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Abstract

We consider a parameter estimation problem of determining the viscosity ν of a stochastically perturbed
2D Navier–Stokes system. We derive several different classes of estimators based on the first N Fourier
modes of a single sample path observed on a finite time interval. We study the consistency and asymptotic
normality of these estimators. Our analysis treats strong, pathwise solutions for both the periodic and
bounded domain cases in the presence of an additive white (in time) noise.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of stochastic partial differential equations (SPDEs) is a rapidly developing field of
pure and applied mathematics. These equations are used to describe the evolution of dynamical
systems in the presence of persistent spatial–temporal uncertainties. When considering nonlinear
processes one encounters many new, fundamental and mathematically challenging problems for
SPDEs, with important applications in physics and applied sciences.

While the general form of a particular SPDE is commonly derived from the fundamental
properties of the underlying processes under study, frequently parameters arise in the formulation
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which need to be specified or determined on the basis of some sort of empirical observation.
In such situations, the so called problem of parameter estimation arises naturally: under the
assumption that a phenomenon of interest follows the dynamics of an SPDE, and given that some
realizations of this process are measured, we wish to find the unknown parameters appearing in
the model, such that the equations fit or predict as much as possible the observed data.

Actually, the development of methods for estimating parameters appearing in a model serve
practical purposes for two reasons. On the one hand we may be confident in the model, but have
an incomplete knowledge of the physical parameters appearing therein. An “estimator” of the
true parameter therefore provides a means for measuring these unknowns. On the other hand, we
may already possess accurate knowledge of the physical quantities involved in the model, but
lack confidence in the validity of the underlying model. In this situation finding an “estimator”
will be the first step in testing and validating the model.

Since the solution of an SPDE is a random variable, this inverse problem of finding the true
parameters is treated by methods from stochastic analysis and statistics. In this work we will
follow a continuous time approach and assume that the solution U = Uν(t, ω) of the SPDE is
observed for every time t over an interval [0, T ]. We note that different kinds of methods and
approaches are used to study inverse problems for deterministic PDEs, and we refer the reader to
[20,21] and references therein.

A core notion in the theory of statistical inference for stochastic processes is the so called
‘regularity’ of the family of probability measures associated with the set of possible values Θ
of the parameter of interest ν. Note that ν could be a vector in general. Let H be the function
space where the solution evolves and for each ν ∈ Θ denote by PT

ν the probability measures on
C([0, T ]; H) generated by the solution Uν(t), 0 ≤ t ≤ T . We say that a model is ‘regular’ if any
two probability measures from the family {PT

ν , ν ∈ Θ} are mutually absolutely continuous. On
the other hand the model is said to be ‘singular’ if these measures are mutually singular.

For regular models one approach to the parameter estimation problem is to consider the
maximum likelihood estimator (MLE) ν of ν. This type of estimator is obtained by fixing
a reference value ν0 and then maximizing the Radon–Nikodym derivative or likelihood ratio
dPT

ν /dPT
ν0

with respect to ν. Usuallyν ≠ ν and the problem is to study the convergence of these
estimators to the true parameter as more information arrives (for example as time passes or by
decreasing the amplitude of the noise). In contrast, each singular model requires an individual
approach, and usually the true parameter can be found exactly, without any limiting procedure
(at least if the solution is observed continuously).

Statistical inference for finite dimensional systems of stochastic differential equations (SDEs)
has been studied widely and provides instructive examples of both ‘regular’ and ‘singular’
problems. Typically estimating the drift coefficient for an SDE is a regular problem which may
be treated with an MLE. Here the likelihood ratio can be determined by Girsanov-type theorems.
By contrast, estimating the diffusion coefficient is a singular problem and in this case one can
find the diffusion coefficient by measuring the quadratic variation of the process. In general there
exist necessary and sufficient conditions for the regularity for (finite dimensional) SDEs. See the
monographs [22,25], and references therein, for a comprehensive treatment.

It turns out that the parameter estimation problem for infinite dimensional systems (SPDEs)
is, in many cases, a singular problem where one can find the parameter ν “exactly” on any
finite interval of time. In particular this has been shown in the case of linear stochastic parabolic
equations with the parameter of interest in the drift appearing next to the highest order differential
operator. Note that this is in direct contrast to the case for most of the corresponding finite
dimensional processes where one has to observe a sample path over an infinite time horizon or to



I. Cialenco, N. Glatt-Holtz / Stochastic Processes and their Applications 121 (2011) 701–724 703

decrease the amplitude of the noise term in order to get similar results. One of the first significant
works in the theory of statistical inference for SPDEs that explores this singularity is [17].
The idea in this work is to approximate the original singular problem by a sequence of regular
problems for which MLEs exist; this approximation is carried out by considering Galerkin-type
projections of the solution onto a finite dimensional space where the estimation problem becomes
regular. They prove that as the dimension of the projection increases, the corresponding MLEs
converge to the true parameter. In [18,19,27,28], the problem has been extended to a general
class of linear parabolic SPDEs driven by additive noise and the convergence of the estimators
has been classified in terms of the order of the corresponding differential operators. For recent
developments and other kinds of inference problems for linear SPDEs see the survey paper [26]
and references therein.

While the linear theory has been extensively studied in the framework described above it
seems that, to the best of our knowledge, no similar results have been established for nonlinear
SPDEs. We therefore embark in this and concurrent work [5] on a study of parameter estimation
problems for certain fundamental nonlinear SPDEs from fluid dynamics.

Note that for the linear case, key properties such as efficiency and asymptotic normality of the
estimators are proven by making essential use of the exact long time behavior of the moments of
the Fourier coefficients of the solutions. In the case of nonlinear equations, for example stochastic
equations from mathematical fluid dynamics, the problem is much more delicate, due to the
(highly nontrivial) coupling of the Fourier modes.

From the point of view of applications this work is motivated in particular by recent
developments in the area of geophysical fluid dynamics (GFD) where the theory of SPDEs is
now playing an important role. See, for example, [31–33,11,16,15,9]. For this developing field,
novel ‘inverse’ methods are clearly needed. While the problems that we consider initially are toy
models in comparison to large scale circulation models such as the primitive equations, we are
optimistic that the methods and insights developed for simple nonlinear SPDEs will eventually
serve the wider goal of extending our understanding to a more physically realistic setting.

In this work we consider the 2D Navier–Stokes equations forced with an additive white noise:

dU + ((U · ∇)U − ν∆U + ∇ P)dt = σdW, (1.1a)

∇ · U = 0, (1.1b)

U (0) = U0, (1.1c)

which describe the flow of a viscous, incompressible fluid. Here U = (U1,U2) and P
respectively represent the velocity field and the pressure. The coefficient ν > 0 corresponds
to the kinematic viscosity of the fluid, and it will be the parameter of interest. The goal of our
analysis will be to find a suitable estimator ν̂ = ν̂(ω) which is a functional of a single sample
path U (ω) observed over a finite and fixed time interval [0, T ].

