‖(b+1)}∫
0

f
(
s, x(s), y(s)

)
ds

∥∥∥∥∥ + · · ·

+
∥∥∥∥∥(H)

Nδ1,max{R0,bR0+‖x0‖(b+1)}∫
(N−1)δ1,max{R0,bR0+‖x0‖(b+1)}

f
(
s, x(s), y(s)

)
ds

∥∥∥∥∥

+
∥∥∥∥∥(H)

t∫
Nδ1,max{R0,bR0+‖x0‖(b+1)}

f
(
s, x(s), y(s)

)
ds

∥∥∥∥∥
� N + 1 � 1

δ1,max{R0,bR0+‖x0‖(b+1)}
+ 1 � 2

δ1,max{R0,bR0+‖x0‖(b+1)}
.

Since it is natural to suppose that, for each i ∈ {1, . . . ,m}, Ii(x0) = 0, from (iii)(1) and (ii) we deduce that, for any x ∈
C	

x0 ([0,1], X) with ‖x − x0‖C � R0,

∥∥Ax − x0
∥∥

C � sup
t∈[0,1]

∥∥∥∥∥(H)

t∫
0

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds

∥∥∥∥∥ +
m∑

i=1

∥∥Ii
(
x(ti)

) − Ii
(
x0)∥∥.

As, for every s ∈ [0,1],
∥∥∥∥∥

s∫
0

h(s, τ )x(τ )dτ − x0

∥∥∥∥∥ �
∥∥∥∥∥

s∫
0

h(s, τ )
(
x(τ ) − x0)dτ

∥∥∥∥∥ +
∥∥∥∥∥x0

s∫
0

h(s, τ )dτ

∥∥∥∥∥ + ∥∥x0
∥∥ � bR0 + ∥∥x0

∥∥(b + 1),

taking into account that R0 > ‖x0‖(b + 1), we infer

∥∥Ax − x0
∥∥

C � 2

δ1,max{R0,bR0+‖x0‖(b+1)}
+

m∑
i=1

ai,R0

∥∥x − x0
∥∥

C �
(

kR0 +
m∑

i=1

ai,R0

)
R0 < R0.

Concerning the continuity, from the hypothesis (iii)(2) it follows that for every ε > 0 there is ηε > 0 such that

sup
t∈[0,1]

∥∥∥∥∥(H)

t∫
0

(
f
(
s, x1(s), y1(s)

) − f
(
s, x2(s), y2(s)

))
ds

∥∥∥∥∥ <
ε

2

for any xi, yi ∈ C	
x0 ([0,1], X) satisfying max{‖x1 − x2‖C ,‖y1 − y2‖C } < ηε max{1,b}. Then, for every x1, x2 ∈ C	

x0 ([0,1], X)

with ‖x1 − x2‖C < min(ηε,
ε

2
∑m

i=1 ai,R0
),

‖Ax1 − Ax2‖C = sup
t∈[0,1]

∥∥Ax1(t) − Ax2(t)
∥∥

� sup
t∈[0,1]

∥∥∥∥∥(H)

t∫
f

(
s, x1(s),

s∫
h(s, τ )x1(τ )dτ

)
− f

(
s, x2(s),

s∫
h(s, τ )x2(τ )dτ

)
ds

∥∥∥∥∥

0 0 0
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+
m∑

i=1

∥∥Ii
(
x1(ti)

) − Ii
(
x2(ti)

)∥∥

<
ε

2
+

m∑
i=1

ai,R0

ε

2
∑m

i=1 ai,R0

= ε.

