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It is well known that coupling a spin- 3
2 field to a gravitational or electromagnetic background leads to

potential problems both in the classical and in the quantum theory. Various solutions to these prob-
lems have been proposed so far, which are all restricted to a limited class of backgrounds. On the other
hand, negative results for general gravitational backgrounds have been reported only for a limited set of
couplings to the background to date. Hence, to our knowledge, a comprehensive analysis of all possible
couplings to the gravitational field and general gravitational backgrounds including off-shell ones has not
been performed so far. In this work we analyse whether it is possible to couple a spin- 3

2 field to a grav-
itational field in such a way that the resulting quantum theory is consistent on arbitrary gravitational
backgrounds. We find that this is impossible as all couplings require the background to be an Einstein
spacetime for consistency. This enforces the widespread belief that supergravity theories are the only
meaningful models which contain spin- 3

2 fields as in these models such restrictions of the gravitational
background appear naturally as on-shell conditions.

© 2012 Elsevier B V. . Open access under CC BY license.
1. Introduction – Problems of spin- 3
2 fields in non-trivial

backgrounds

A free spin- 3
2 field ψ of mass m � 0 in flat four-dimensional

Minkowski spacetime is described by the Rarita–Schwinger equa-
tions [1]

(R0ψ)α := (−i/∂ + m)ψα

:= (−iγ μ∂μ + m
)
ψα = 0, (1)

/ψ := γμψμ = 0. (2)

Here and in the following Greek indices denote (co)tangent space
indices, γ μ are the usual γ -matrices, and ψ is a Dirac spinor-
valued vector field whose spinor indices we suppress throughout.
Buchdahl realised already more than fifty years ago that a mini-
mal coupling of the above equation to a background gravitational
field leads to problems [2]: the minimally coupled equations im-
ply Rμνγ

μψν = 0, with Rμν denoting the Ricci curvature tensor,
and this equation can only be satisfied by ψ ≡ 0 unless the space-
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time is an Einstein spacetime s.t. Rμν is a constant multiple of the
metric gμν .

Later Johnson and Sudharsan found that the quantum theory of
a spin- 3

2 field minimally coupled to an electromagnetic background
field fails to satisfy unitarity [3]. This result has been comple-
mented by Velo and Zwanziger who pointed out that the coupling
to an electromagnetic field is already problematic at the classical
level as it leads to superluminal propagation [4].

This last finding seemed to be the most shocking as it became
famous as the Velo–Zwanziger problem.

All three problems have been analysed in great detail and var-
ious solutions have been proposed. As it is impossible to pro-
vide a comprehensive list of earlier works, we only mention a
few selected ones. Special, i.e. maximally symmetric or constant
gravitational and electromagnetic backgrounds have been stud-
ied e.g. in [5–8] where the causality and/or unitarity problems
have been proven to be absent for special values of the mass
and/or the couplings. In [9,10] it was pointed out that all prob-
lems can be solved in Einstein–Maxwell backgrounds at the cost
of very small or very large masses m. The most prominent so-
lution of the Buchdahl-problem is arguably supergravity [11,12],
where the Einstein condition on the spacetime appears as a nat-
ural on-shell condition. The causal behaviour of supergravity was
shown in [13], whereas unitarity had mostly been discussed on
maximally symmetric Einstein backgrounds such as Minkowski and
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Anti-de Sitter spacetime [5–7]. Recently unitarity has also been
proven for general, asymptotically flat and Ricci flat Einstein back-
grounds1 [15]. Other solutions to the Buchdahl-problem, which
avoid restrictions on the background, have been proposed and
analysed both in the (1, 1

2 ) ⊕ ( 1
2 ,1) representation, e.g. [16–18],

and in the ( 3
2 ,0)⊕ ( 1

2 ,1) representation of SL(2,C) [19–23]. While
the former suffer either from the causality or the unitarity prob-
lem, the latter satisfy causality, but a unitarity proof is lacking to
date.