We assume that the governing equations (1.1) evolve over a domain D. Throughout this work
we will consider two possible boundary conditions. On the one hand we may suppose that the
flow occurs over all of R2, take D = [−L/2, L/2]

2 for some L > 0 and prescribe the periodic
boundary condition:

U (x + Le j , t) = U (x, t), for all x ∈ R2, t ≥ 0;

∫
D

U (x)dx = 0.1 (1.2)

1 This second condition may be added with no loss of generality and slightly simplifies the analysis. See for
instance [37].
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We also consider the case when D is a bounded subset of R2 with a smooth boundary ∂D and
assume the Dirichlet (no-slip) boundary condition:

U (x, t) = 0 for all x ∈ ∂D, t ≥ 0. (1.3)

The stochastic forcing that we consider is an additive space–time noise colored in space.
Formally, we may write

σdW =

−
k

λ
−γ

k ΦkdWk, (1.4)

where Φk are the eigenfunctions of the Stokes operator, λk represent the associated eigenvalues,
and Wk, k ≥ 1, are one-dimensional independent Brownian motions. We assume that γ is a real
parameter greater than 1 which guarantees some spatial smoothness in the forcing. We may also
formally derive (see e.g. [8]) the space–time correlation structure of the noise term

E(σdW (x, t)σdW (y, s)) = K (x, y)δt−s,

where K (x, y) =
∑

k≥1 λ
−2γ
k Φk(x)Φk(y).

We should mention that the stochastic Navier–Stokes equations in both two and three
dimensions and under much more general stochastic forcing conditions have been extensively
studied. See, for instance, [2–4,7,12,14,30] and references therein.

Since the parameter of interest ν appears next to the highest order differential operator, the
linear analogue of (1.1) is singular, as we described above. With this in mind we expected that
the full nonlinear model might also be singular. As developed below, ν may be found exactly
from a single observation over a finite time window which suggests that this singular structure is
preserved in this nonlinear case.

The starting point of our analysis, the derivation of an estimator for ν, follows methods already
developed for the linear case (see references mentioned above). We project (1.1) down to a finite
dimensional space, and for each N we arrive at a system of the form

dU N
+ (νAU N

+ PN B(U ))dt = PNσdW, U (0) = U0,

where PN is the projection operator on the finite dimensional space generated by the first N
Fourier eigenvalues of the Stokes operator. We then formally compute the MLEs associated
with these systems, and take them as an ansatz for our estimators. In the course of the analysis
we introduce an additional degree of freedom, a parameter α, which we may carefully tune to
compensate for the nonlinear term. We arrive finally at the following three classes of estimators:

νN = −

 T
0 ⟨A1+2αU N , dU N

⟩ +
 T

0 ⟨A1+2αU N , PN B(U )⟩dt T
0 |A1+αU N |2dt

,

ν̌N = −

 T
0 ⟨A1+2αU N , dU N

⟩ +
 T

0 ⟨A1+2αU N , PN B(U N )⟩dt T
0 |A1+αU N |2dt

,

ν̂N = −

N∑
k=1

λ1+2α
k (u2

k(T )− u2
k(0)− Tλ−2γ

k )

2
N∑

k=1
λ2+2α

k

 T
0 u2

kdt

.

(1.5)

Here uk := (U,Φk) represents the kth (generalized) Fourier mode of the solution U .
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The main result in this work establishes the following properties for the proposed estimators:

Theorem 1.1. Suppose that U = U (ω) is a single sample path solution of (1.1), (1.2) or (1.1),
(1.3) observed on a finite interval of time [0, T ]. Assume that (1.1) is forced with a white noise
process of the form (1.4) where γ > 1,2 and suppose that α > γ − 1. Then, given a suitably
regular initial vector field U0,

(i) the functionalsνN , ν̌N ,νN defined by (1.5) are weakly consistent estimators of the parameter
ν, i.e.

lim
N→∞

νN = lim
N→∞

ν̌N = lim
N→∞

νN = ν

in probability;
(ii) if we assume further that α > γ − 1/2, then νN is asymptotically normal with rate N,

i.e.

N (νN − ν)
d

−→ η

(converges in distribution) where η is a mean zero, normally distributed random variable.

While we are able to prove the strongest convergence results for νN , this estimator is
intractable numerically and even analytically. This is becauseνN depends on all of the Fourier
modes of the solution in a highly nonlinear fashion. At the other extreme is ν̂N which is much
more straightforward to compute but is expected to have a slower rate of convergence to the actual
parameter ν. The estimator ν̌N is a compromise between the two extremes since it depends only
on the knowledge of the first N eigenmodes but retains some of the complex structure of the
nonlinear term. Although at the present time we are not able to prove this, we expect ν̌N to have
a faster rate of convergence than ν̂N . We conjecture, in Section 4.3, that ν̌N is also asymptotically
normal with the same variance and rate of convergence asνN . Given the explicit formulas for
the estimators, (1.5), all these questions, including the effect of the free parameter α on the rate
of convergence, can be studied by means of numerical simulations, which the authors plan to
undertake in a separate forthcoming paper.

While the form of the proposed estimators and the general statements of the main results in
this work are similar to those in previous works in the linear case, fundamental new difficulties
arise which require one to take a novel approach for the analysis. This is of course due to the
complex structure of the nonlinear term appearing in (1.1) which couples, in an intricate way,
all of the modes uk = (U,Φk). In contrast to the linear case, we lose for example any explicit
spectral information about the elements uk . This coupling also means that the uk are not expected
to be independent.

To overcome these difficulties the analysis relies on a careful decomposition of the solution
U = Ū + R. Here Ū satisfies a linear system where the modes are independent. Crucially,
a complete spectral picture is obtainable for Ū . On the other hand, R, while depending in a
complicated way on the full solution U , is more regular in comparison to Ū . This is because R
is not directly forced by the noise terms σdW . For this point the analysis, particularly in the case
of bounded domains, requires a delicate treatment of the nonlinear term.

Due to these technical issues, we were able to establish asymptotic normality only for νN .
It is interesting that νN is a consistent estimator for ν and it is the same as the MLE of the
corresponding linear equation (the stochastic Stokes equation). This effect can be explained as

2 In the case (1.3) we assume, for technical reasons, an upper bound on γ , γ < 1 + 1/4, as well. See below.
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follows: since the nonlinear term B(U ) is in some sense ‘lower order’ it fails to destroy the
information about ν; ν remains observable like in the linear case.

The exposition of the paper is organized as follows. In Section 2 we lay the theoretical
foundations for this work, reviewing the relevant mathematical theory for the stochastic
Navier–Stokes equations. We establish some crucial spectral information concerning the linear
system associated with (1.1). We also recall in this section some particular variants on the law of
large numbers and the central limit theorem. Section 3 sketches the derivation of the estimatorsν, ν̌,νN . We conclude the section with a strict formulation of the main results. The proof of
the main theorem is carried out in Section 4 in a series of modular substeps. We first study
the regularity of the ‘residual’ R that appears after we ‘subtract off’ the noise term appearing
in (1.1) via the linear Stokes equation. As an immediate application we are able to determine
some precise rates for the denominators appearing in the estimators (1.5). Using these rates we
successively analyze the consistency of the estimators. The final subsection treats the question of
asymptotic normality with the help of a central limit theorem for martingales.

2. The mathematical setting of the problem

We begin by recalling the mathematical background for the stochastic Navier–Stokes
equations and then review some general results from probability theory that will be used in the
sequel.

2.1. The stochastic Navier–Stokes equation

We first describe how (1.1) is recast as an infinite dimensional stochastic evolution equation
of the form

dU + (νAU + B(U ))dt = σdW,

U (0) = U0.
(2.1)

The basic function spaces are designed to capture both the boundary conditions and the
divergence free nature of the flow.

