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I. INTRODUCTION 

In this paper we will consider the linear homogeneous difference equation 

where a,, a, , --a, u+, are constants. For integer values of x the solution to 
(1.1) is (see Boole [l]) 

P mk-1 

where the Cjk’s are arbitrary constants and ri , ys, **a, I~ are the roots of 

r” + u,-,r”-l + “‘+u,r+a,=O (1.3) 

with multiplicities mr , ma , ‘.-, m, respectively. The problem which we shall 
consider is to extend the solution (1.2) of (1 .l) into the complex plane as a 
discrete analytic function. We treat this problem by a procedure which is 
analogous to extending solutions of real ordinary differential equations as 
analytic functions of a complex variable. 

To carry out this extension we employ the concept of a discrete analytic 
function which has been studied by Isaacs [2], Ferrand [3], and Duffin [4]. 
Discrete analytic function theory concerns functions defined on the points of 
the complex plane whose. coordinates are integers. The points x + iy of the 
complex plane with integer x and y form a lattice which breaks up the plane 
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into unit squares. The function F(z) is said to be discrete analytic on one of 
these unit squares if for z = x + @ 

LF(x) = F(z) + iF(z + 1) + PF(z + 1 + 2) + PF(z + i) = 0 (1.4) 

where z, .a f 1, a + 1 + i, .a + i are the points of this unit square. 
Merely to require that the extension of the solution (1.2) be discrete 

analytic is not enough to make a rigid problem. We also shall insist that the 
difference equation (1.1) have permanence of form. In other words for each 
lattice point z 

F(z + n) + a,-,F(z + n - 1) + ... + a,F(z + 1) + @(a) = 0. (1.5) 

Thus the problem that we treat is the solution of the pair of simultaneous 
difference equation (1.4) and (1.5). Under the restriction that the roots of (1.3) 
are not & i or 0 we find that the solution (1.2) of (1 .l) has a unique extension 
into the discrete complex plane. This extension may be expressed by an 
explicit rational formula. 

Sections II through VI of this paper deal with “discrete derivative equa- 
tions.” The concept of the discrete derivative equation was introduced in [5] 
and is useful in motivating and handling some of the details of discrete 
analytic continuation of solutions of difference equations of the type (1 .l). 
A discrete derivative equation is a difference equation but the increments are 
allowed to be imaginary as well as real. 

II. DISCRETE DERIVATIVE EQUATIONS 

In what is to follow we need a few definitions concerning the discrete 
complex plane. A region in the discrete complex plane is the union of unit 
squares. A chain of lattice points aa , ai , * * ., a, is a set of points in the discrete 
complex plane such that ] zj - zi-i 1 = 1. A region R is said to be connected 
if any two lattice points of the region R can be connected by a chain with 
every point of the chain in R. A simple region R is a connected region which 
is the union of a finite number of unit squares. 

In [3] and [4] it has been shown that if f is discrete analytic in a simple 
region R and a and z are points of R connected by a chain in R with z, = a 
and a, = z, then 

is discrete analytic in R. In [5] the notationf(z) = SF(z)/& was introducted 
and 6F/&z was defined as the discrete derivative of F(x). The discrete deri- 
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vative SF/& of F(z) is uniquely given only up to an arbitrary function 
k- = (- 1)2+~& w ere h K is an arbitrary constant and E is the complex 
conjugate of k. The function K- is termed a biconstant. 

The following theorem is taken from [4]. This theorem reveals a certain 
duality between a function and its discrete derivative. Needless to say, no 
such duality exists in the continuous case. 

THEOREM 2.1. Let F(z) be a given analytic function in a simple region R. 
Let a and b be points of R and let k be an arbitrary constant. Then 

is analytic in R and 

F(z) = 1: ESz + F(a). 

The integration paths tire assumed to be in R. 
Here f-(z) denotes the dual of f(z) and is defined by the relation 

f-(z) = (- l)“+~f(z) wheref . is t h e complex conjugate off. If f is discrete 
analytic so is f-. 

