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Abstract

The least action principle occupies a central part in contemporary physics. Yet, as far as classical field 
theory is concerned, it may not be as essential as generally thought. We show with three detailed examples 
of classical interacting field theories that it is possible, in cases of physical interest, to derive the correct field 
equations for all fields from the action (which we regard as defining the theory), some of its symmetries, 
and the conservation law of energy–momentum (this last regarded as ultimately coming from experiment).
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The principle of least action or Hamilton’s principle (henceforth LAP) occupies a central 
position in contemporary physics. Beginning with Lagrange and Euler’s particle dynamics, con-
tinuing through field theory and culminating with string theory, the equations of motion of a 
fundamental theory are generally derived by starting from the theory’s action and then invoking 
the LAP. Another central pillar of physics is the Nöther theorem whereby a continuous symmetry 
of a field’s action, when combined with the field equations (themselves typically derived from 
LAP), yields the conservation law (continuity equation) for some continuous field quantity [1].
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In simple cases the above logic can be inverted. A well known example is furnished by the the-
ory of the pure (sourceless) electromagnetic field. One may infer its action from the requirements 
of gauge symmetry, time reversal symmetry and Lorentz invariance. From that action one infers 
the energy momentum tensor (by the well known recipes for the canonical or symmetric one). 
Then by requiring that the tensor’s divergence vanish (energy–momentum conservation) one ob-
tains a set of equations which, for generic values of the Faraday tensor, imply that the latter’s 
divergence must vanish [2]. Thus the Gauss and Ampere laws emerge from energy–momentum 
conservation, itself a consequence of the symmetry of the action under spacetime translations. 
The magnetic Gauss and Faraday laws are automatic consequences of the use of the electromag-
netic 4-potential as basic field variable. Thus, in the mentioned example, the symmetries plus 
energy–momentum conservation lead to the field equations without any appeal being made to 
the LAP.

Other examples are almost as easy to implement when they deal with a single field theory (in-
cluding a self-interacting one), or with one describing several noninteracting fields. In the later 
case separate conservation laws for energy–momentum exist for each field, and the procedure 
very much follows that for a single field. However, once different fields are coupled, a single 
conservation law of each type exists for the whole set of fields, and obviously supplies consid-
erably less information than in the noninteracting case. Can the field equations for the separate 
fields still be inferred without appealing to the LAP?

It is germane to mention here the case of dissipative fluid mechanics. Today we tend to think 
of hydrodynamics as the outcome of integrating out certain degrees of freedom of an underlying 
fundamental interacting field theory which describes the relevant particles. It is well known that 
the energy momentum tensor of the fluid can be written without reference to the underlying fun-
damental theory (with certain dissipative coefficients appearing as free parameters). Thereafter 
the implementation of the laws of particle numbers and energy–momentum conservation will 
yield the Navier–Stokes equation of motion. This case suggests it might be possible to recover 
the various field equations for an interacting field theory from energy–momentum conservation 
without invoking the LAP. Is this the case?

This question is interesting inasmuch as it is easily transmuted into a more fundamental one. 
From a practical point of view one can hardly analyze a field theory, or predict with it, without 
knowing its field equations. But which are the primary entities essential in reaching the field 
equation? Is it the Lagrangian and LAP, or is it symmetries, the action and conservation laws?

In this paper we present three nontrivial examples of interacting field systems; for each we re-
cover the correct field equations invoking some of the symmetries and overall energy–momentum 
conservation, but never recurring to the LAP. We thus suspect that in large tracts of the field 
theory zoo, all field equations can be recovered from symmetries and conservation laws when 
judiciously applied to the action suggested by symmetries, while dispensing with the LAP. Sym-
metries are, of course, an intuitive primitive concept in physics. And it is well known how to 
go about formulating an action for a set of fields with definite content from the requirement that 
the action incorporate the symmetries. In addition we can think (and in our approach we should 
think) of conservation laws as experimental facts. After all the experimental verification of a 
conservation law is in a real sense a null experiment, and thus very accurate by nature.

But lest a misunderstanding occur we hasten to add that, as a matter of practice, the traditional 
way to the field equations via LAP is the short and easy way. The approach via symmetries 
and conservation laws described here usually involves somewhat intricate arguments which vary 
with the nature of the fields, and would not typically be more economical than its traditional 
counterpart.
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Of course all that has been said concerns classical physics. In quantum field theory the dy-
namics comes from Feynman’s functional (or path) integral. The exponential in its integrand 
contains the field’s action, so that the starting point of a quantum field theory is similar to that of 
its classical counterpart. Since the functional integral cannot usually be calculated exactly, one 
opts for an approximation scheme such as the popular loop approximation scheme. In lowest 
(semiclassical or tree) approximation, this scheme entails evaluating the said exponential at the 
extremal value of the action with initial and final conditions for the fields being specified. But 
this extremal value is, of course, determined by the LAP, and obtains precisely for a field config-
uration that evolves according to the classical field equations. Thus LAP has a natural place in 
the so-called semiclassical approximation for the functional integral. However, we are here con-
cerned solely with classical field theory. This subject can be regarded as autonomous, as witness 
the large number of texts that develop it independently of quantum considerations.