We first consider the spaces associated with a Dirichlet boundary condition (1.3). Let H :=

{U ∈ L2(D)2 : ∇ · U = 0,U · n = 0}, where n is the outer pointing unit normal to ∂D. H is
endowed as a Hilbert space with the L2 inner product (U ♭,U ♯) =


D U ♭U ♯dx and associated

norm |U | = (U,U )1/2. The Leray–Hopf projector, PH , is defined as the orthogonal projection
of L2(M)d onto H . We next take V := {U ∈ H1

0 (D)2 : ∇ · U = 0} and endow this space with
the inner product ((U ♭,U ♯)) =


M ∇U ♭

· ∇U ♯dM. Due to the Dirichlet boundary condition,
(1.3), the Poincaré inequality |U | ≤ c‖U‖ holds for U ∈ V , justifying this definition.

The definitions for H and V are slightly different for the case of periodic boundary
conditions (1.2). We take D = [−L/2, L/2]

2 and define the spaces L2
per (D)2, H1

per (D)2 to
be the families of vector fields U = U (x) which are L periodic in each direction and which
belong respectively to L2(O)2 and H1(O)2 for every open bounded set O ⊂ R2. We now define

H =


U ∈ L2

per (D)2 : ∇ · U = 0,
∫

D
U (x)dx = 0


,

and

V =


U ∈ H1

per (D)2 : ∇ · U = 0,
∫

D
U (x)dx = 0


.
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H and V are endowed with the norms | · | and ‖ · ‖ as above. Note that we impose the mean zero
condition for H and V so that the Poincaré inequality holds. As mentioned in the introduction,
there is no loss of generality in imposing this extra assumption. See, e.g., [37].

The linear portion of (1.1) is captured in the Stokes operator A = −PH∆, which is an
unbounded operator from H to H with the domain D(A) = H2(D) ∩ V . Since A is self-
adjoint, with a compact inverse A−1

: H → D(A), we may apply the standard theory of compact,
symmetric operators to guarantee the existence of an orthonormal basis {Φk}k≥1 for H of
eigenfunctions of A with the associated eigenvalues {λk}k≥0 forming an unbounded, increasing,
sequence. Moreover,

λk ≈ λ1k, (2.2)

where the notation an ≈ bn means that limn→∞ an/bn = 1. Also, we will write an ∼ bn when
there exists a finite, nonzero constant c such that limn→∞ an/bn = c. For more details about the
asymptotical behavior of {λk}k≥1 see for instance [1,29] for the no-slip case (1.3), and [6] for the
spatially periodic case (1.2). Define HN = Span{Φ1, . . . ,ΦN }, and take PN to be the projection
from H onto this space. We let QN := I − PN .

The analysis below relies extensively on the fractional powers of A. Given α > 0, take
D(Aα) =


U ∈ H :

∑
k λ

2α
k |uk |

2 < ∞

, where uk = (U,Φk). On this set we may define Aα

according to AαU =
∑

k λ
α
k ukΦk , for U =

∑
k ukΦk . Classically we have the generalized

Poincaré and inverse Poincaré estimates

|Aα2 PN U | ≤ λ
α2−α1
N |Aα1 PN U |, |Aα1 QN U | ≤

1

λ
α2−α1
N

|Aα2 QN U |, (2.3)

for any α1 < α2.
We next describe the stochastic terms in (1.1). Fix a stochastic basis S := (Ω ,F , {Ft }t≥0,

P, {Wk}k≥1), that is a filtered probability space with {Wk}k≥1 a sequence of independent standard
Brownian motions relative to filtration {Ft }t≥0. In order to avoid unnecessary complications
below we may assume that Ft is complete and right continuous (see [8] for more details). Writing
formally W =

∑
k≥0 Φk Wk , W may be viewed as a cylindrical Brownian motion on H .

We briefly recall the classical formalism for the infinite dimensional Wiener process as
in [8,34]. Consider the collection of Hilbert–Schmidt operators mapping H into D(Aβ), β ≥ 0.
We denote this family by L2(H, D(Aβ)). Throughout this work we assume that σ , understood
as an operator, has the form

σΦk = λ
−γ

k Φk . (2.4)

We will write σdW (t) =
∑

k≥1 λ
−γ

k ΦkdWk(t), t ≥ 0. One may check that, for every ϵ > 0,
σ ∈ L2(H, D(Aγ−1/2−ϵ)). In particular, given the standing assumption that γ > 1, we have
σ ∈ L2(H, D(A1/2)).

2.2. The stochastic Stokes equation and limit theorems

We next consider the linear system associated with (2.1), which we write in the abstract form

dŪ + νAŪdt =

−
k

λ
−γ

k ΦkdWk, Ū (0) = Ū0. (2.5)

For the purposes here this system can be analyzed as a 2D stochastic heat equation driven by an
additive cylindrical Brownian motion (for general results we refer readers to [8,35].)
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Let us denote by ūk, k ≥ 1, the Fourier coefficients of the solution Ū with respect to the
system {Φk}k in H , i.e. ūk = (Ū ,Φk), k ≥ 1. By (2.5), we note that each Fourier mode ūk
represents a one-dimensional stable Ornstein–Uhlenbeck process with the dynamics

dūk + νλk ūkdt = λ
−γ

k dWk, ūk(0) = ū0k, k ≥ 1. (2.6)

It follows from (2.6) that

ūk(t) = ūk(0)e−νλk t
+ λ

−γ

k

∫ t

0
e−νλk (t−s)dWk(t), k ≥ 1, t ≥ 0. (2.7)

In what follows we will use the following auxiliary results concerning asymptotics of the first
moments of the Fourier modes ūk, k ≥ 1 (see also Theorem 2.1 in [26].)

Lemma 2.1. Suppose that Ū is a solution of (2.5) and let Ū N
:= PN Ū , N ≥ 1.

(i) Assume that γ ′ < γ and that E|Aγ
′
−1/2Ū0|

2 < ∞. Then

Ū ∈ L2(Ω; L2
loc([0,∞); D(Aγ

′

))) ∩ L2(Ω; C([0,∞); D(Aγ
′
−1/2))). (2.8)

(ii) Suppose that Ū0 = 0; then

E
∫ T

0
ū2

kdt ≈
Tλ−(1+2γ )

k

2ν
≈

Tλ−(1+2γ )
1

2ν
k−(1+2γ ), (2.9)

and

Var
[∫ T

0
ū2

kdt

]
∼ λ

−(3+4γ )
k ∼ k−(3+4γ ). (2.10)

(iii) Moreover, for β > γ ,

E
∫ T

0
|AβŪ N

|
2dt ≈

Tλ2β−2γ−1
1

2ν(2β − 2γ )
N 2β−2γ . (2.11)

Proof. The first item is classical and may, for example, be justified with a Galerkin scheme or
other suitable techniques from the general theory of existence and uniqueness of the solutions for
stochastic parabolic equations. See e.g. [8,35]. Using (2.7), (ii) follows by direct computations
of the corresponding moments, and for the final item we deduce

E
∫ T

0
|AβŪ N

|
2dt = E

∫ T

0

 N−
k=1

λ
β
k ūkΦk


2

dt =

N−
k=1

λ
2β
k E

∫ T

0
ū2

kdt

≈
T

2ν

N−
k=1

λ
2β−1−2γ
k ≈

Tλ2β−2γ−1
1

2γ
N 2β−2γ

2β − 2γ
,

where we have made use of (ii), (2.2) in conjunction with

N−
k=1

ka
≈

N 1+a

a + 1
, a > −1. (2.12)

The proof is complete. �
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We finally recall some particular versions of the law of large numbers (LLN) and the central
limit theorem (CLT) which are used to prove consistency and asymptotic normality of the class
of estimators given by (1.5).