This comes from the fact that if ‖x1 − x2‖C < ηε , then, for all s ∈ [0,1], ‖x1(s) − x2(s)‖ < ηε and ‖ ∫ s
0 h(s, τ )x1(τ )dτ −∫ s

0 h(s, τ )x2(τ )dτ‖ < bηε .
Now we are showing that F = co A(B R0(x0)) is equi-continuous on each interval ]ti, ti+1]. From Lemma 2.1 in [16], it is

enough to show that A(B R0 (x0)) is equi-continuous on each interval ]ti, ti+1]. Let us then consider t, t ∈ ]ti, ti+1]. For all
x ∈ B R0 (x0),

∥∥Ax(t) − Ax(t)
∥∥ =

∥∥∥∥∥(H)

t∫
t

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds

∥∥∥∥∥ � sup
t�t′<t′′�t

∥∥∥∥∥(H)

t′′∫
t′

f

(
s, x(s),

s∫
0

h(s, τ )x(τ )dτ

)
ds

∥∥∥∥∥.

So, thanks to (iii)(1), ‖Ax(t) − Ax(t)‖ can be made less than some fixed ε for t, t with an appropriately small distance
between them. Then the equi-continuity follows.

Obviously, A : F → F is bounded and continuous.
Let us prove in what follows, by the method of mathematical induction, that for every B ⊂ F and any n ∈ N, Ãn(B) ⊂

A(B R0(x0)), so it is bounded and equi-continuous on each interval ]ti, ti+1]. For n = 1, this is valid, since A(B) ⊂ A(F ) ⊂
A(B R0(x0)). Suppose now that this is true for n − 1 and prove it for n:

Ãn(B) = A
(
co

(
Ãn−1(B)

)) ⊂ A
(
co

(
A
(

B R0

(
x0)))) ⊂ A

(
co

(
B R0

(
x0))) = A

(
B R0

(
x0)).

By Corollary 5,

α
(

Ãn(B)
) = sup

t∈[0,1]
α

(
Ãn(B)(t)

)
, ∀n ∈ N.

Similarly to the second part of the proof of Theorem 3.1 in [15], one can show that there exist a constant 0 � k < 1 and
a positive integer n0 such that for any B ⊂ F , α( Ãn0(B)) � kα(B).

Fix ε > 0. As L1(s)+bL2(s) ∈ L1([0,1],R), one can find a continuous function φ such that
∫ 1

0 |L1(s)+bL2(s)−φ(s)|ds < ε.
Choose M > 0 with ‖φ‖C � M and denote by c = ∑m

i=1 ai,R0 < 1. Now we show, by mathematical induction, that, for all
integer p � 1,

α
(

Ã p(B)(t)
)
�

(
(ε + c)p + C1

p(ε + c)p−1 Mt

1! + · · · + (Mt)p

p!
)
α(B), ∀t.

In order to prove it for p = 1, let (vn)n be an arbitrary countable subset of Ã1(B) = A(B). There exists a se-
quence (xn)n ⊂ B such that vn = Axn . Hypothesis (iii)(1) implies the ‖ · ‖A -boundedness of ( f (·, xn(·), ∫ (·)

0 h(·, τ )xn(τ )dτ ))n
and (iii)(3) yields its pointwise boundedness and so, we are able to apply Theorem 7 and Lemma 9 and to obtain that

α
({

vn(t), n ∈ N
}) = α

({
Axn(t), n ∈ N

})
= α

({
x0 + (H)

t∫
0

f

(
s, xn(s),

s∫
0

h(s, τ )xn(τ )dτ

)
ds +

∑
0<ti<t

I i
(
xn(ti)

)
, n ∈ N

})

�
t∫

0

α

(
f

(
s,

{
xn(s), n ∈ N

}
,

{ s∫
0

h(s, τ )xn(τ )dτ , n ∈ N

}))
ds +

∑
0<ti<t

ai,R0α
({

xn(ti), n ∈ N
})

.