The plan of the paper is as follows. In Section 2 we study the most general system of scalar 
fields in curved spacetime with minimal coupling to the metric. We show that in d-dimensional 
spacetime the scalar field equations for d or fewer fields scan be derived without help of the 
LAP. In Section 3 we consider a massive charged scalar field interacting with the electromagnetic 
field. We demonstrate in flat spacetime that the scalar and electromagnetic field equations can be 
obtained from symmetry and conservation considerations without use of the LAP. In Section 4
we take up the theory of Dirac fields interacting with a nonabelian gauge field, typically with 
symmetry of SU(n). We show that the gauge field equation emerges without use of the LAP; 
likewise, for a representation whose dimension is no higher than half the number of generators 
minus one [n2 − 2 for SU(n)], the Dirac-like field equation may be obtained from symmetry and 
conservation considerations alone.

We use natural units in which h̄ = c = 1. We employ the metric signature (−, +, +, +, . . .). 
Latin indices a, b, c, d, k are spacetime indices, while Greek indices μ, ν, λ, σ denote internal 
(group) indices. Repeated indices in one term are summed over.

2. Mutually interacting nonlinear scalar fields

2.1. Lagrangian and definitions

In d dimensional curved spacetime we take the action as a local, very general one, for a 
collection of interacting scalar fields φμ with μ = 1, 2, · · · , N ≤ d :

S =
∫

L
(
gab,φ1, · · · , φN , ∂aφ1, · · · , ∂aφN

)
(−g)1/2 ddx. (1)

A trivial example would be one for which L is a linear combination of invariants of the form 
∂aφμ∂aφμ and φ2

μ for several (noninteracting) scalar fields labeled by index μ. A somewhat 
more complex example would be one for two massive interacting scalar fields

L = −1

2
gab∂aφ1∂bφ1 − 1

2
m2

1φ
2
1 − 1

2
gab∂aφ2∂bφ2 − 1

2
m2

2φ
2
2 + K

(
φ2

1 − φ2
2

)2
. (2)

But, of course, the action (1) includes cases in which the Lagrangian density is not separable into 
kinetic and potential parts.

In terms of the definition of the functional derivative of the action we introduce the notation

Eφ ≡ 1
1/2

δS = ∂L − 1
1/2

∂a

(
∂L(−g)1/2 )

, (3)

(−g) δφ ∂φ (−g) ∂(∂aφ)



340 J.D. Bekenstein, B.R. Majhi / Nuclear Physics B 892 (2015) 337–352
as well as

Tab ≡ − 2

(−g)1/2

δS

δgab
= − 2

(−g)1/2

∂L(−g)1/2

∂gab
+ · · · . (4)

Definition (4) does not necessarily imply that we are using the LAP. As well known [3], it 
emerges just as a consequence of the diffeomorphism invariance of the non-gravitational part 
of the action, in which one regards the metric as given, and does not enter into the question of 
which equations determine it. We shall employ the definition (4) throughout.

2.2. Consequences of diffeomorphism invariance

We now consider an infinitesimal increment of the action, δS, engendered by infinitesimal 
increments of φ1, · · · , φN in the d dimensional volume V :

δS =
∫
V

(
−1

2
Tabδg

ab + Eφ1δφ1 + · · · + EφN
δφN

)
(−g)1/2ddx (5)

+
∮
∂V

(
∂L

∂(∂aφμ)
δφμ(−g)1/2

)
dΣa, (6)

where we sum over μ = 1, · · · , N , and have used Gauss’ theorem to convert a divergence into an 
integral over the d − 1 dimensional boundary ∂V with volume element dΣa .

At this stage we part ways with the usual derivation via the LAP. We shall only assume that S
is invariant under diffeomorphisms xa → xa +χa(x) with the χa being d arbitrary differentiable 
functions within V , but vanishing on ∂V and outside V . Under an infinitesimal diffeomorphism 
of this kind, implemented as a Lie drag [4,5], δχφ = χa∂aφ as well as δχgab = −(χa;b + χb;a). 
Thus the boundary term vanishes and we can write

δχS =
∫
V

(−Tab
;b + Eφ1∂aφ1 + · · · + EφN

∂aφN

)
χa(−g)1/2 ddx = 0, (7)

where we have exploited the symmetry of Tab and integrated by parts by virtue of the identity∫
V

Tabχ
a;b(−g)1/2 ddx = −

∫
V

Tab
;bχa(−g)1/2 ddx +

∮
∂V

(
Ta

bχa
)
dΣb, (8)

and exploited the fact that χa vanishes on ∂V . Once we take into account the conservation of 
energy–momentum, Tab

;b = 0, we obtain∫
V

(Eφ1∂aφ1 + · · · + EφN
∂aφN)χa(−g)1/2 ddx = 0. (9)

The arbitrariness of the χa allows us to conclude that within V for every index a