Lemma 2.2 (The Law of Large Numbers). Let ξn, n ≥ 1, be a sequence of random variables and
bn, n ≥ 1, be an increasing sequence of positive numbers such that limn→∞ bn = +∞, and

∞−
n=1

Var ξn

b2
n

< ∞. (2.13)

(i) If we assume that the random variables ξn, n ≥ 1, are independent then

lim
n→∞

n∑
k=1
(ξk − Eξk)

bn
= 0 a.s.

(ii) If we suppose only that ξn, n ≥ 1, are merely uncorrelated random variables, then

lim
n→∞

n∑
k=1
(ξk − Eξk)

bn
= 0, (2.14)

in probability.

Proof. See, for example, Shiryaev [36, Theorem IV.3.2] for the proof of (i). The second item,
(ii), similar to the proof of the weak LLN, follows from the Markov inequality. For a fixed ϵ > 0,
and for all pairs m < n, we have

P


n∑

k=1
(ξk − Eξk)

bn
> ϵ

 ≤
1

ϵ2b2
n
E


n−

k=1

(ξk − Eξk)

2

≤
1

ϵ2b2
n

n−
k=1

Var ξk

≤
1

ϵ2b2
n

m−
k=1

Var ξk +
1

ϵ2

n−
k=m

Var ξk

b2
k

≤
1

ϵ2b2
n

m−
k=1

Var ξk +
1

ϵ2

∞−
k=m

Var ξk

b2
k

.

Since bn → ∞, (2.14) follows. �

The following central limit theorem is a special case of a more general result for martingales;
see, for instance, [24, Theorem 5.5.4(II)].

Lemma 2.3 (CLT for Stochastic Integrals). Let S = (Ω ,F ,P, {Ft }t≥0, {Wk}k≥1) be a
stochastic basis. Suppose that σk ∈ L2(Ω; L2([0, T ])) is a sequence of real valued predictable
processes such that

lim
N→∞

N∑
k=1

 T
0 σ 2

k dt

N∑
k=1

E
 T

0 σ 2
k dt

= 1 in Probability.
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Then
N∑

k=1

 T
0 σkdWk

N∑
k=1

E
 T

0 σ 2
k dt

1/2

converges in distribution to a standard normal random variable as N → ∞.

2.3. The nonlinear term

The nonlinear term appearing in (2.1) is given by B(U,U ♯) := PH ((U · ∇)U ♯) = PH (
∑2

j=1

U j∂ jU ♯), which is defined for U ∈ V and U ♯
∈ D(A). Note that, for brevity of notation, we will

often write B(U ) for B(U,U ) as for example in (2.1). We have the following properties of B:

Lemma 2.4. (i) B is bilinear and continuous from V × V into V ′ and from V × D(A) into H.
For U,U ♯

∈ V , B satisfies the cancelation property

⟨B(U,U ♯),U ♯
⟩ = 0. (2.15)

If U,U ♯,U ♭ are elements in V , then⟨B(U,U ♯),U ♭
⟩
 ≤ c|U |

1/2
‖U‖

1/2
‖U ♯

‖|U ♭
|
1/2

‖U ♭
‖

1/2. (2.16)

On the other hand if U ∈ V , U ♯
∈ D(A), and U ♭

∈ H, then we have(B(U,U ♯),U ♭)
 ≤ c


|U |

1/2
‖U‖

1/2
‖U ♯

‖
1/2

|AU ♯
|
1/2

|U ♭
|.

|U |
1/2

|AU |
1/2

‖U ♯
‖|U ♭

|.
(2.17)

(ii) In the case of either periodic, (1.2), or Dirichlet, (1.3), boundary conditions, B(U ) ∈ D(Aβ)
for every 0 < β < 1/4 and every U ∈ D(A). Moreover, for such values of β,

|AβB(U )|2 ≤ c‖U‖
2
|AU |

2. (2.18)

(iii) In the case of periodic boundary conditions (1.2), B(U,U ♯) ∈ D(Aβ) whenever β > 1/2,
U ∈ D(Aβ), U ♯

∈ D(Aβ+1/2), and for such U, U ♯,

|AβB(U,U ♯)|2 ≤ c|AβU |
2
|Aβ+1/2U |

2. (2.19)

Proof. The properties outlined in (i) and (iii) are classical; see, for instance, [38], or [6, Lemma
10.4] for (2.19).

The properties in (ii) are established via interpolation and the equivalence of certain fractional
order spaces; see [13]. Since [13] emphasized the case of spatial dimension 3, for the sake
completeness, we briefly recall the arguments.

For any element U ∈ D(A), standard estimates imply that

|B(U )|2 ≤ c‖U‖
3
|AU |,

‖B(U )‖2
H1(M)2

≤ c‖U‖|AU |
3.

Let Ṽ = H ∩ H1(D)2 and for s ∈ (0, 1) we define the interpolation spaces Ṽs = [Ṽ , H ]1−s .
See [23] for the general theory. In [13], it is established that D(Aβ) = Ṽ2β , β < 1/4 in the
Dirichlet case (1.3).3 Note that Ṽ does not incorporate boundary conditions and so B(U ) ∈ Ṽ ,

3 In the periodic case, (1.2), Ṽ = V , so D(Aβ ) = Ṽ2β , as a direct consequence of the fact that D(A1/2) = V .
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for U ∈ D(A). In consequence, for any such U ∈ D(A) and allowed values of 0 < β < 1/4 we
have, by interpolation,

|AβB(U )|2 = |B(U )|2
Ṽ 2β ≤ (|B(U )|1−2β

‖B(U )‖2β
H1)

2

≤ c(‖U‖
3
|AU |)1−2β(‖U‖|AU |

3)2β

≤ c(‖U‖
3
|AU |)1/2(‖U‖|AU |

3)1/2 ≤ c‖U‖
2
|AU |

2.

Combining these observations gives (ii), completing the proof. �

Remark 2.5. When we consider the case (1.3) it is not true in general that B(U ) ∈ D(Aβ),
even for U ∈ D(Aβ+1/2), β ≥ 1/4. This is due to the fact that while the Leray projector PH is
continuous on Hm(D), m ≥ 1, we do not expect PH to map Hm

0 (D) into Hm
0 (D). See [38] and

also [13]. For this reason we may not expect an inequality like (2.19) for such Dirichlet boundary
conditions. As a result, (2.18) relies on a delicate analysis of small fractional order space where
the boundary is not present; see [13,23].

2.4. Existence, uniqueness and higher regularity

With these mathematical formalities in place we now define precisely (2.1), in the usual time
integrated sense, and recall some now well established existence, uniqueness and regularity
results for these equations. Note that for this work the solutions that we consider correspond
to so called ‘strong solutions’ in the deterministic setting (see [38]). In the context of stochastic
analysis, since we may suppose that the stochastic basis S is fixed in advance, we may say that
the solutions considered are ‘strong’ (or less confusingly ‘pathwise’) in the probabilistic sense
as well.

Theorem 2.6. (i) Suppose that we impose either (1.2) or (1.3) and assume that U0 ∈ V , σ ∈

L2(H, V ). Then there exists a unique, H-valued, Ft -adapted process U with

U ∈ L2
loc([0,∞); D(A)) ∩ C([0,∞); V ) a.s. (2.20)

and so for each t ≥ 0,

U (t)+

∫ t

0
(νAU + B(U ))dt ′ = U0 +

−
k

σΦk W k(t),

with the equality understood in H.
(ii) In the case of periodic boundary conditions (1.2), if β > 1/2 and so σ ∈ L2(H, D(Aβ)),

U0 ∈ D(Aβ), then

U ∈ L2
loc([0,∞), D(Aβ+1/2)) ∩ C([0,∞), D(Aβ)). (2.21)

Remark 2.7. (i) As noted above, when σ is defined via (2.4), σ ∈ L2(H, V ) whenever γ > 1.
Indeed we have σ ∈ L2(H, D(Aβ)) for every β < γ − 1/2.