All the above-mentioned analyses have in common that they
consider restrictions on the couplings, the mass, or the back-
ground fields. Whereas in [24] general non-minimal couplings to
the electromagnetic field have been studied with a negative re-
sult, it seems that a comprehensive study of general non-minimal
couplings to the gravitational field and general gravitational back-
grounds has not been available to date. In this Letter, we thus
investigate whether it is possible to couple a spin- 3

2 field to a grav-
itational field in a way, such that the resulting quantum theory
is causal, unitary, and propagates the correct degrees of freedom
on arbitrary spacetime backgrounds – including off-shell ones. This
generality is motivated by the modern approach to quantum field
theory on curved spacetimes [25] (see also [26] for an extensive
review) where one tries to quantize a model without using any
knowledge on the background spacetime other than its defining
properties such as e.g. the Lorentzian metric signature. As this
turns out to be possible for spins � 1, see e.g. [27,25,28–32], the
question, whether this is the case for higher spins as well, natu-
rally arises. However, we find that a background-independent con-
sistent quantization seems to be impossible for spin- 3

2 fields in
gravitational backgrounds.

We work solely in the (1, 1
2 ) ⊕ ( 1

2 ,1) representation of SL(2,C)

and do not consider the ( 3
2 ,0) ⊕ ( 1

2 ,1) representation, which is
equivalent to the former on flat spacetimes, but not on curved
ones. This is motivated by the results of [23] where it has been
found that unitarity of a quantum field in this representation is
unlikely to hold due to its very structure in curved spacetimes.

Our Letter is organised as follows. In Section 2 we compile four
conditions which a consistent quantum theory of a spin- 3

2 field
on an arbitrary curved spacetime should satisfy. While the causal-
ity condition and the condition on the degrees of freedom are
well known, the very “background-independence” condition has
apparently not been discussed so far in this context. Our fourth
condition, a certain symmetry condition of the field equations, is
shown to be virtually equivalent to unitarity and thus replaces the
unitarity condition. Furthermore we point out that, in contrast to
statements in the literature, causality and unitarity are not equiv-
alent for spin- 3

2 fields. In Section 3 we finally prove our no-go
theorem and show that no non-minimally coupled spin- 3

2 field
equation satisfies all four conditions. The Letter ends with a dis-
cussion of our findings in Section 4.

2. Conditions for a consistent spin- 3
2 quantum theory in curved

spacetimes

We consider a spin- 3
2 field ψ on a general curved spacetime

(M, gμν), i.e. M is a four-dimensional manifold, gμν a metric with
signature (+,−,−,−) and ψ is a four-spinor-valued vector field
whose vector index we shall write only if necessary. We shall often
denote (M, gμν) by M for simplicity. The field equations for ψ are

1 In a previous preprint version of this work we had argued that supergravity fails

to satisfy unitarity on the basis of a spin- 3
2 field equation derived from the original

equation of motion in supergravity. In [14] it was pointed out that our argument
fails if one considers the original supergravity equations of motion instead.
Rψ = 0, (3)

/ψ := γμψμ = Aμψμ, (4)

where R is an arbitrary first order differential operator con-
structed out of the metric, the curved-spacetime γ -matrices γ μ ,
and the mass m, and Aμ is an arbitrary zeroth order operator
of that kind. Thus, with tuples (R, Aμ) we parametrise all non-
minimal couplings of ψ to the background gravitation field. By
S(R, M) we denote the set of all (infinitely often differentiable)
solutions of (3) on the spacetime M , whereas by S(R, Aμ, M) we
denote the subset of S(R, M) which satisfies in addition (4). We
now list four conditions on (R, Aμ) and argue why they sufficient
for a spin- 3

2 quantum theory induced by (R, Aμ) to be consistent
in arbitrary curved spacetimes.

2.1. Condition 1: Irreducibility

On Minkowski spacetime M, Aμ ≡ 0 and S(R,0,M) = S(R0,0,M).

This condition requires that (R, Aμ) define a theory which
propagates the correct number of degrees of freedom for a spin- 3

2
field of mass m. This is here achieved by comparison with the
standard theory in Minkowski spacetime, which after all is the
very spacetime in which the concepts of “spin” and “mass” are
defined via irreducible representations of the Poincaré group. We
don’t require R≡R0 on M because different R can be equivalent
on-shell.