Eφ1∂aφ1 + · · · + EφN
∂aφN = 0. (10)

For a single scalar field φ this immediately implies that Eφ = 0 since in the generic situation 
∂aφ1 �= 0 throughout V apart, perhaps, from special points or surfaces. By continuity Eφ = 0 also 
at these special locations. Thus we see from Eq. (3) that the field obeys the usual field equation, 
and this without the LAP having been invoked. How to extend this argument to many fields?
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2.3. The argument for several fields

Let us select N different coordinate components of Eq. (10) and label them by a =
k1, k2, · · · , kN ; each component consists of N terms. The entire set can be written in terms of 
matrices as⎛

⎜⎜⎝
∂k1φ1 ∂k1φ2 · · · ∂k1φN

∂k2φ1 ∂k2φ2 · · · ∂k2φN

...

∂kN
φ1 ∂kN

φ2 · · · ∂kN
φN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Eφ1

Eφ2
...

EφN

⎞
⎟⎟⎠ = 0. (11)

In this and the next three paragraph we regard those coordinates xa that are not included in 
{xk1, xk2 , · · · , xkN } as fixed; thus we at first consider only a subspace V of the whole spacetime 
spanned by the {xk1, xk2, · · · , xkN }. This only coincides with the whole spacetime when N = d .

The determinant of the square matrix here is the Jacobian

J = ∂(φ1, φ2, · · · , φN)

∂(xk1 , xk2 , · · · , xkN )
. (12)

Generically J cannot vanish. For were it to vanish this would indicate that, viewed as functions 
of xk1, xk2 , · · · , xkN , the φ1, φ2, · · · , φN are functionally related. This, of course, will not be true 
in the generic physical field configuration. It can thus be assumed that J �= 0, except perhaps 
at isolated point sets. Then the nonvanishing character of J tells us that the Eφ column vector 
must vanish (including at the special points by the argument of continuity). But the vanishing of 
this “vector” is just the collection of all the Euler–Lagrange equations, Eqs. (3), for the set of 
fields φμ. These field equations are applicable within the said subspace of spacetime in V .

As mentioned earlier, if N = d , V covers the whole spacetime. If N = d − 1 we can set up 
d distinct equations of the form (11), one for each coordinate left out the list {xk1, xk2, · · · , xkd }. 
Carrying out the above procedure using the d distinct Jacobians allows us to extend the previous 
conclusion to the whole of spacetime when V itself is allowed to expand without bound. The 
above strategy can be suitably generalized for N ≤ d − 2. We may thus obtain all the Euler–
Lagrange field equations all over spacetime, and this without appeal to the LAP.

Of course, if the number of fields φμ exceeds d , the above analysis, by itself, is insufficient to 
obtain all field equations. One would then have to appeal to other symmetries.

3. Scalar electrodynamics

3.1. Gauge invariant action

Here the theory representing a charged (complex) scalar field interacting with a SU(1) gauge 
field will be considered [6]. As we saw in Section 2.2 the principal effect of curved space is to 
make a term containing the energy–momentum tensor appear under an integral when we carry 
out a diffeomorphism. To save labor we presume that term has been dropped by invoking energy 
conservation, as we did earlier. Thus we may revert to Minkowski spacetime. We also restrict 
attention to four spacetime dimensions. The extension to higher dimensional flat spacetime is 
straightforward.

The action on the four dimensional Minkowski background is given by

S =
∫

Ld4x =
∫ [

−1
FabFab − DaφDa∗φ∗ − m2φ∗φ

]
d4x, (13)
4
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where the gauge covariant derivative for scalars is defined by Da ≡ ∂a + ıeAa , and the field 
strength by Fab = ∂aAb − ∂bAa . Here Aa is the gauge vector potential and e is the coupling 
constant. This action is gauge invariant under local gauge transformations Aa → Aa + e−1∂aΛ, 
φ → φ exp(−ıΛ) and φ∗ → φ∗ exp(ıΛ), where Λ, the gauge function, is an arbitrary function 
of spacetime. In analogy with Eq. (3), denote the functional derivatives of the action with respect 
to the fields by the following symbols:

Ea
A = δS

δAa

, Eφ = δS

δφ
, Eφ∗ = δS

δφ∗ . (14)

We could have added a potential V (φ∗φ) to L; the methods to be described below are easily 
extended to this case if V is a polynomial in its argument.

3.2. Scale symmetry and Bianchi identity

Now we compute the change engendered in S by any specified infinitesimal increments in 
Aa, φ and φ∗. After integrating by parts and discarding the boundary terms (the last requires that 
δφ, δφ∗ and δAa to vanish on the boundary), as done in Section 2, we get

δS =
∫ (

Ea
AδAa + Eφδφ + Eφ∗δφ∗)d4x. (15)

In case one also increments parameters in the action, extra terms will appear here.
It must be noted that apart from gauge symmetry the action functional (13) is invariant under 

a particular kind of scale transformations as well as under diffeomorphisms. This information 
will now be put to use to find the field equations for the gauge and scalar fields.