(ii) We suspect that higher regularity similar to that of Theorem 2.6, (ii), may be established in
the case of Dirichlet boundary conditions, (1.3). However since (2.19) does not apply (see
Remark 2.5) a proof different to that outlined here is needed.

Proof. The well-posedness of (2.1) has been studied by many authors, as discussed in the
introduction. Since we are considering the case of an additive noise, the proof is close to the
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deterministic case after we perform a suitable change of variables. For completeness, we briefly
recall some of the formal arguments and note that the computations may be rigorously justified
with a suitable Galerkin scheme. Consider first the linear system (2.5) with initial condition
Ū (0) = U0. As in Lemma 2.1 above, we have that Ū in L2

loc([0,∞); D(A)) ∩ C([0,∞); V )
(or in L2

loc([0,∞), D(Aβ+1/2))∩ C([0,∞), D(Aβ)), under the conditions of item (ii)). We now
consider the shifted variable Ũ = U − Ū , which satisfies

dŨ

dt
+ νAŨ + B(Ũ + Ū ) = 0 Ũ (0) = 0. (2.22)

The estimates that lead to (2.21) are standard. We first multiply (2.22) by U , integrate over the
domain and use (2.15), (2.16) and (2.8) to infer that Ũ ∈ L2

loc([0,∞); V ) ∩ L∞

loc([0,∞); H).
With this regularity in hand we next multiply (2.22) by AŨ and apply (2.17) and (2.8) in order
to conclude (2.20).

For β > 1/2 we multiply (2.22) by A2βŨ and infer

d|AβŨ |
2

dt
+ 2ν|Aβ+1/2Ũ |

2
− 2⟨AβB(Ũ + Ū ), AβU ⟩ = 0. (2.23)

Since β > 1/2, we may apply (2.19) and estimate

d|AβŨ |
2

dt
+ 2ν|Aβ+1/2Ũ |

2
≤ c|Aβ(Ũ + Ū )||Aβ+1/2(Ũ + Ū )||AβŨ |

≤ c(|AβŨ |
2
+ |AβŪ |

2)|AβŨ |
2
+ ν|Aβ+1/2Ũ |

2
+ ν|Aβ+1/2Ū |

2.

Rearranging,

d|AβŨ |
2

dt
+ 2ν|Aβ+1/2Ũ |

2
≤ c(|AβŨ |

2
+ |AβŪ |

2)|AβŨ |
2
+ ν|Aβ+1/2Ū |

2.

Observe that, due to the Gronwall lemma, if Ũ ∈ L2
loc([0,∞); D(Aβ)) then we infer that

Ũ ∈ L2
loc([0,∞); D(Aβ+1/2))∩ L∞

loc([0,∞); D(Aβ)). The desired result therefore follows from
an inductive argument on β starting with the base case assumption β ∈ [1/2, 1)which is satisfied
as a consequence of (2.20). �

3. Estimators for ν: heuristic derivation and the main results

In this section we sketch the heuristic derivations of the estimators based on a particular
version of the Girsanov theorem. We then restate, now in precise terms, the main results of this
paper.

As before, we denote by U N the projection of the solution U of the original equation (2.1)
onto HN = PN H ∼= RN . Note that U N satisfies the following finite dimensional system:

dU N
= −(νAU N

+ ψN )dt + PNσdW, U N (0) = U N
0 , (3.1)

whereψN (t) := PN (B(U )). To obtain an initial guess of the form of the estimator for the param-
eter ν, we treat ψN as an external known quantity, independent of ν, and view (3.1) as a stochas-
tic equation evolving in RN . Let us denote by PN ,T

ν the probability measure in C([0, T ]; RN )

generated by U N . Formally, we compute the Radon–Nikodym derivative or likelihood ratio
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dPN ,T
ν /dPN ,T

ν0
(see e.g. [25, Section 7.6.4])

dPN ,T
ν (U N )

dPN ,T
ν0

= exp


−

∫ T

0
(ν − ν0)(AU N )′G2dU N (t)

−
1
2

∫ T

0
(ν2

− ν2
0)(AU N )′G2 AU N dt −

∫ T

0
(ν − ν0)(AU N )′G2ψN dt


,

where G := (PNσ)
−1

= diag[σ−1
1 , . . . , σ−1

N ] = diag[λ
γ

1 , . . . , λ
γ

N ] and v′ denotes the transpose
of the vector v ∈ RN . By maximizing the likelihood ratio with respect to the parameter of interest
ν, we may compute the (formal) maximum likelihood estimator (MLE) νN of the parameter ν.
A direct computation yields

νN = −

 T
0 (AU N )′G2dU N

+
 T

0 (AU N )′G2 PN (B(U ))dt T
0 (AU N )′G2 AU N dt

. (3.2)

As expected, νN is a valid estimator and in fact one can show that it is a consistent estimator
of the true parameter ν. This consistency makes essential use of the fact that the denominator T

0 (AU N )′G2 AU N dt diverges to infinity as N ↑ ∞. See Lemma 4.3 below. With this in
mind, we introduce a slight modification to the MLE (3.2), and propose the following class
of estimators:

νN = −

 T
0 ⟨A1+2αU N , dU N

⟩ +
 T

0 ⟨A1+2αU N , PN B(U )⟩dt T
0 |A1+αU N |2dt

, (3.3)

where α is a free parameter with a range specified later on. Note that this formulation appears
in the functional language developed above and is derived using that the action of G2 on HN is
equivalent to A2γ . Also we observe that νN is a particular case ofνN with α = γ .

While the estimatorνN has desirable theoretical properties, it also assumes that PN (B(U ))
is computable, which could be quite a difficult task. Since our goal is to provide estimators
that can be eventually implemented in practice (evaluated numerically), we propose two further
classes of estimators. One class is naturally derived from (3.3) by approximating PN (B(U ))with
PN (B(U N )):

ν̌N = −

 T
0 ⟨A1+2αU N , dU N

⟩ +
 T

0 ⟨A1+2αU N , PN B(U N )⟩dt T
0 |A1+αU N |2dt

. (3.4)

Note that ν̌N now depends only on the first N Fourier modes. However, even in this case the
expression for PN B(U N ) is very complicated due to the nontrivial coupling of the modes. See
e.g. [10]. It turns out, as shown rigorously below (see Proposition 4.6), that the second term
appearing in (3.3),

κN := −

 T
0 ⟨A1+2αU N , PN B(U )⟩dt T

0 |A1+αU N |2dt
, (3.5)

is of lower order and tends to zero, as N → ∞. Hence we get the following consistent estimators
of the parameter ν:
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ν̂N = −

 T
0 ⟨A1+2αU N , dU N

⟩ T
0 |A1+αU N |2dt

= −

N∑
k=1

λ1+2α
k

 T
0 ukduk

N∑
k=1

λ2+2α
k

 T
0 u2

kdt

= −

N∑
k=1

λ1+2α
k (u2

k(T )− u2
k(0)− Tλ−2γ

k )

2
N∑

k=1
λ2+2α

k

 T
0 u2

kdt

. (3.6)

Clearly this last estimator is easiest to compute numerically. On the other hand it may lack the
speed of convergence of the first two.

We conclude this section with the main result of this paper:

Theorem 3.1. Suppose that U solves (2.1) with either (1.2) or (1.3) in the sense of and under
the conditions imposed by Theorem 2.6. Assume that γ > 1 and in the case (1.3), additionally
that γ < 1 + 1/4. Also, assume that U0 ∈ D(Aβ), for some β > γ − 1/2.