2.2. Condition 2: Causality

R is hyperbolic and the constraint /ψ = Aμψμ is compatible with time
evolution.

Hyperbolic field equations such as the Klein–Gordon or the
Dirac equation guarantee causal propagation of the degrees of
freedom, see e.g. [33,34,9,35], as they limit the dependence of a
solution ψ(x) at a point x to the past lightcone of x. Hyperbol-
icity is a condition on the coefficient matrix σμ of the highest
derivative term σμ∇μ in R, the so-called principal symbol: for
a spacelike/timelike vector kμ , kμσμ must be invertible, while
for a lightlike kμ , it must have vanishing determinant. Addition-
ally, the above compatibility condition is required to avoid that
S(R, Aμ, M) contains only the trivial solution ψ ≡ 0.

2.3. Condition 3: Background independence

The number of degrees of freedom propagated by (R, Aμ) is indepen-
dent of the background spacetime M . Moreover, either Aμ ≡ 0 on all
spacetimes, or (4) is automatically satisfied for all solutions of (3).

This condition is required to avoid the Buchdahl-problem men-
tioned in Section 1, where it happens that the minimally coupled
Rarita–Schwinger equations (1) and (2) propagate the correct num-
ber of degrees of freedom on Einstein spacetimes, but no degrees
of freedom at all otherwise.

Stated in more technical terms this condition requires that
S(R, Aμ, M) is locally contravariant in the sense of [25]: if we con-
sider two spacetimes M1 ⊂ M2 where one is a (suitable) subset of
the other, then S(R, Aμ, M1) should be equal to the restriction of
S(R, Aμ, M2) to M1.

We impose the additional condition on Aμ because we have not
been able to prove that the constraint (4) satisfies our background-
independence condition except in these two special cases.
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2.4. Condition 4: Self-adjointness

Although this condition appears to be the most technical one,
it is equivalent to demanding that the field equation (3) can be
obtained from a quadratic action. We state the condition first and
comment on its relation to unitarity afterwards. To this avail, we
introduce the notion Γ0(M) for the set of (infinitely often differ-
entiable) vector-spinor-valued functions which vanish outside of a
compact subset of M , so-called test functions. For two test functions
f1, f2, we define a product 〈 f1, f2〉 by

〈 f1, f2〉 :=
∫
M

d4x
√

−det gμν gαβ f α
1 (x) f β

2 (x),

where the bar denotes the usual Dirac conjugation of a four-
spinor. We can define the adjoint R† of R with respect to 〈·,·〉 by
〈R† f1, f2〉 := 〈 f1,R f2〉 and finally state the fourth and last condi-
tion.

R is formally self-adjoint: R† =R, i.e. 〈R f1, f2〉 = 〈 f1,R f2〉.

To discuss the relation of this condition to unitarity, we briefly
recall the unitarity condition for a spin- 3

2 field, see e.g. [3,7,15]
for details. To wit, the covariant anticommutator of the quantized
field ψ and its adjoint ψ is after canonical quantization given by{
ψ(x),ψ(y)

} = iG(x, y) (5)

where G(x, y) is the so-called anticommutator function, a generali-
sation of the Pauli–Jordan-function for scalar fields. G(x, y) is equal
to the difference of the advanced and retarded Green’s function2

of the differential operator R and thus G(x, y) depends on the
specific form of R and satisfies RxG(x, y) = R†

y G(x, y) = 0 for a
general hyperbolic R. The operator G defined by

[G f ](x) :=
∫
M

d4 y
√

−det gμνG(x, y) f (y),

maps test functions to solutions which have finite spatial extent
at each time, i.e. “wave packets”. Accordingly, the quantized field
ψ(x) integrated with the Dirac adjoint of a test section f – hence-
forth denoted by ψ( f ) – can be interpreted as the quantum oper-
ator corresponding to the classical wave packet G f . Physical wave
packets should satisfy the constraint γμ(G f )μ = Aμ(G f )μ in addi-
tion to the equation R(G f ) = 0 and we denote the corresponding
“physical subspace” of the test sections Γ0(M) by Γ0(R, Aμ, M).
If one now considers the anticommutation relations (5) integrated
with a test section f ∈ Γ0(R, Aμ, M) and its Dirac adjoint{
ψ( f ),ψ( f )