It is easy to check that S is invariant under the scale transformation xa → εxa , Aa → Aa/ε, 
φ → φ/ε, φ∗ → φ∗/ε and m → m/ε, with ε constant throughout spacetime. The metric is 
here regarded as scale invariant (the relevant scaling changes being taken up by the coor-
dinates). We now interpret the collection of small increments mentioned earlier as due to 
a small scale transformation; accordingly ε = 1 + δε with δε infinitesimal. We thus have 
δεAa = −δεAa, δεφ = −δεφ, δεφ

∗ = −δεφ∗ as well as δεm = −δεm. Also, the volume ele-
ment changes as δεd

4x = 4δε d4x. In view of all these we obtain to O(ε)

δεS = −δε

∫ (
Ea

AAa + Eφφ + Eφ∗φ∗ − 2m2φφ∗ − 4L
)
d4x = 0. (16)

The boundary terms in this particular case are annulled provided that Aa, φ and φ∗ themselves 
vanish on the boundary. This is certainly implementable if the boundary is taken to be at infinity.

Of course, since S is scale invariant in any gauge, Eq. (16) should hold in any gauge provided 
ε is the same in all gauges. Now by evaluating the explicit expressions from Eq. (14) it may 
be verified that Ea

A, Eφφ and Eφ∗φ∗, as well as φφ∗ are all gauge invariant. Likewise L from 
Eq. (13) is gauge invariant. But, as we know, the vector potential is not: Aa → Aa + e−1∂aΛ. 
Thus we obtain

δΛ(δεS) = −δε

∫
e−1Ea

A∂aΛd4x = −δε

∫
e−1[∂a

(
Ea

AΛ
) − Λ∂aE

a
A

]
d4x. (17)

Now requiring that δΛ(δεS) = 0, discarding the boundary term (which entails requiring Λ = 0
on the boundary) and taking into account the arbitrariness of Λ everywhere else, we get

∂aE
a = 0. (18)
A
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With the benefit of hindsight this can be recognized as a combination of a trivial identity and the 
conservation of charge, namely ∂a(∂bF

ab − J a) = 0, where J a is the U(1) charge current.

3.3. Gauge symmetry and charge conservation

Let us now go back to Eq. (15) and interpret the increments mentioned there as due to an in-
finitesimal gauge transformation: δΛAa = e−1∂aΛ, δΛφ = −ıΛφ and δΛφ∗ = ıΛφ∗. Discarding 
the boundary terms entails here having both Λ and ∂aΛ vanish on the boundary; we get

δΛS =
∫ (

e−1∂aE
a
A − ıφEφ + ıφ∗Eφ∗

)
Λd4x = 0. (19)

Since Λ is arbitrary inside the boundary we find that everywhere in the bulk

∂aE
a
A − ıeφEφ + ıeφ∗Eφ∗ = 0. (20)

In view of Eq. (18), and the obvious fact that in a generic configuration φ cannot vanish identi-
cally, we see that

φEφ = φ∗Eφ∗ . (21)

To elucidate the physical content of this result let us substitute in it the explicit expressions 
of Eφ and Eφ∗ . From Eq. (13) we obtain

Eφ = (
DaD

aφ
)∗ − m2φ∗; Eφ∗ = DaD

aφ − m2φ. (22)

After substitution in Eq. (21) and some manipulations we obtain

∂aJ
a = 0; J a = ıe

[
φ∗Daφ − φ

(
Daφ

)∗]
, (23)

which is recognized as the continuity equation for the conservation of U(1) charge together with 
the traditional expression for the current. The factor ıe in Eq. (23) has been put in by hand to 
make the current of the correct dimensions and Hermitian. It is remarkable that in contrast to the 
textbook approach, these results are here obtained without any reference to the explicit equations 
of motion. The analysis here is “off-shell”.

We shall now investigate consequences of the coordinate invariance of the action (13). Actu-
ally a full investigation in this direction would have to be performed in curved spacetime since 
the metric changes in a nontrivial way under diffeomorphisms. As in Section 2.2 such change 
engenders a term proportional to the divergence of the energy momentum tensor. Since our ap-
proach is to impose energy–momentum conservation, this term will drop out. Hence we have cut 
corners here, and have done all the work in flat spacetime.

3.4. Diffeomorphism symmetry leads to field equations

We shall now interpret the increments referred to in Eq. (15) as due to an infinitesimal diffeo-
morphism, namely xa → xa + χa with χa small. As in Section 2.2 we implement this by Lie 
dragging [4,5], to wit δχφ = φ,b χb; δχφ∗ = φ∗,b χb and δχAa = χb∂bAa +Ab∂aχ

b . Substitut-
ing these together with Eq. (21) into Eq. (15) gives

δχS =
∫ [

Ea
A

(
χb∂bAa + Ab∂aχ

b
) + (

Eφ/φ∗)(φ∗φ,b +φφ∗,b
)
χb

]
d4x = 0. (24)

By calling on Eq. (18) we may complete the derivative implied by the first term here to get
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∫ [
∂a