In [5] it has been shown that there exists a unique discrete analytic function 
F(z) such that 

qg) + c,-, !p+ . . . +c, W) -g + cow =f(4, (2-l) 

if f(z) is discrete analytic, f 2 and f 2i are not roots of 

rn + c,-pl + cn-2rf+2 + e.1 + clr + CO = 0, 

and F(2) is given appropriate boundary conditions. 
In the following sections we will exhibit solutions of equations similar 

to (2.1). 

III. FIRST ORDER HOMOGENEOUS DISCRETE DERIVATIVE EQUATIONS 

The first equation which we shall consider is 

WI 
- - aF(2) = 0. 

82 
(3.1) 
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If (a” - 16) f 0 we shall term Eq. (3.1) regular. The integral form of this 
equation is 

F(z) = a jk(t) at +F(a). (3.2) 
G 

Replacing c by z and z by z + h, where h equals f 1 or f i we get 

F(2 + h) = a S"f"F(t) 61 + F(2). 
z 

Using the definition of line integral, we get the stepping formula 

F(z + 4 = (p$) F(4, 

giving F(2 + h) in terms of F(z). 
If Eq. (3.1) is regular it can be shown, using stepping formula (3.3), that 

the general solution to (3.1) is 

F(2) = c (g)’ f&)” (3.4) 

where C is an arbitrary constant and z = x + iy. Uniqueness of this solution 
given an initial condition is clear from Eq. (3.3). 

By analogy with the continuous case the discrete exponential function 
e(z, u) is defined to be 

e(2, a) = (z)” ($&-E,“. (3.5) 

This function has been investigated previously by Ferrand [3] and Duffin [4]. 
One important property which it possesses is discrete analyticity in the 
entire discrete complex plane. 

When Eq. (3.1) is not regular we see that a equals f 2i or f 2. We will 
now consider this case by again using stepping formula (3.3). 

For the initial condition F(0) = C, an arbitrary constant, we have that: 

1. For a = 2, the solutionF(a), where z = x + iy, is 

I 

0 for x<o 
F(2) = PC for x=0 

undefined for x>o 

2. For a = - 2 
0 for x>o 

F(2) = i-V? for x=0 
undefined for x<o 
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3. For a = i2 

F(4 
i 

0 for Y>O 
izC for y=o 
undefined for Y<O 

4. For a = - i2 

i 

0 for Y<O 
i?C for y=o 
undefined for Y>O 

These irregular cases have been presented here for completeness. Throughout 
the rest of this paper these cases will be avoided in order to simplify the 
ideas involved. 

IV. HIGHER ORDER HOMOGENEOUS EQUATIONS 

Consider now the nth order discrete derivative equation 

g + c?l-1 s+ . . . +clg+cp=o. (4.1) 

Noting that (S/&z) e(z, r) = re z Y 1 ( , ) ‘g noring any biconstants k-, we assume 
F(z) = e(z, Y) and get that 

(P + c,-~Y~--~ + ... + clr + co) e(x, Y) = 0. 

Since e(z, r) # 0 we must have 

Y~+cnY~-l+*-+c,Y+co=O (4.2) 

in order for e(z, Y) to be a solution of (4.1). We shall call (4.2) the characteristic 
equation of (4.1). Let a, , us, “0, a,, be the roots of (4.2). If none of these roots 
is & 2 or & 2i, (4.1) is said to be regular. 

If the roots a,, u2 , **a, a, are distinct and (4.1) is regular the general 
solution to (4.1) is 

F(z) = $ B<e(z, a,) 
i-l 

(4.3) 

where the Bi’s are arbitrary constants. 
If one of the roots is repeated then (4.3) is not the most general solution 

because only n - 1 arbitrary constants would occur. To understand this 
case consider the second order equation 

g--(2a+r)E+a(a+r)F=O. 
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The roots are a and a + E where E is a real number greater than zero. Since 
e(x, a) and e(z, a + E) are solutions, 

e(z, a + e) - e(z, a) 
E 

is a solution. Letting E + 0, we see that 

is a solution of 

(4.4) 