(i) If α > γ − 1, thenνN , ν̌N and ν̂N as given by (3.3), (3.4) and (3.6) are weakly consistent
estimators of the parameter ν, i.e.

lim
N→∞

νN = lim
N→∞

ν̌N = lim
N→∞

ν̂N = ν

in probability.
(ii) If α > γ − 1/2, then ν̃N is asymptotically normal with rate N, i.e.

N (ν̃N − ν)
d

−→ η, (3.7)

where η is Gaussian random variable with mean zero and variance 2ν(α−γ+1)2

λ1T (α−γ+1/2) .

4. Proof of the main theorem

We establish the proof of Theorem 1.1 in a series of propositions. As mentioned in the intro-
duction, we do not have precise spectral information about Fourier coefficients uk = (U,Φk),

k ≥ 1, in contrast to the linear case (see Section 2.2). To overcome this, we proceed by decompos-
ing the solution into a linear and a nonlinear part, U = Ū + R. We assume that Ū is the solution
of the linear stochastic Stokes equation (2.5) with Ū (0) = 0. The residual R must therefore
satisfy

∂t R + νAR = −B(U ), R(0) = R0. (4.1)

First, we study the regularity properties of R and show that R is slightly smoother than Ū .
Subsequently, we make crucial use of this extra regularity and establish the consistency of the
proposed estimators by showing that the second term in (3.3) converges to zero. The final section
treats the asymptotic normality using the CLT introduced in Section 2.2.

Remark 4.1. For simplicity and clarity of presentation we shall assume a more regular initial
condition U0 ∈ D(Aγ ) in comparison to the statement of Theorem 3.1. The more general case
when we assume merely that U0 ∈ D(Aβ) for some β > γ − 1/2 may be treated by writing
U = Ū + R + S, where Ū satisfies (2.5) with Ū0 = 0, R satisfies (4.1), this time with R0 = 0,
and finally S is the solution of ∂t S + νAS = 0, with S(0) = U0.
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4.1. Regularity properties for the residual

Proposition 4.2. Suppose that β ≥ 0, γ > 1 and that R solves (4.1) with U the solution of (2.1)
corresponding to an initial condition U0 ∈ D(A1/2+β).

(i) If U and R satisfy Dirichlet boundary conditions (1.3), and β < 1/4, then for every T > 0
we have

sup
t∈[0,T ]

|A1/2+β R|
2
+

∫ T

0
|A1+β R|

2 < ∞. (4.2)

Moreover, for an increasing sequence of stopping times τn with τn ↑ ∞,

E


sup

t∈[0,τn ]

|A1/2+β R|
2
+

∫ τn

0
|A1+β R|

2


< ∞. (4.3)

(ii) In the case where both U and R satisfy periodic boundary conditions (1.2) and we assume
β < γ − 1/2, the same conclusions hold.

Proof. As above in Theorem 2.6 the computations given here may be rigorously justified via
Galerkin approximations. Multiplying (4.1) by A1+2β R, integrating and using the symmetry of
the powers of A, we infer

1
2

d
dt

|Aβ+1/2 R|
2
+ ν|Aβ+1 R|

2
= −⟨AβB(U ), Aβ+1 R⟩. (4.4)

For the case of a bounded domain, (1.3), we infer from (2.18) and Theorem 2.6, (2.20) that∫ T

0
|AβB(U )|2dt ≤ c

∫ T

0
‖U‖

2
|AU |

2dt < ∞ a.s.

By integrating (4.4) in time and making standard estimates with Young’s inequality, (4.2) now
follows in this case.

In the case of the periodic domain we estimate |AβB(U )| differently. Define β ′
= max{β,

γ /2} such that 1/2 < β ′ < γ − 1/2. By applying the higher regularity estimates (2.19) we find
that

|⟨AβB(U ), Aβ+1 R⟩| ≤ |AβB(U )||Aβ+1 R|

≤ c|Aβ
′

B(U )||Aβ+1 R|

≤ c|Aβ
′

U ||Aβ
′
+1/2U ||Aβ+1 R|

≤ c|Aβ
′

U |
2
|Aβ

′
+1/2U |

2
+
ν

2
|Aβ+1 R|

2.

Due to Theorem 2.6, (ii), we have, for any T > 0, that∫ T

0
|Aβ

′

U |
2
|Aβ

′
+1/2U |

2dt < ∞ a.s.,

and (4.2) follows once again.
For the stopping times τn , we define

τn := inf
t≥0


sup
t ′≤t

‖U‖
2
+

∫ t

0
|AU |

2dt ′ > n


when (1.3) is assumed and
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τn := inf
t≥0


sup
t ′≤t

|Aβ
′

U |
2
+

∫ t

0
|Aβ

′
+1/2U |

2dt ′ > n


for (1.2). In either case it is clear that {τn}n≥1 is increasing. Moreover, in the case (1.3), since
P(τn < T ) = P(supt ′≤T ‖U‖

2
+
 T

0 |AU |
2dt ′ ≥ n), it follows from (2.20) and the fact that τn

is increasing that limn→ τn = ∞ a.s. Arguing in the same manner for the case (1.2), the proof is
complete. �

Remark. Comparing Proposition 4.2, (4.2) with Lemma 2.1 (2.8) and (2.11) we see that R has
been shown to be just shy of a derivative more regular than Ū . More precisely we have that, for
any ϵ > 0,

Ū ∈ L2(Ω; L2
loc([0,∞); D(Aγ−ϵ))), Ū ∉ L2(Ω; L2

loc([0,∞); D(Aγ+ϵ))),

while on the other hand,

R ∈ L2(Ω; L2
loc([0,∞); D(Aγ+1/2−ϵ))).

As an immediate application of these properties of the residual R we have the following result:

Lemma 4.3. Suppose that U and Ū are the solutions of (2.1) and (2.5) respectively. For
both (1.2) and (1.3) we suppose that γ > 1, U (0) = U0 ∈ D(Aγ )4 and Ū0 = 0. Additionally, in
the case (1.3), we assume that γ < 1 + 1/4. Then, for any α > γ − 1,

lim
N→∞

 T
0 |A1+αU N

|
2dt

E
 T

0 |A1+αŪ N |2dt
= 1 (4.5)

with probability 1.

Proof. Note that

|A1+αU N
|
2

≤ |A1+αŪ N
|
2
+ |A1+αRN

|
2
+ 2|A1+αŪ N

||A1+αRN
|,

|A1+αU N
|
2

≥ |A1+αŪ N
|
2
+ |A1+αRN

|
2
− 2|A1+αŪ N

||A1+αRN
|,

and therefore (4.5) follows once we have shown that

I N
1 :=

 T
0 |A1+αŪ N

|
2

E
 T

0 |A1+αŪ N |2
→ 1 a.s.

and that

I N
2 :=

 T
0 |A1+αRN

|
2dt

E
 T

0 |A1+αŪ N |2
→ 0 a.s. (4.6)

For the first item, I N
1 , we apply the law of large numbers (LLN), Lemma 2.2, with ξn :=

λ2α+2
n

 T
0 ū2

n(t)dt and bn :=
∑n

k=1 E[ξk]. Notice that, due to (2.2) and (2.9),

bn ∼

n−
k=1

λ2α+2
k λ

−1−2γ
k ∼

n−
k=1

k2α−2γ+1. (4.7)

4 At the cost of further evaluations, this condition may be weakened to the conditions imposed in Theorem 3.1. This
applies both here and below for Propositions 4.4 and 4.6. See Remark 4.1.
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Given the assumptions α > γ − 1, we have that limn→∞ bn = ∞. Moreover, combining (4.7)
with (2.2), (2.10) and (2.12),−

n≥1

Var ξn

b2
n

∼

−
n≥1

λ
4α+4−3−4γ
n

n∑
k=1

λ
2α−2γ+1
k

2

∼

−
n≥1

λ
4α−4γ+1
n

(λ
2α−2γ+2
n )2

∼

−
n≥1

1

n3 < ∞.