(
Ea

AχbAb

) + {
Ea

AFba + (
Eφ/φ∗)(φ∗φ,b +φφ∗,b

)}
χb

]
d4x = 0. (25)

If we agree that the χa all vanish at the boundary, the perfect divergence here in seen to integrate 
to a vanishing boundary term. In view of the arbitrariness of χb within V we get

Ea
AFba + (

Eφ/φ∗)∂b|φ|2 = 0. (26)

In view of the antisymmetry of Fba contraction of this equation with Eb
A yields

EφEb
A∂b|φ|2 = 0. (27)

If we ignore the non-generic configuration with |φ| = const., the above equation has two 
solutions: either (I) Eφ = 0 or (II) Eb

A∂b|φ|2 = 0. We consider each case separately.

Case I: Eφ = 0, at least over a finite spacetime region.
Of course, since φ (and consequently φ∗) cannot vanish identically, Eq. (21) immediately 

implies that Eφ∗ = 0 throughout the same region. It now follows from Eq. (26) that everywhere 
in that region

Ea
AFba = 0. (28)

Now if we write out the determinant of the matrix made up of components Fba we see that it 
cannot vanish identically (its vanishing would imply a very non-generic electromagnetic config-
uration). The only solution of the linear system of d equations is thus Ea

A = 0. Thus, without 
invoking the LAP, we have found all the equations of motion in the said spacetime region: 
Ea

A = Eφ = Eφ∗ = 0.

Case II: Eb
A∂b|φ|2 = 0.

For the generic configuration we cannot have |φ|2 a spacetime constant. Hence Ea
A is orthog-

onal to ∂b|φ|2, except perhaps on special surfaces or points. In curvilinear coordinates Eq. (18)
can be written more explicitly as

∂a

[
(−g)1/2Ea

A

] = 0. (29)

The orthogonality of Ea
A and ∂b|φ|2 means that Ea

A lies on constant |φ|2 hypersurfaces. Thus by 
choosing one of the coordinates (not necessarily a timelike one), say x0, to coincide with |φ|2
itself, we get that E0

A = 0 throughout. While this arrangement may not be valid globally, it can 
certainly be employed separately in suitable patches that cover all spacetime.

In this essentially 3-D situation we may infer from Eq. (29) that (a divergenceless vector is 
necessarily a curl)

(−g)1/2Ek = εklm∂mWl, (30)

where k, l, m label the coordinates other than x0, Wl is some covariant 3-vector, and εklm is the 
3-D Levi-Civita alternating symbol. Because ∂b|φ|2 = δ0

b we may now rewrite Eq. (30) in 4-D 
language as

(−g)1/2Ea
A = ±εbacd∂dWc∂b|φ|2, (31)

where εbacd is now the 4-D Levi-Civita alternating symbol, and the sign depends on whether x0

is timeline or not. This equation is covariant, so we can easily return to the Minkowski version

Ea = ±εbacd∂dWc∂b|φ|2. (32)
A
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We notice that one can add to Wc an arbitrary gradient without thereby affecting Ea
A or the rest 

of the equations. This reflects a U(1) symmetry. Now were the Wc distinct from the electromag-
netic potential Ac, the theory in question would have a U(1) ×U(1) symmetry. But such extended 
symmetry can be associated with electromagnetism only under special circumstances [7]. Ex-
cluding it here we conclude that necessarily Wc = KAc with K a constant.

Let us now calculate the left hand side of Eq. (32) directly from Eq. (13) using prescrip-
tion (14). Further, by using the antisymmetry of the Levi Civita symbol, we can the put Eq. (32)
in the final form

∂b

(
Fab ± Kεbacd∂dAc|φ|2) = J a, (33)

where J a is defined in Eq. (23). We notice now that the argument of the divergence is a linear 
combination of a true antisymmetric tensor, Fab, and a pseudo-antisymmetric tensor, εbacd∂dAc. 
These two entities transform oppositely under spatial inversion, which means that if K �= 0, the 
electromagnetic field equation that emerges breaks the spatial inversion symmetry of the La-
grangian in Eq. (13). To avoid such unnatural behavior we set K = 0; it follows that Ea

A = 0. Note 
that the phenomenon encapsulated in Eq. (33) is distinct from spontaneous symmetry breaking 
whereby specific solutions flout a symmetry of the field equations. It is also different from the 
appearance of duality symmetry, e.g. in electromagnetism, because this last one occurs only in 
the absence of sources, whereas Eq. (33) has a current source.

Now because in a generic configuration |φ|2 cannot be a spacetime constant, we can only 
satisfy Eq. (26) by having Eφ = 0. Of course by Eq. (21) it also follows that Eφ∗ = 0. Thus 
we have again found Ea

A = Eφ = Eφ∗ = 0, i.e. all the field equations for the problem have been 
established without invoking the LAP.