} = iG( f , f ) = i〈 f , G f 〉,
then the right hand side must be a positive number because the
left hand side is of the form B† B + B B† with B = ψ( f ) and thus
has positive expectation value in any quantum state |Ω〉. Hence,
the non-trivial unitarity condition for the tuple (R, Aμ) is that the
anticommutator function G(x, y) determined by R must satisfy

i〈 f , G f 〉� 0

for any physical test function f ∈ Γ0(R, Aμ, M). Note that, for
a formally self-adjoint R the previously discussed covariant anti-
commutation relations are equivalent to equal-time anticommutation

2 For a hyperbolic R, these Green’s functions exist and are unique on any space-
time which fulfills the so-called global hyperbolicity condition, see [35,17] for details;
this quite natural condition on M shall be tacitly assumed throughout this Letter.
relations, see e.g. [26,17,15] for details. Basically this follows from
the identity

〈 f1, G f2〉 =
∫
Σ

d3x
√

−det hij G f1nμσμG f2, (6)

where Σ is an arbitrary equal-time surface of M with normal vec-
tor nμ and hij is the spatial metric on Σ induced by gμν .

We shall now demonstrate the close relation between the
self-adjointness condition R† = R and the unitarity condition
i〈 f , G f 〉 � 0 which lead us to replace the latter, which is difficult
to check directly on all spacetimes, with the former, which can be
checked more easily.

To start with, we shall argue why the self-adjointness condition
implies unitarity on any topologically trivial spacetime M if unitar-
ity is known in Minkowski spacetime M. To see this, we consider
any topologically trivial spacetime M and deform it in such a way
that it becomes Minkowski in the past, see [36] for details. Loosely
speaking, we consider a fiducial spacetime M ′ such that the metric
on M ′ equals the metric on M for large positive times, whereas for
large negative times it equals the Minkowski metric. Given such a
deformation and a formally self-adjoint R, the identity (6) allows
us to compute 〈 f , G f 〉 on any equal-time surface of M ′ , in particu-
lar also in the Minkowski region where we know that it is positive
by assumption. Moreover, for Eqs. (1) and (2), unitarity can be eas-
ily checked by an explicit computation in Fourier space, thus our
first condition together with self-adjointness is sufficient to guar-
antee unitarity on any topologically trivial M .

We now prove that i〈 f , G f 〉 � 0 for f ∈ Γ0(R, Aμ, M) implies
〈 f1,R f2〉 = 〈R f1, f2〉 for f i ∈ Γ0(R, Aμ, M) on arbitrary space-
times. Defining a product on physical test functions by ( f1, f2) :=
i〈 f1, G f2〉, our assumption ( f , f ) � 0 implies by polarisation that
the complex conjugate of ( f1, f2) equals ( f2, f1) from which we
can deduce that iG is formally self-adjoint on Γ0(R, Aμ, M). As
G† is the operator corresponding to the anticommutator function
of R†, we find that G† = G on physical test functions and the same
is true for the advanced G(†)

+ and retarded G(†)
− pieces of G and G†

respectively because these are unique. Using this, RG± = G±R= 1
and the fact that R maps Γ0(R, Aμ, M) to itself we can compute

R† f = R†G±R f = R†G†
±R f = R f .

In order for the general self-adjointness condition to be equiv-
alent to the unitarity condition for the purposes of a no-go the-
orem, it would be necessary to prove that unitarity implies self-
adjointness of R on all test functions and not only on the physical
ones. Alternatively, we could also require the latter, weaker self-
adjointness condition. However, one could just as well argue that
the stronger, general self-adjointness condition is important in its
own right irrespective of unitarity because it is equivalent to de-
mand that R comes from a quadratic action. Thus, we proceed
with this stronger condition, because it is easier to verify.