Thus, by the LLN we conclude that limN→∞ I N
1 = 1 with probability 1.

Since 1 + α > γ , by (2.11) we infer

E
∫ T

0
|A1+αŪ N

|dt ∼ N 2α−2γ+2.

Pick any α′
∈ (γ − 1,min{α, 1/4}), in the case (1.3), or any α′

∈ (γ − 1,min{α, γ − 1/2})

under the assumption (1.2). By applying (4.2) for R established in Proposition 4.2, we have in
both cases that∫ T

0
|A1+α′

R|
2dt < ∞ a.s.

Combining these observations and making use of (2.3), we have

I N
2 ≤ c

 T
0 |A1+αRN

|
2dt

N 2α−2γ+2 ≤ c
λ

2(α−α′)
N

 T
0 |A1+α′

RN
|
2dt

N 2α−2γ+2 ≤ c

 T
0 |A1+α′

R|
2dt

N 2α′−2γ+2
.

Due to the restrictions on the choice of α′, we have that 2α′
− 2γ + 2 > 0, and hence I N

2 → 0,
as N → ∞, with probability 1. The proof is complete. �

4.2. Consistency of the estimators

Using the dynamics of U N , i.e. substituting (3.1) into (3.3), we get the following
representation for the estimatorνN :

νN = ν −

 T
0 ⟨A1+2αU N , PNσdW ⟩ T

0 |A1+αU N |2dt

= ν −

 T
0


A1+2α−γU N ,

N∑
k=1

ΦkdWk


 T

0 |A1+αU N |2dt
. (4.8)

Similarly, we deduce

ν̌N = ν −

 T
0


A1+2α−γU N ,

N∑
k=1

ΦkdWk


 T

0 |A1+αU N |2dt

+

 T
0 ⟨A1+2αU N , PN B(U )− PN B(U N )⟩dt T

0 |A1+αU N |2dt
. (4.9)
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Note that ν̂N =νN − κN , with κN defined by (3.5). Thus,

νN = ν − κN −

 T
0


A1+2α−γU N ,

N∑
k=1

ΦkdWk


 T

0 |A1+αU N |2dt
. (4.10)

With the above representations for the estimators, the consistency will follow if we show that
each stochastic term on the right hand side of (4.8)–(4.10) converges to zero.

Proposition 4.4. Assume the conditions and notation from Lemma 4.3. Then:

(i) For every δ1 < min{2 + 2α − 2γ, 1},

lim
N→∞

N δ1

 T
0


A1+2α−γ Ū N ,

N∑
k=1

ΦkdWk


 T

0 |A1+αU N |2dt
= 0 a.s. (4.11)

(ii) Whenever δ2 < min{2 + 2α − 2γ, 3/2} in the case (1.2), or whenever δ2 < min{2 + 2α −

2γ, 5/4 + 1 − γ } in the case (1.3), we have

lim
N→∞

N δ2

 T
0


A1+2α−γ RN ,

N∑
k=1

ΦkdWk


 T

0 |A1+αU N |2dt
= 0 (4.12)

in probability.

Proof. Due to Lemma 4.3, (4.5) and (2.11) the desired result follows once we show that each of
the sequences

J 1
N :=

 T
0


A1+2α−γ Ū N ,

N∑
k=1

ΦkdWk


λ

2+2α−2γ−δ1
N

=

N∑
k=1

λ
1+2α−γ

k

 T
0 ūkdWk

λ
2+2α−2γ−δ1
N

and

J 2
N :=

 T
0


A1+2α−γ RN ,

N∑
k=1

ΦkdWk


λ

2+2α−2γ−δ2
N

converges to zero as N → ∞.
For the first term, J 1

N , define ξ̄k := λ
1+2α−γ

k

 T
0 ūkdWk and bn := λ

2+2α−2γ−δ1
n . Under the

given conditions, limn→∞ bn = ∞. With the Itō isometry and (2.9), we have

Var [ξ̄k] = E[ξ̄2
k ] ∼ λ

2+4α−2γ
k λ

−(1+2γ )
k = λ

1+4α−4γ
k .

Thus,−
n≥1

Var ξn

b2
n

∼

−
n≥1

λ
1+4α−4γ
n

λ
4+4α−4γ−2δ1
n

=

−
n≥1

1

λ
3−2δ1
n

∼

−
n≥1

1

n3−2δ1
< ∞.

Note that under the given conditions, δ1 < 1. This justifies the assertion that the final sum is
finite. We conclude, by the LLN, Lemma 2.2, that limN→∞ J 1

N = 0.
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We turn to J 2
N . Let rk := (R,Φk), k ≥ 1, and for any stopping time τ we define

ζ τk := λ
1+2α−γ

k

∫ τ

0
rkdWk .

Note that the random variables ζ τk , k ≥ 1, are uncorrelated. Like in the above arguments, we

let bn := λ
2+2α−2γ−δ2
n and observe that this sequence is increasing and unbounded. Up to any

stopping time τ such that Var ζ τk < ∞, we have

−
k≥1

Var [ζ τk ]

b2
k

=

−
k≥1

λ
2+4α−2γ
k

λ
4+4α−4γ−2δ2
k

E
∫ τ

0
r2

k dt

=

−
k≥1

λ
2γ−2+2δ2
k E

∫ τ

0
r2

k dt

= E
∫ τ

0
|Aγ−1+δ2 R|

2dt. (4.13)

Note that under the initial assumptions, in the case of a bounded domain, (1.3), γ −1+δ2 < 5/4,
and in the periodic case, (1.2), we have γ − 1 + δ2 < γ + 1/2. In either case, by taking τn as in
Proposition 4.2, we infer from (4.13) with (4.3) that, for every n,−

k≥1

Var ζ T ∧τn
k

b2
k

< ∞.

By applying Lemma 2.2, we conclude that, for each n fixed,

lim
N→∞

 T ∧τn
0


A1+2α−γ RN ,

N∑
k=1

ΦkdWk


λ

2+2α−2γ−δ2
N

= 0 in Probability.

Since τn is increasing, Ω̃ = ∪n{τn > T } is a set of full measure, and a simple estimate yields
that

lim
N→∞

 T
0


A1+2α−γ RN ,

N∑
k=1

ΦkdWk


λ

2+2α−2γ−δ2
N

= 0 in Probability.

The proof is complete. �

Corollary 4.5. Putting the admissible values δ1 = δ2 = 0 in (4.11), (4.12), and taking into
account that U N

= Ū N
+ RN , we conclude that

lim
N→∞

 T
0


A1+2α−γU N ,

N∑
k=1

ΦkdWk


 T

0 |A1+αU N |2dt
= 0 in Probability.

Thus, by representation (4.8) we have that νN is weakly consistent estimator of the true para-
meter ν.