4. Fermion interacting with nonabelian gauge field

4.1. The gauge theory

The standard model of particle physics abounds with examples of spin- 1
2 fermions interacting 

via gauge fields. We thus turn attention to such a case, a spin- 1
2 fermion in interaction with a 

nonabelian gauge field. The action, again formulated in flat 4-D Minkowski spacetime, is given 
by [8]

S =
∫

Ld4x =
∫ [

−1

4
Fμ

abFμab + ψ̄
(
ıγ aDa − m

)
ψ

]
d4x, (34)

where Da ≡ ∂a + ıgAaμLμ is the gauge covariant derivative for the theory, and Fμab =
∂aAμb − ∂bAμa − gCμνλAνbAλa . The Cμνλ = −Cμλν are the structure constants of whatever 
group describes the gauge symmetry, while the Lμ are Hermitian matrices corresponding to the 
abstract group generators (a representation of the group). Here a, b, etc are spacetime indices 
while μ, ν, etc., are group (or color) indices. That is there are several gauge 4-potentials Aμa and 
correspondingly several gauge field tensors Fμab.

For the usual theories the Lμ satisfy some SU(n) Lie algebra: [Lμ, Lν] = ıCλμνLλ, with the 
Lμ, n2 −1 in number, normalized according to Tr(LνLμ +LμLν) = 2δνμ; they are of size N ×N

when the theory uses a representation of the group of order N . Finally the ψ is a multiplet, 
a column of N Dirac spinors; ψ̄ , the adjoint multiplet spinor, is a row containing N adjoint 
4-spinors of the form familiar from the theory of the Dirac equation. The Lμ act on the multiplet 
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(or color) space while the usual Dirac γ a matrices act equally on each of the Dirac spinors 
composing each multiplet.

The action (34) is known to be invariant under nonabelian gauge transformations. Since we are 
interested below in how the various field quantities behave under such transformations, we shall 
go into some detail into how this invariance comes about. First one constructs the spacetime 
dependent unitary matrix U = exp[−ıLμΛμ(x)], where the Λμ are arbitrary real space–time 
functions. Likewise one forms matrix versions of the vector potentials and fields: Aa ≡ LμAμa

and Fab ≡ LμFμab . By analogy Daψ = (∂a + ıgAa)ψ . Since the Lμ are independent it is easy 
to recover the individual Aμa from the Aa , etc.

The fermion fields are taken to transform as ψ → Uψ and ψ̄ → ψ̄U†. In addition, one pre-
scribes the transformation law

Aa → UAaU† + ıg−1(∂aU)U†, (35)

as a result of which the field matrix and the covariant derivative transform covariantly, namely 
Fab → UFabU† and Daψ → UDaψ . The action (34) can now be rewritten as

S =
∫ [

−1

4
Tr

(
FabFab

) + ψ̄
(
ıγ aDa − m

)
ψ

]
d4x. (36)

By making the above-mentioned transformations of Fab, Da, ψ and ψ̄ and invoking the cyclic 
invariance of the trace of a product of matrices it is immediate to see that S and its Lagrangian 
density are both unchanged, i.e. gauge invariant.

We may denote the variational derivatives with respect to the system’s field variables by

Ea
Aμ = δS

δAμa

, Eψ = δS

δψ
, Eψ̄ = δS

δψ̄
. (37)

Thus to any increment of the fields corresponds the increment of the action

δS =
∫ (

Ea
AμδAμa + Eψδψ + δψ̄Eψ̄

)
d4x, (38)

with

Eψ̄ = (
ıγ aDa − m

)
ψ, (39)

Eψ = −ı∂aψ̄γ a − ψ̄
(
gγ aAμaLμ + m

)
, (40)

Ea
Aμ = −∇bF

ab
μ − gψ̄γ aLμψ (41)

where ∇bF
ab
μ ≡ ∂bF

ab
μ + gCσνμAνbF

ab
σ defines the gauge covariant divergence of a tensor. As 

before, we have dropped the boundary terms; this is natural when the boundary lies at infinity 
and Aνb, ψ , ψ̄ and their derivatives vanish asymptotically.

4.2. Scale and gauge symmetry lead to the gauge field equations

We now observe that the action (34) is also invariant under the scale transformation xa → εxa , 
Aμa → Aμa/ε, ψ → ε−3/2ψ , ψ̄ → ε−3/2ψ̄ , m → m/ε with ε a positive constant. The metric 
is again regarded as unchanged. Under an infinitesimal scale transformation with ε = 1 + δε

we have that δεAμa = −δεAμa , δεψ = − 3
2δεψ , δεψ̄ = − 3

2δεψ̄ , δεm = −δεm and δεd
4x →

4δε d4x. Hence
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δεS = −δε

∫ (
Ea

AμAμa + 3

2
Eψψ + 3

2
ψ̄Eψ̄ − mψ̄ψ − 4L

)
d4x = 0. (42)

Here we drop boundary terms under the conditions already mentioned. The above result can be
written as (Ea

A = LμEa
Aμ)

∫
Tr

(
Ea

AAa

)
d4x =

∫ (
4L+ mψ̄ψ − 3

2
Eψψ − 3

2
ψ̄Eψ̄

)
d4x. (43)