The general solution to (4.4) is 

F(z) = B&4 4 + B2 g 45 y) llsa 

For convenience we will define 

$ e(z, a) = $ e(z, Y) 1 . 
?-=a 

A similar procedure can be used to show that if (4.2) the characteristic 
equation of (4.1) has a root (Y of multiplicity m > 1 then (4.1) has the m 
solutions 

Thus we get the following: 

THEOREM 4.1. The general solution to the regular discrete derivative equa- 
tion 

8°F 
jj-$ + G-l= + . . . +c,g+c,F=o 

is 

(4.1) 

(4.5) 

where a,, a2, *se, a, with multiplicities m, , m2 , ..‘, m, respectively are the 
roots of the characteristic polynomial of (4.I), and the Bkj are arbitrary con- 
stants. 



258 DUFFIN AND DURIS 

V. FIRST ORDER NONHOMOGENIWS EQUATION 

We now consider the nonhomogeneous equation 

W4 - - aF(z) = b(z). 
62 

Again we assume that (5.1) is regular, meaning (a4 - 16) # 0. The discrete 
function b(z) is required to be discrete analytic in a simple region R of the 
complex plane where we desire to find F(z). 

Putting (5.1) into integral form we have 

F(z) = 1’ [aF(t) + b(t)] St + F(a). 
a 

Using the definition of the line integral, we obtain the stepping formula 

F(z + h) = (gg)F@, + h 42 + h) + b(z) 
2-ha ’ (5.2) 

For z in R using (5.2), we obtain 

LF(a) = F(z) [l + i f&) + z2 @f) f&) + iy f&)] 

+ &b(a) = 0. 

Hence if (5.1) has a solution it is discrete analytic. 
From stepping formula (5.2) starting at z = 0 with F(0) = C, a constant, 

we obtain the solution in the first quadrant as 

F(2) = Ce(a, a) + e(z, a) 12 $[e(- k a) + e(- k + La)1 I!# + W - 111 
k=l 

+ 2 -$ [e( - x - ik, a) + e( - x - i(K - l), a)] 
k=l 

x [b(x + ikj + b(x + i(k - l))]/ . (5.3) 

Duffin in [4] gave the following definition of the line integral for the 
product of two functions. Let a = z, , zr , *es, z,,, = 6 denote a chain of 
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lattice points and let f and g be discrete functions. Then the “double dot” line 
integral is defined as 

jlfb) : gt.4 &I = 2 a [f&J +f@n-,)l kc4 + &%I-I>1 (% - %I). (5.4) 
?I=1 

For f and g analytic this integral is independent of the path of integration, 
but is not necessarily analytic as a function of the upper limit of integration. 

Using this line integral the relation (5.3) may be written as 

F(2) = Ce(2, a) + jz e(2 - t, a) : b(t) St. 
0 

(5.5) 

Because of the stepping procedure used in solving this problem the solution 
is easily seen to be unique. The solution as given by (5.5) is not restricted 
to the first quadrant. If the simple region R has for its boundary a closed 
chain, (5.5) is guaranteed to be single valued, if not it may be multiple 
valued. A region R with a single closed chain for its boundary will be termed 
simply connected. The preceding work may be summarized in the following 
theorem: 

THEOREM 3.3. The general solution to the regular equation 

F - uF(z) = b(2) (5.1) 

where b(z) is a discrete analytic function in a simple regzkn R containing the 
origin is 

F(z) = Cefz, a) + 1’ e(.z - t, Q) : b(t) 6t (5.5) 
0 

where C is an arbitrary constant. The solution F(z) is defined and discrete 
analytic in R, and if R is simply connected F(z) is single valued in R. 

VI. SYSTEMSOF LINEAR COMPLEX DIFFERENCE EQUATIONS 

The nth order nonhomogeneous system 

(6.1) 
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may be reduced to a first order system of equations using the substitution 

+&) = *k-1w 
&+c-1 ’ K = 1, *a*, 72. (6.2) 

This gives the system 

. (6.3) 

This gives some motivation for studying the more general system 

F + /IF(z) =b(z). (6.4) 

Here F(z) and b(z) are n-dimensional vector valued functions and A is an 
n-by-n matrix of complex constants. 