We turn next to the ‘nonlinear terms’ appearing in (4.9).
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Proposition 4.6. Assume the conditions and notation imposed for Lemma 4.3 above. We suppose
that δ ∈ [0,min{5/4 − γ, α − γ + 1}) in the case (1.3) or that δ ∈ [0,min{1/2, α − γ + 1})

when we assume (1.2). Then

lim
N→∞

N δ

 T
0


A1+2αU N , PN B(U )


dt T

0 |A1+αU N |2dt
= 0 a.s. (4.14)

Proof. By the Cauchy–Schwartz inequality,
 T

0 ⟨A1+2αU N , PN B(U )⟩dt T
0 |A1+αU N |2dt

 ≤

 T
0 |AαPN B(U )|2dt T

0 |A1+αU N |2dt

1/2

. (4.15)

Due to Lemma 4.3, (4.5) and (2.11) it is therefore sufficient to show that

lim
N→∞

λ
2(δ−(α−γ+1))
N

∫ T

0
|AαPN B(U )|2dt = 0 a.s. (4.16)

We begin with the boundary conditions (1.2) and consider two possibilities corresponding
to different values of α. First suppose that α < γ − 1/2, so δ − (α − γ + 1) < 0. Pick any
β ∈ (max{α, 1/2}, γ − 1/2). Making use of (2.19) and then applying Theorem 2.6, (ii), we
observe that∫ T

0
|AαPN B(U )|2dt ≤

∫ T

0
|AβB(U )|2dt

≤ c
∫ T

0
|AβU |

2
|Aβ+1/2U |

2dt < ∞ a.s.

and (4.16) follows.
Now suppose that α ≥ γ − 1/2. In this case we pick an element α′

∈ (max{δ + γ − 1, 1/2},

γ − 1/2). Note that, by assumption, δ < 1/2, so this interval is nontrivial. Clearly α′ < α and
we apply (2.3) and again (2.19) in order to estimate∫ T

0
|AαPN B(U )|2dt ≤ λ

2(α−α′)
N

∫ T

0
|Aα

′

PN B(U )|2dt

≤ cλ2(α−α′)
N

∫ T

0
|Aα

′

U |
2
|Aα

′
+1/2U |

2dt < ∞ a.s. (4.17)

As above, we find that the quantity on the right hand side is finite due to Theorem 2.6, (ii). Noting
that δ − (α − γ + 1)+ α − α′ < 0, we infer that (4.16) holds true.

The case of Dirichlet boundary conditions (1.3) is addressed in a similar manner. When
α < 1/4 we directly apply (2.18) to infer (4.16). When α ≥ 1/4 we pick any α′

∈ (δ+γ−1, 1/4).
Noting that the conditions on δ ensure that this interval is nontrivial and that α′ < α, we apply
(2.3) and (2.18) in a similar manner to (4.17) and infer (4.16) for this case too. The proof is now
complete. �

Corollary 4.7. In similar manner one can establish the same results as above for PN B(U N ). In
particular, for δ = 0 we have

lim
N→∞

 T
0 ⟨A1+2αU N , PN B(U )⟩dt T

0 |A1+αU N |2dt
= 0 a.s. (4.18)



I. Cialenco, N. Glatt-Holtz / Stochastic Processes and their Applications 121 (2011) 701–724 721

lim
N→∞

 T
0 ⟨A1+2αU N , PN B(U N )⟩dt T

0 |A1+αU N |2dt
= 0 a.s. (4.19)

Taking into account the above equalities and the representations (4.9) and (4.10) we have thatνN and ν̌N are consistent estimators of ν.

4.3. Asymptotic normality

We finally address the asymptotic normality of ν̃N and prove the second part of Theorem 3.1.
Using the representation (4.8) forνN , Lemma 4.3, and (4.5) we see that is suffices to establish
that

lim
N→∞

N

 T
0


A1+2α−γ Ū N ,

∑
k

ΦkdWk


E
 T

0 |A1+αŪ N |2dt

d
= η, (4.20)

where η is a normal random variable with mean zero and variance 2ν(α−γ+1)2

λ1T (α−γ+1/2) , and that

lim
N→∞

N

 T
0


A1+2α−γ RN ,

∑
k

ΦkdWk


E
 T

0 |A1+αŪ N |2dt
= 0 in Probability. (4.21)

We establish (4.20) with the aid of Lemma 2.3. Let σk := λ
1+2α−γ

k ūk , and ξk :=
 T

0 σ 2
k dt,

k ≥ 1. Notice that, due to (2.9),

E[ξk] ∼ λ
2+4α−2γ
k λ

−(1+2γ )
k = λ

1+4α−4γ
k ,

Var [ξk] ∼ λ
4+8α−4γ
k λ

−(3+4γ )
k = λ

1+8α−8γ
k .

Define bn :=
∑n

k=1 Eξk . Under the given assumptions, 1 + 4α− 4γ < −1, so by (2.12) we have

that bn ∼ λ
2+4α−4γ
n . We infer that bn is increasing and unbounded. Moreover,

∞−
k=1

Var [ξk]

b2
k

≤ c
∞−

k=1

k−3,

and therefore by LLN, Lemma 2.2, we conclude

lim
N→∞

N∑
k=1

ξk

N∑
k=1

Eξk

= 1 a.s.

Consequently, by Lemma 2.3 with σk defined above, we have

lim
N→∞

 T
0


A1+2α−γ Ū N ,

∑
k

ΦkdWk



E
 T

0 |A1+2α−γ Ū N |2dt
1/2

d
= N (0, 1). (4.22)
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Noting that both 1 + α > γ , 1 + 2α − γ > γ we may apply (2.11) and infer
E
 T

0 |A1+2α−γ Ū N
|
2dt
1/2

E
 T

0 |A1+αŪ N |2dt
≈


2ν
λ1T

·
α − γ + 1

√
α − γ + 1/2

·
1
N
. (4.23)

By combining (4.22) and (4.23) we obtain (4.20).
The other condition, (4.21), follows directly from Proposition 4.4, (4.12) with the admissible

value of δ2 = 1. This completes the proof of Theorem 3.1, (ii).

Remark 4.8. Notice that the accuracy of the estimatorsνN , as measured by the variance from
asymptotic normality, depends on α, γ and T . As one would expect, as T gets larger and more
information is revealed, the quality of the estimator improves (i.e. the variance decreases). This
suggests that one may show that all of the classes of estimators considered above are consistent
in the large time asymptotics regime, i.e. when we fix N and send T → ∞. With the spectral
method that we have developed in this work establishing the long time asymptotics is more
complicated in comparison to the linear case, and this will be addressed in future work.

Also, we note that (α−γ +1)/
√
α − γ + 1/2, as a function of α on the domain α > γ −1/2,

reaches its minimum at α = γ . Thus, for fixed T and γ , the smallest asymptotic variance for the
estimatorνN corresponds to α = γ . Observe that when α = γ , the estimatorνN reduces to the
formal MLE (3.3), which in some sense is the optimal estimator in this class of estimators.

Remark 4.9. We want to emphasize that we still believe that asymptotic normality properties
similar to (3.7) also hold true for the estimators ν̌N . However, for a rigorous proof one needs to
show, for example, that Proposition 4.6 holds true for some δ ≥ 1, and with PN B(U ) replaced by
PN B(U )− PN B(U N ). Intuitively it is clear that the difference PN B(U )− PN B(U N ) will make
the convergence to zero in (4.14) faster, allowing for a larger δ compared to those from the terms
PN B(U ) and PN B(U N ) considered individually. We further believe that the quality of these
estimators ν̌N may be optimized in terms of the free parameter α. Although, up to the present
time, we remain unable to establish such quantitative results about the asymptotic normality of
the estimators ν̌N , we plan to study these questions at least by means of numerical simulations
in forthcoming work.
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