Result (43) must hold in any gauge because S is scale invariant in any gauge if ε is the same 
in all gauges. Now ψ̄ψ is evidently gauge invariant. By combining Eq. (39) with Eq. (35) it is 
readily shown that ψ̄Eψ̄ is gauge invariant. Similarly Eψψ is gauge invariant. We already know 
that L is gauge invariant. Therefore, 

∫
Tr(Ea

AAa) d4x must itself be gauge invariant.
Now according to Eq. (41) Ea

Aμ is the sum of the gauge covariant derivative of Fab
μ and the 

quantity −gψ̄γ aLμψ which is itself known to be gauge covariant [8]. This means that under a 
gauge transformation Ea

A → UEa
AU†. Employing Eq. (35) we see that

Tr
(
Ea

AAa

) → Tr
[(

UEa
AU†UAaU†)] + ıg−1 Tr

[
UEa

AU†(∂aU)U†] (44)

= Tr
(
Ea

AAa

) + ıg−1 Tr
[
Ea

AU†(∂aU)
]
. (45)

This tells us immediately that 
∫

Tr[Ea
AU†(∂aU)] d4x = 0. Now to first order in the Λμs, U =

1 − ıLμΛμ +O(Λ2). Therefore, because Tr(LνLμ + LμLν) = 2δνμ we get, correct to O(Λμ), 
that

Tr
[
Ea

AU†(∂aU)
] = −ıEa

Aμ∂aΛμ = −ı∂a

(
Ea

AμΛμ

) + ıΛμ∂aE
a
Aμ. (46)

Assuming that the Λμ vanish asymptotically we get by Gauss’ theorem that 
∫

Λμ∂aE
a
Aμ d4x = 0. 

But since the Λμ are all arbitrary functions, this tells us that for every μ, ∂aE
a
Aμ = 0, or equiva-

lently, ∂aEa
A = 0 all over spacetime.

Of course this last result must be gauge invariant (we did not choose a specific gauge in 
deriving it). Thus for arbitrary U we should also have ∂a(UEa

AU†) = 0. Substituting U here and 
retaining terms only up to O(Λμ) we obtain

∂a

(
UEa

AU†) = ∂aEa
A − ı∂a

(
Ea

Aν[Lμ,Lν]Λμ

) +O
(
Λ2), (47)

so that the term of O(Λμ) must vanish. Substituting for the commutator of the Lμ and taking 
into account that the Lμ are independent, we infer that for any τ

CτμνE
a
Aν∂aΛμ = 0. (48)

Now, for SU(n) symmetry, the Λμ are n2 − 1 arbitrary functions. At any chosen event the 
4(n2 − 1) quantities ∂aΛμ can be taken to be arbitrary, and so independent of one another. But 
then the above mentioned linear combination of the 4(n2 − 1) quantities Ea

Aν , whose coefficients 
involve 4(n2 − 1) arbitrary degrees of freedom as just mentioned, cannot vanish identically as 
required unless all the Ea

Aν themselves do so. This conclusion can be drawn separately for each τ . 
According to Eqs. (3) and (37) the conditions Ea

Aν = 0 we have just inferred without appealing 
to the LAP are precisely the gauge field equations for the system, to wit

∇bF
ab
μ = ∂bF

ab
μ + gCσνμAνbF

ab
σ = −gψ̄γ aLμψ. (49)
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4.3. Spinor field equation: abelian case

We proceed to infer the field equations for the spinor fields. This turns out to be no easy task, 
so in this subsection we limit discussion to that of a single abelian gauge field interacting with a 
singlet spin- 1

2 field. In this case the role of Lν is played by unity, and the multiplet degenerates 
to a single 4-spinor (N = 1).

Consider then the (vanishing) increment (38) in the action (34) due to the infinitesimal local 
gauge transformation U = 1 − ıΛ +O(Λ2). We substitute Ea

A = 0 from Eq. (49) to get

δΛS = ı

∫
(−Eψψ + ψ̄Eψ̄ )Λd4x = 0. (50)

But Λ is arbitrary, so we get at every spacetime point

Eψψ = ψ̄Eψ̄ . (51)

We can substitute in these Eqs. (39) and (40) to obtain the local conservation law of U(1) charge, 
e.g. electric charge:

∂a

(
ψ̄γ aψ

) = 0. (52)

This result appears to be off-shell since we have not yet identified the spinor field equations. We 
now proceed to that task, in which critical use will be made of Eq. (51).