In the case of an n-by-m discrete matrix function @(a) we define 0(s) to be 
discrete analytic at z,, if 

L@(z,) = @(zo) + i@(zo + 1) - @(z, + 1 + i) - i@(ze + i) = 0. 

In what is to follow the line integrals and discrete derivatives of matrix 
functions are interpreted as operations on each entry separately. 

A. Homogeneous Systems 

Let A be an n-by-n matrix of complex constants such that f 2 and f i2 
are not eigenvalues of A. We desire to find the discrete function F(z) such that 

w4 - - /IF(z)=0 62 (6A. 1) 

with initial condition F(0) = C a vector of complex constants. Because of 
the restriction on A we termed (6A.l) a regular system. Using the notation 
Coddington and Levinson [6] we associate with (6A.l) the complex matrix 
difference equation 

(6A.2) 

We now look for a matrix G(z) satisfying (6A.2) such that det @p(z) f 0. 
The columns of such a matrix are linearly independent solutions of (6A.l). 
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The solution of the matrix equation (6A.2) is the matrix function 

e(x, A) = (2Z+ A)” (2Z - A)-” (2Zf iA)y (2Z- i&y. (6A.3) 

This matrix function is analogous to the matrix exponential ezA defined in 
Coddington and Levinson [6] by 

Note that the continuous matrix exponential requires a power series repre- 
sentation, while the discrete matrix exponential has a rational representation. 

Using (6A.3) we get that 

F(z) = e(z, A) F(0) (6A.5) 

is the desired solution of (6A.1) since e(0, A) = I. 

B. Nonhomogeneous Systems 

Let b(z) be a discrete analytic n-dimensional vector function in a simple 
region R of the complex plane. We now desire to obtain the solution to the 
nonhomogeneous regular system 

F - AF(z) = b(x). (6B. 1) 

Motivated by the one dimensional case of (6.2.1) we will prove the follow- 
ing: 

THEOREM 6.2. The general solution to the non-homogeneous regular system 

T - AF(z) = b(z) (6B. 1) 

where b(z) is a discrete analytic n-vector function in a simple region R containing 
the origin is 

F(z) = e(z, A) C + 1’ e(z - t, A) : b(t) at, 
II 

(6B.2) 

where C is un arbitrary constant n-vector. The solution F(z) is defined and 
discrete analytic in R, and if R is simply connected F(x) is single valued in R. 

PROOF. The integral form for (6B.l) is 

F(z) = j-’ L@(t) + b(t)] & + Fh,), (6B.3) 
20 
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which from the definition of the line integral is equivalent to finding F(z) 
such that 

f (F(z + 4 - F(z)) = 3 LWz + h) + F(z)) + b(z + h) + b(z)] 

where h equal f 1 or f i. This expression may be put into the more con- 
venient form 

(21- hA) F(z + h) - (21+ hA) F(z) = h(b(z + h) + b(z)). (6B.4) 

By substituting (6B.2) in the left side of (6B.4), for the four values of h we 
find that the F(z) of (6B.2) satisfies (6B.4), hence is the solution of (6B.l). 
This proves Theorem 6.2. 

VII. DISCRETE ANALYTIC CONTINUATION OF 

HOMOGENEOUS DIFFERENCE EQUATIONS 

Consider the real nth order homogeneous difference equation 

F(x+n)+b,-,F(x+n-l)+~~~+~,~(~+l)+~~(~)=O (7.1) 

where the hi’s are constants. If the nonzero roots of 

P + b,-1Y”-l + ... + b,r + b, = 0 (7.2) 

are 5 , r2 , ..., r9 with multiplicity m, , m2 , . .., mp respectively, then it is well 
known (see Boole [l]) that the general solution of (7.1) is 

If the n values,F(O), F(l), ..., F(n - 1) are given for F(x), then the constants 
Ckj may be determined and F(x) is given uniquely for all X. 

