



Available online at www.sciencedirect.com

## SciVerse ScienceDirect

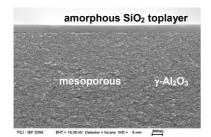
Procedia Engineering 44 (2012) 1554 – 1556

# **Procedia Engineering**

www.elsevier.com/locate/procedia

#### **Euromembrane Conference 2012**

### [P2.155]


Mem-brain gas separation membranes for energy-efficient processes

M. Czyperek<sup>1</sup>, S. Baumann<sup>1</sup>, H.J. Bouwmeester<sup>2</sup>, W.A. Meulenberg<sup>1</sup>, M. Modigell<sup>3</sup>, J.M. Serra<sup>4</sup>, S. Shishatskiy<sup>5</sup>, I. Voigt<sup>6</sup>, F. Schulze-Küppers<sup>\*1</sup> et al <sup>1</sup>Forschungszentrum Jülich GmbH, Germany, <sup>2</sup>University of Twente, The Netherlands, <sup>3</sup>RWTH Aachen University, Germany, <sup>4</sup>Universidad Politécnica de Valencia, Spain, <sup>5</sup>GKSS-Forschungszentrum Geesthacht GmbH, Germany, <sup>6</sup>Fraunhofer-Institut für Keramische Technologien und Systeme, IKTS, Germany

The objective of the Helmholtz Portfolio "MEM-BRAIN" is the development and integration of ceramic and polymeric gas separation membranes for advanced fossil power plants and other applications like biogas processing or processes in the chemical industry. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO<sub>2</sub> capture process routes in power plants, thus enabling CO<sub>2</sub> to be captured with high-purity in a readily condensable form.

Four types of membrane materials are developed and characterized:

The ceramic molecular sieving membranes based on e.g. SiO<sub>2</sub>/ZrO<sub>2</sub>/TiO<sub>2</sub> or hybrid membrane materials like BTESE, BTESM are developed for H<sub>2</sub>/CO<sub>2</sub> separation (pre combustion process). Among the sol-gel materials hybrid thin films with Si-C bonds incorporated were favoured. Lanthanum tungstate's showed the highest mixed protonicelectronic conductivity whereas the conductivity was optimized by partial substitution of La. Defect free sol-gel membranes could be prepared on flat substrates with a thickness in the range of appr. 50 -100 nm. A hydrothermal stable mesoporous intermediate layer was developed from yttria stabilized zirconia to replace the y-alumina layer, Figure 1a, 1b.



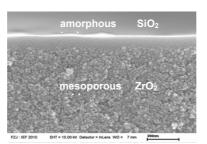



Fig. 1a: Graded molecular sieving membrane with a mesoporous □-Al<sub>2</sub>O<sub>3</sub> sublayer (pore size 3 nm) and a gas selective amorphous SiO<sub>2</sub> toplayer (scale bar = 200 nm). Fig. 1b: Similar graded membrane with a mesoporous ZrO<sub>2</sub> sublayer (pore size 5 nm) and an amorphous SiO<sub>2</sub> toplayer (scale bar = 200 nm) [T. Van Gestel, Jülich].

The dense ceramic proton-conducting and mixed proton-/electron-conducting membranes are developed for H<sub>2</sub>/CO<sub>2</sub> separation at elevated temperatures (400 – 700 °C), e. g. Ln<sub>6-x</sub>WO<sub>12-δ</sub> or BaZr<sub>0.7</sub>Ce<sub>0.2</sub>Y<sub>0.1</sub>O<sub>3-δ</sub>. Ceramic proton conducting membranes were prepared as monolithic discs, figure 2.

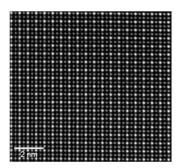



Fig. 2: High-resolution TEM image of the proton-conducting material La<sub>6</sub>WO<sub>12</sub> along the [001] direction. Atoms appear as bright spots on a dark background. The order of tungsten atoms generates a superstructure in the crystal lattice. [S. Roitsch, ER-C]

• Dense ceramic mixed oxygen ionic-electronic conducting membranes are developed for O<sub>2</sub>/N<sub>2</sub> separation (Oxyfuel process) made by thin film wet coating, e. g. Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> (BSCF), Zr-doped BSCF and (Ce<sub>1-x</sub> Pr<sub>x</sub>)O<sub>2-δ</sub>. At operating temperatures above 800 °C a stable window of application adapted to the oxyfuel process was identified. First time thin OTM were prepared on porous substrates confirming the expected rise of oxygen flux. A demonstration unit for oxygen mixed ionic-electronic conducting membranes containing 0.2 m² membrane area was built already in an early stage of the project. It was successfully operated over a long period. The long term tests confirmed the oxygen flux from lab tests. A second stage of a demonstration unit was built considering the experiences from the first one, figure 3.



Fig. 3: Demonstration unit for the oxygen separation from air [R. Kriegel, Fraunhofer-IKTS]

 Polymeric and organic/inorganic hybrid CO<sub>2</sub>-permeable membranes and modules are developed mainly for CO<sub>2</sub>/N<sub>2</sub>-separation (post combustion process).

A huge progress in fundamental understanding of all materials and membranes was achieved by incorporating high sophisticated methods of **characterization**. Especially the phase transitions and phase stabilities of ceramic proton conducting membranes as well as oxygen mixed ionic-electronic conducting membranes were clarified. The movement of different ions was calculated by **atomistic modelling** helping to understand the macroscopic transport of hydrogen and oxygen.

One topic deals with the **system integration** of membranes for  $CO_2$  capture into the three power plant process routes and also the design for a watergas shift membrane reactor with a test modul. The evaluation involves the comparison of the energy penalty, in contrast to conventional power plants without  $CO_2$  capture and to conventional  $CO_2$  separation methods like chemical  $CO_2$ -absorption or cryogenic air separation. Efficiency losses below 10 %-points could be achieved in oxyfuel and pre-combustion capture by means of membranes.

An accompanying **energy systems analysis** implies the analysis of the techno-economic requirements e. g. costs for transport and storage of CO<sub>2</sub>, the Life cycle assessment (LCA) to compare membrane technology with other CCS technologies or energy systems model analysis of CCS.

Financial support from the Helmholtz Association of German Research Centres through the Helmholtz Portfolio MEM-BRAIN is gratefully acknowledged.

**Keywords:** Zero-emission power plants, gas separation, ceramic membranes, polymeric membranes, process engineering, system integration, energy systems analysis

#### Reference

Czyperek, M., Zapp, P., Bouwmeester, H. J. M., Modigell, M., Peinemann, K.-V., Voigt, I., Meulenberg, W. A., Singheiser, L., Stöver, D.; MEM-BRAIN Gas Separation membranes for zero-emission fossil power plants, Energy Procedia 1, GHGT-9, (2009), 303-310

Czyperek, M.; Zapp, P.; Bouwmeester, H.J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.; Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN, J. Membr. Sci. 359 (2010) 1-2, 149 - 159, doi:10.1016/j.memsci.2010.04.012

Keywords: Zero-emission power plants, gas separation, ceramic membranes, process engineering