Indeed, by hypothesis (iv),

d

(
f

(
s, xn(s),

s∫
0

h(s, τ )xn(τ )dτ

)
, Xq

)
� L1(s)d

(
xn(s), Xq

) + L2(s)d

( s∫
0

h(s, τ )xn(τ )dτ , Xq

)

and, using the first part of the proof of Theorem 7 and the fact that (xn)n ⊂ B R0 (x0),

d

(
f

(
s, xn(s),

s∫
0

h(s, τ )xn(τ )dτ

)
, Xq

)
� L1(s)

(∥∥x0
∥∥ + R0

) + L2(s)

s∫
0

h(s, τ )d
(
xn(τ ), Xq

)
dτ

�
(
L1(s) + bL2(s)

)(∥∥x0
∥∥ + R0

)
.
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It follows, by Lemma 12, that

α
({

vn(t), n ∈ N
})

�
t∫

0

L1(s)α
({

xn(s), n ∈ N
}) + L2(s)α

({ s∫
0

h(s, τ )xn(τ )dτ , n ∈ N

})
ds

+
∑

0<ti<t

ai,R0α
({

xn(ti), n ∈ N
})

.

Applying again Theorem 7 we infer

α
({

vn(t), n ∈ N
})

�
t∫

0

(
L1(s) + bL2(s)

)
α

({
xn(s), n ∈ N

})
ds +

∑
0<ti<t

ai,R0α
({

xn(ti), n ∈ N
})

�
[ t∫

0

(
L1(s) + bL2(s)

)
ds +

∑
0<ti<t

ai,R0

]
α(B).

Since the Banach space is separable and the Hausdorff measure of non-compactness is preserved when the set under
discussion is replaced by its adherence, this implies that

α
(

Ã1(B)(t)
)
�

[ t∫
0

(
L1(s) + bL2(s)

)
ds +

∑
0<ti<t

ai,R0

]
α(B) � (ε + c + Mt)α(B).

Suppose now that the inequality is valid for p and prove it for p + 1. For any countable subset (vn)n of Ã p+1(B) =
A(co( Ã p(B))), there exist (xn)n ⊂ co( Ã p(B)) such that vn = Axn . Then, as before,

α
({

vn(t), n ∈ N
})

�
[ t∫

0

(
L1(s) + bL2(s)

)
ds +

∑
0<ti<t

ai,R0

]
α

(
Ã p(B)

)
,

whence

α
(

Ã p+1(B)(t)
)
�

[ t∫
0

(
L1(s) + bL2(s)

)
ds +

∑
0<ti<t

ai,R0

]
α

(
Ã p(B)

)

� (ε + c)α
(

Ã p(B)
) + M

t∫
0

α
(

Ã p(B)
)

ds

� (ε + c)

(
(ε + c)p + C1

p(ε + c)p−1 Mt

1! + · · · + (Mt)p

p!
)
α(B)

+ M

t∫
0

(
(ε + c)p + C1

p(ε + c)p−1 Ms

1! + · · · + (Ms)p

p!
)

dsα(B)

=
(

(ε + c)p+1 + C1
p+1(ε + c)p Mt

1! + · · · + (Mt)p+1

(p + 1)!
)
α(B),

and so, the assertion is proved.
The rest of the calculus goes as in [15]: for some integer n0 the evaluation term

(ε + c)n0 + C1
n0

(ε + c)n0−1 Mt

1! + · · · + (Mt)n0

n0!
can be made less than 1 since one can choose ε such that ε + c < 1. By Lemma 10, the operator A has a fixed point, which
is a global solution for Eq. (4). �
Corollary 13. If in Theorem 11 the Henstock-integrability is replaced by the Henstock–Lebesgue integrability, then the differential
equation with impulse effects (1)–(3) possess solutions in C	

x0 ([0,1], X).

Remark 14. Previous Theorem 11 and Corollary 13 improve the related results given (in the non-impulsive case) in [10,11,
14–16], where the involved functions are supposed to be uniformly continuous with respect to all arguments. Moreover, our
results are related to Theorem 5.1 of [6] that establishes, under conditions (2) and (3), an existence result for the impulsive
equation ẋ(t) = f (t, x(t)) by imposing a pointwisely Lipschitz hypothesis with respect to the second argument on f .
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