The problem which we shall consider is to extend the solution (7.3) of 
(7.1) into the discrete complex plane as a discrete analytic function, with the 
additional requirement that the extension F(z) of F(x) satisfy 

F(z + n) + b,-lF(Z + n - 1) + ... + b,F(z + 1) + b&z) = 0, (7.4) 

where z =x+i. 
Before looking at this problem for the general case consider the example 

F(x + 2) - 5F(x + 1) + 6F(x) = 0. 

For x a real integer this has the general solution 

F(x) = c,25 + Cs3”. 
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We desire to extend F(x) to a discrete analytic function F(z) with the addi- 
tional requirement that 

F(z + 2) - 5F(z + 1) + 6F(z) = 0. 

From this difference equation we see that 

Jw = Cl(Y) 2” + G(Y) 3” 

where C,(y) and C,(y) are no longer constant but depend on y. Using the 
requirement that M(z) = 0 for all z we get that 

C,(y) = ($$?,” C, and C,(y) = (G)” C, . 

Thus one such extension is 

F(z) = C,2r ($gY + C*3” (g?)g. 

We shall now consider the general case of this problem. 

,4. Existence and Uniqueness of Continuation 

The nth order difference equation 

F(x + n) + b,J(x + n - 1) + ... + bJ(x + 1) + bJ(x) = 0 (7A.l) 

can be treated as a system of first order difference equations. This may be 
accomplished by letting 

w&) = F(” + k - l), k = 1, 2, ...) II. (7A.2) 

Then (7A.l) and (7A.2) can be written in the matrix form 

If W(X) denotes the vector with components w&), the relation (7A.3) can 
be abreviated as 

w(x + 1) = CW(X) (7A.4) 
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where C is a square matrix. The following theorem does not assume that C 
is restricted to the form shown in (7A.3). 

THEOREM 7.1. In the system of dzgerence equation (7A.4) let C be a 
constant matrix which is arbitrary except that C does not have the eigenvalues 0 
or f i. Then any solution w(x) on the real axis may be extended to be a discrete 
analytic function w(z) in the complex plane by the formula 

w(z) = Cz(Z + iC)V (C + iZ)-u w(0) (7A.5) 

where Z is the identity matrix and z = x + iy. This extension is unique ;f it 
is required that 

w(z + 1) = Cw(z). (7A.6) 

PROOF. By the hypothesis that 0 or & i are not eigenvalues of C it is 
seen that (7A.5) definesf(z) for all lattice points of the complex plane. It is 
also seen that 

Lw(z) = [(I + iC) - C(Z + iC) (C + iZ)-l - i(Z + iC) (C + iI)-l] w(z) . 

The right side vanishes so w(z) is discrete analytic. Obviously (7A.5) satisfies 
(7A.6). Let w’(z) be any other solution such that w’(0) = w(0). Let 
G(z) = w’(z) - w(z). Th en it follows from (7A.4) that G(x) = 0 for all 
real x. SinceLG(z) = 0, we have 

LG(x) = G(x) + iG(x + 1) - G(x + 1 + i) - iG(x + i) = 0. 

But 
G(x) = 0 and G(x + 1) = 0, 

so 
G(x + 1 + i) + iG(x + i) = 0. 

Then (7A.7) and (7A.6) imply 

(C + iZ)G(x + i) = 0. 

(7A.7) 

Since - i is not an eigenvalue of C it follows that G(x + i) = 0 for all x. 
This process may be repeated to show that G(x + iy) = 0 for y a positive 
integer. A similar process which makes use of the fact that + i is not an 
eigenvalue of C show that G(x + iy) = 0 for y a negative integer. This shows 
that G(z) vanishes identically and the proof is complete. 

In the notation of matrix functions 

e(z, A) = (2Z+ A)” (2Z- A)-” (2Z+ iA)‘J (2Z- iA)-V 

we may write (7A.5) as 

w(z) = e(z, A) w(0) 

(6A.3) 

(7A.8) 
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where A is obtained from the relation 

c = (21+ A) (21 - A)-1, 
or, more directly, 

A = 2(C - I) (C + I)-1. (7A.9) 

From the definition of e(z, A) and (7A.5) we see that if 0 were an eigenvalue 
of C then - 2 would be an eigenvalue of A and if C had f i as eigenvalues 
then A would have f 2i as eigenvalues. No finite eigenvalue of C corresponds 
to the eigenvalue 2 for A. 