3. A no-go theorem for the consistent quantization of
non-minimally coupled spin- 3

2 fields on general curved
spacetimes

We shall prove in the following that a large class of non-
minimally coupled field equations (R, Aμ) does not satisfy the
four conditions compiled in the previous section. In the course of
proving this no-go theorem, it will become clear that the proof
can be extended to any larger class of operators without much ef-
fort, such that the class we shall consider can be safely regarded as
effectively exhausting all possible covariant field equations in the
(1, 1 ) ⊕ ( 1 ,1) representation of SL(2,C).
2 2
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To wit, we consider R of the form

(Rψ)α := (−i /∇ + m)ψα + a0mγ α /ψ + a1i∇α /ψ

+ a2iγ α∇μψμ + a3iγ α /∇ /ψ + ψ̃α,

ψ̃α := mγ α B + mCα + iDα + iγ α E,

B := b1 Rμνγ
μψν + b2 R /ψ,

Cα := c1 Rα
νψν + c2 Rα

νγ
ν /ψ + c3 Rψα + c4R

α
νψν,

Dα := d1 Rα
ν /ψν + d2

(
/∇Rα

ν

)
ψν + d3 Rα

νγ
ν /∇ /ψ

+ d4
(
/∇Rα

ν

)
γ ν /ψ + d5 R /∇ψα + d6( /∇R)ψα

+ d7 Rα
ν∇ν /ψ + d8

(∇α R
)
/ψ + d9 R∇α /ψ

+ d10R
α

ν∇ν /ψ + d11
(∇νRα

ν

)
/ψ

+ d12 Rμν∇αγ μψν + d13
(∇α Rμν

)
γ μψν

+ d14
(∇ν Rα

μ

)
γ μψν + d15 Rα

μγ μ∇νψν,

E := e1 Rμνγ
ν /∇ψν + e2( /∇Rμν)γ μψν + e3 R /∇ /ψ

+ e4( /∇R) /ψ + e5(∇ν R)ψν + e6 R∇νψν

+ e7
(∇μRμν

)
ψν + e8Rμν∇μψν + e9 Rμν∇μψν,

where ∇μ is the spin covariant derivative, ai ∈C are arbitrary con-
stants whereas Rαβ = 1

4 Rαβμνγ
μγ ν denotes the spin curvature

tensor.3 Moreover, derivatives in parenthesis are meant to act only
on the jointly enclosed curvature tensors, and bi , ci , di , ei are ar-
bitrary complex-valued functions of curvature invariants and m of
mass dimension −2.

We start our proof by checking self-adjointness, since this turns
out to be the strongest condition. Indeed, as one can check by di-
rect computation, it is fulfilled on arbitrary curved spacetimes if
and only if the following equations are true.

a∗
0 = a0, a2 = a∗

1, a∗
3 = a3, b1 = c∗

2,

b∗
2 = b2, c∗

1 = c1, c∗
3 = c3, c∗

4 = c4,

d1 = d3 = d5 = d7 = d9 = d10 = d12 = d15 = 0,

e1 = e3 = e6 = e8 = e9 = 0,

d∗
2 = d2, d∗

4 = e2, d∗
6 = d6, d8 = e∗

5,

d11 = e∗
7, d∗

13 = d14, e∗
4 = e4.

Here, ∗ denotes complex conjugation. In essence, requiring R† =R
rules out terms where a curvature tensor multiplies a derivative of
ψα , because such terms generate derivatives of curvature tensors
by the partial integration involved in the definition of the for-
mal adjoint of R†. These curvature tensor derivatives cannot be
cured by explicitly adding couplings of ψα to curvature deriva-
tives, as such terms must be present both in R and in R†. Hence,
self-adjointness rules out arbitrary terms where a curvature tensor
multiplies a derivative of ψα , extending the validity of this proof
to a larger class of R containing all possible such terms.

We proceed by checking the hyperbolicity bit of our causality
condition. Let kμ be timelike or spacelike and let ψα fulfill

ikμσμψα = /kψα − a1kα /ψ − a2γ
αkμψμ − a3γ

α /k /ψ = 0,

where we have already taken into account that the allowed prin-
cipal symbols are reduced by self-adjointness. We have to check

3 Note that all couplings containing the Riemann tensor Rαβμν can be expressed
via the spin curvature tensor Rαβ . Furthermore, we have omitted all couplings
which would be linearly dependent by means of Bianchi identities. We follow [37]
regarding conventions in the definition of the curvature tensors.
for which ai the above equation implies ψα ≡ 0. By multiplying
the above equation with /k and kα , we can obtain the following
derived equations

(1 − a2) /kkμψμ = (a1 + a3)k
2 /ψ,

(1 − 3a2) /kkμψμ = (1 + 3a3)k
2 /ψ,

which can be rewritten as(
(1 − a2)1 −(a1 + a3)1

(1 − 3a2)1 −(1 + 3a3)1

)(
/kkμψμ

k2 /ψ

)
= 0,

where 1 is the 4×4 identity matrix. As kμ is timelike or spacelike,
this equation together with ikμσμψα = 0 implies ψα ≡ 0 if and
only if the determinant of the appearing 8 × 8 matrix is non-zero;
this in turn is the case iff

−3a1a2 + a1 + a2 − 2a3 − 1 �= 0. (7)

We do not discuss lightlike kμ , as (7) will be sufficient to prove
the theorem.

Finally, we verify the background-independence and irreducibil-
ity conditions. To this avail, we contract (Rψ)α = 0 with both γα

and ∇α and combine the results to obtain the following equation
for /ψ :

−
(

(a2 − 1)(1 + a2 + 4a3)

2 − 4a2
+ a1 + a3

)
∇μ∇μ /ψ

+
(

(a2 − 1)(1 + 4a0)

2 − 4a2
+ 1 + a1 + 4a3

2 − 4a2
+ a0

)
im /∇ /ψ

+
(

(a2 − 1)(1 + a2 + 4a3)

2 − 4a2
+ a3

)
R

4
/ψ

+ 1 + 4a0

2 − 4a2
m2 /ψ − 1

2
Rμνγ

μψν

+ a2 − 1

2 − 4a2
i /∇ /̃ψ + i∇μψ̃μ + m

2 − 4a2
/̃ψ = 0. (8)

Here, our first condition assures that 2 − 4a2 �= 0. To see this, note
that contracting Rψα = 0 with γα yields an equation which can
be rewritten as

(2 − 4a2)i∇μψμ = (1 + a1 + 4a3)i /∇ /ψ + (1 + 4a0)m /ψ + /̃ψ. (9)

If 2 − 4a2 = 0, then ∇μψμ = 0 would not follow from Rψα = 0
and /ψ = 0 on Minkowski spacetime, hence S(R,0,M) = S(R0,

0,M) would not hold because all elements of S(R0,0,M) satisfy
∇μψμ = 0.

To assure that our background-independence condition holds,
we have to either guarantee that /ψα = Aμψμ holds automatically
for solutions of Rψ = 0 or that Aα ≡ 0 on all spacetimes. Let us
check if the first of these conditions can be fulfilled. Without speci-
fying Aμ explicitly, we know that, in Minkowski spacetime, Aμ ≡ 0
must hold on account of the irreducibility condition. However,
in flat spacetime, (8) is a hyperbolic partial differential equation
for /ψ , as the coefficient of ∇μ∇μ/ψ is non-zero if we apply the con-
dition (7) derived from causality and self-adjointness. Such a dif-
ferential equation has certainly more possible solutions than just
/ψ ≡ 0, hence, by combining causality, self-adjointness, and irre-
ducibility, we find that only the optional background-independence
condition that Aμ be identically vanishing on all spacetimes can be
fulfilled. Inserting this into (8), we are left with

−1

2
Rμνγ

μψν − a2 − 1

2 − 4a2
i /∇ /̃ψ + i∇μψ̃μ + m

2 − 4a2
/̃ψ = 0. (10)

In Minkowski spacetime, this equation is identically fulfilled and,
hence, poses no additional constraints on solutions of Rψ = 0 and
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/ψ = 0. To check if our background independence holds, we have to
make sure that (10) is identically fulfilled on all spacetimes once
Rψα = 0 and /ψ = 0 hold. To this avail, we insert /ψ = 0 into (9),
and both /ψ = 0 and (9) into Rψα = 0 to obtain

i∇μψμ = 1

2 − 4a2
/̃ψ,

(−i /∇ + m)ψα + a2

2 − 4a2
γ α /̃ψ + ψ̃α = 0.