COROLLARY 7.2. In the nth order diflerence equation 

F(x + n) + b,-,F(x + n - 1) + *.. + b,F(x + 1) + b$yx) = 0 

let the bj be arbitrary constants except that none of the roots of 

(7A.l) 

Y” + bn-g.+l + --. + b,r + b, = 0 (7A.10) 

are f i. Then any solution F(x) on the real axis can be extended to be a discrete 
analytic function F(z) in the complex plane. This extension is unique if it is 
required that 

F(z + n) + bnmlF(z + n - 1) + ... + b,F(z + 1) + b,F(x) = 0. (7A.11) 

PROOF. There is no loss of generality in assuming that b, f 0. Then the 
matrix C is constructed as in (7A.3). It is seen that if Y is an eigenvalue of C 
then Y satisfies (7A.10). By hypothesis r # f i. Also b, # 0, so Y f 0. Thus 
the matrix C of Eq. (7A.3) satisfies the conditions of Theorem 7.1. Under 
the correspondence (7.A.2) it is seen that w(z) satisfying (7A.6) is equivalent 
to F(z) satisfying (7A.11). Moreover w(z) being discrete analytic is equivalent 
to F(z) being discrete analytic. Thus the Corollary follows from Theorem 7.1 

The following theorem brings out the connection between the extension 
of the nth order difference equation and the solution of the nth order complex 
discrete derivative equations. 

THEOREM 7.3. Let F(z) be the unique extension of F(x) a solution of 
(7A.l) subject to the restriction 

F(.z + n) -t b,-,F(z + n - 1) + ... + b,F(z + 1) + b,F(z) = 0. (7A.12) 

Ifrl,rz, ..., rk the nonzero roots of (7A.10) with multiplicities m, , m2 , “1, 
m, are such that ri # f i or - 1, then the extension F(z) may be represented in 
the form 

(7A.13) 
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where 

,,=2&+) for K=l,2;**,p. 

Before proving this we state the following 

LEMMA 7.4. For (Y finite and LY f f 2i or f 2 

(7A.14) 

where Q,,(x, y) is a polynomial in x of degree exactly n for jxed y and visa- 
versa. The proof of this Lemma is straightforward. The restriction 01# + 2i 
or f 2 is obviously necessary from the definition of e(z, a). 

PROOF OF THEOREM 7.3. Referring back to Eq. (7.3), we know F(x) has the 
form 

9 m,-1 

F(x) = 2 2 C,,x%: . 
k-1 i=o 

since rk # f i or - 1 we have 0~~ = 2 (rk - l)/(yk + 1). Thus 

k-1 I=0 

(7A.15) 

By (7A.14) we know that 

g e(x, 01~) = (a,x* + an-,xn-l + a+* + alx + ad etx? Qk)- 
k 

Thus we conclude that Bkj’s can be found so that 

Having chosen the Bkj’s so that (7A.16) holds for k = 1, 2, *se, p, let 

2, mk-1 

k-l j-0 
$ e(z, mk). 

k 

F(z) is obviously a discrete analytic function. For fixed y by (7A.14) we may 
write 

2, m,-1 

F(z) = z x Dki(Y> xf (z)” 
k-1 1-O 
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P rnk.-1 

Thus F(z) satisfies (7A.12) and by Theorem 7.1 is the desired unique exten- 
sion. This completes the proof of Theorem 7.3. 

Note that the requirement yi f - 1 in Theorem 7.3 does not appear in 
Corollary 7.2. This means that in some way the matrix form of the problem 
circumvents the difficulty of the indeterminancy for ri = - I. If the root 
- 1 appears for (7A.10) with multiplicity one no trouble results if we 
define 

e(z,m) = (- l)z+Y. 

Trouble occurs when - 1 is a root of multiplicity greater than one. 
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