These two equations are the only information on first derivatives
of ψα one can obtain from Rψ = 0 and /ψ = 0. However, the sum-
mand ∇μψ̃μ in (10) contains first derivatives of ψα also in terms
like e.g. Rμν∇μψν , on which Rψ = 0 and /ψ = 0 give no infor-
mation in general curved spacetimes. Hence, these terms must
identically vanish in ∇μψ̃μ , which implies that the coefficients
of all terms in ψ̃α surviving the insertion of /ψ = 0 and whose
free index α does not belong to γ α or ψα must vanish. More-
over the coefficients of all terms where γ α appears followed by
other γ -matrices must vanish as well, as these terms also give
rise to terms like e.g. Rμν∇μψν if one considers them in ∇μψ̃μ

and commutes the contracted covariant derivative /∇ with the ad-
ditional γ -matrices in order to use the available information on
/∇ψα . Analogously, the terms in ψ̃α where the free index α belongs
to ψα but ψα is multiplied by γ -matrices are problematic in /∇ /̃ψ

and have to vanish identically. Altogether, avoiding the appearance
of in general undetermined ψα-derivatives in (10) enforces

b1 = c1 = c4 = d2 = d6 = d13 = d14 = e2 = e7 = 0,

hence, the remaining terms in ψ̃α not yet ruled out by background
independence are

ψ̃α = mc3 Rψα + e5γ
α(∇ν R)ψν.

We can now explicitly compute the left hand side of (10) by insert-
ing this expression for ψ̃α and the knowledge on ∇μψμ and /∇ψα

obtained from Rψ = 0 and /ψ = 0. The result does not contain
any derivatives of ψα , but is a sum of various curvature tensors
multiplying ψα . In general spacetimes, some of these terms are
linearly independent and, hence, have to vanish individually in or-
der for (10) to be identically fulfilled on all spacetimes. Particularly,
since the only term in the left hand side of (10) containing the
Ricci tensor turns out to be the one explicitly visible in (10), we
obtain

Rμνγ
μψν = 0

as a necessary condition for (10) to hold on general spacetimes.
However, this is in conflict with background independence, which
closes the proof.

One can imagine that the steps taken in the last paragraph
of this proof can be generalised to arbitrary couplings of the
curvature to ψα , and we have argued in the discussion of self-
adjointness that the same holds for arbitrary couplings of the cur-
vature to derivatives of ψα , hence, we presume that our proof
effectively exhausts all possible covariant first order differential
operators R. Finally, we would like to emphasise that our proof
covers both m > 0 and m = 0.

4. Discussion

The proof of our no-go theorem shows that, even if one allows
for a spin- 3

2 field in a gravitational background to be coupled to
the gravitational field in an arbitrary non-minimal way, one is lead
to the same Buchdahl-problem present for the minimally coupled
equations of motion if one requires in addition that causality and
unitarity hold: the model is, at best, only consistent on Einstein
spacetimes. Whereas this seems to be a very restrictive condition
for the consistent quantization of spin- 3

2 fields on curved back-
grounds, it fits nicely into the widespread picture that supergravity
theories are the only consistent models which contain elemen-
tary spin- 3

2 fields, see e.g. [38], as in these models such conditions
on the background appear naturally as on-shell conditions [11,12].
One can expect that a generalisation of our no-go theorem to the
case where scalar and vector background fields are present in addi-
tion to the metric field yields conditions on the background which
are compatible with on-shell conditions in supergravity models
with N > 1 supersymmetries or additional matter multiplets, see
e.g. [39–41].
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