We return to the (vanishing) increment, Eq. (38), of the action (34), but this time induced by 
the diffeomorphism xa → xa + χa , where χa is an infinitesimal but otherwise arbitrary space-
time dependent vector field. First the contribution from the increment in metric vanishes upon 
enforcement of the local conservation of energy–momentum. Next we take into account that 
Ea

Aμ = 0. Thus we get

δχS =
∫

(Eψδχψ + δχ ψ̄Eψ̄ ) d4x = 0, (53)

where the increments in the spinors are produced by Lie dragging them [9], namely,

δχψ = χa∂aψ + 1

4
ı(∂aχb)σ

abψ,

δχ ψ̄ = χa∂aψ̄ − 1

4
ı(∂aχb)ψ̄σ ab (54)

with σab = ı/2[γ a, γ b].
Integrating by parts in Eq. (53) and dropping boundary terms as done earlier we obtain

δχS =
∫

d4x χb

[
Eψ(∂bψ) + (∂bψ̄)Eψ̄ − 1

4
ı∂a

(
Eψσabψ − ψ̄σ abEψ̄

)] = 0. (55)

Thus on account of the arbitrariness of χb we infer that

Eψ(∂bψ) + (∂bψ̄)Eψ̄ − 1

4
ı∂a

(
Eψσabψ − ψ̄σ abEψ̄

) = 0. (56)

Taking the partial derivative ∂a of both sides and exploiting the antisymmetry of σab we obtain 
the simplified relation

∂b
[
Eψ∂bψ + (∂bψ̄)E ¯

] = 0. (57)
ψ
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This looks like a continuity equation; it is gauge covariant as can be verified by replacing 
∂bψ → ∂bψ + ıgAbψ together with its conjugate version, and carrying out a local abelian gauge 
transformation.

However, there is no room for a new conservation law such as Eq. (57). It does not correspond 
to charge conservation which would require a vector current formed without any derivatives 
of ψ . Neither does it correspond to energy–momentum conservation since the quantity whose 
divergence is zero here is a vector, not a symmetric tensor. The best guess is that the above result, 
far from being some serendipitous conservation law, is vacuous, i.e.,

Vb ≡ Eψ∂bψ + (∂bψ̄)Eψ̄ = 0. (58)

Can we escape this conclusion? Several possibilities offer themselves. For example, Vb could 
be proportional to a Killing vector, which would automatically nullify its divergence as required. 
Of course such situation would obtain only in the presence of a spacetime symmetry; for a generic 
field configuration there would be no Killing vector. Another possibility would be if all the com-
ponents of V b were proportional to (−g)−1/2. This would also nullify the divergence. However, 
in such case V b(−g)1/2 would be a 4-vector with constant contravariant components; such a 
“constant” vector—signifying a special spacetime direction—simply has no place in a generic 
solution. We must thus conclude that it is very hard to avoid Eq. (58).

These set of equations is somewhat reminiscent of Eq. (10) which we used to obtain the 
field equations for the scalar fields in Section 2. The difference here is that we have only four 
equations (one for each of the four coordinates) constraining, so it seems, eight quantities in all, 
the components of Eψ and of Eψ̄ . However, we receive assistance from Eq. (51). Suppose we 
multiply this last by an arbitrary complex vector tb (with no spinor aspects whatsoever), and add 
the result to Eq. (58) to get

Eψ(∂b + tb)ψ + [
(∂b − tb)ψ̄

]
Eψ̄ = 0. (59)

Now we take the Hermitian conjugate of this. In reworking the result we take into account that 
Hermitian conjugation inverts the order of all matrices and spinors besides conjugating each. 
We further take into account that ψ̄ ≡ ψ†γ 0 and that γ 0(γ a)†γ 0 = γ a for all a (spatial γ s are 
antihermitian). We thus get

Eψ

(
∂b − t∗b

)
ψ + [(

∂b + t∗b
)
ψ̄

]
Eψ̄ = 0. (60)

In Eqs. (59) and (60) we have, counting coordinate components, a total of eight linear equa-
tions in the eight components of the spinors Eψ and Eψ̄ . In fact we can write the system as

(
(∂b − tb)ψ̄ (∂b + tb)ψ

T

(∂b + t∗b )ψ̄ (∂b − t∗b )ψT

)(
Eψ̄

Eψ
T

)
= 0, (61)

where “T ” signifies transpose of the relevant spinor. It is clear that the 8 × 8 matrix here does not 
have trivially identical rows or columns for a generic spinor field configuration. For one thing the 
tb is an arbitrary set of fields. And in generic spinor field configuration the relation between ψ̄
and ψT will not be a simple one. Thus the determinant of the matrix can vanish only at isolated 
points or surfaces. By continuity this allows us to conclude that in a generic field configuration 
Eψ = Eψ̄ = 0 everywhere in spacetime, i.e. that the spinor field equations are satisfied. Again, it 
is obvious that this conclusion did not entail use of the LAP.
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4.4. Gauge symmetry and nonabelian charge conservation

Returning now to the nonabelian theory we reconsider the increment (38) in the action (34)
due to the infinitesimal local gauge transformation U = 1 − ıLμΛμ + O(Λ2). Substituting 
Ea

Aμ = 0 we get

δΛS = ı

∫
(−EψLμψ + ψ̄LμEψ̄)Λμ d4x = 0, (62)

which by virtue of the arbitrariness of the Λμ says that

EψLνψ = ψ̄LνEψ̄ . (63)

We now substitute Eqs. (39) and (40) into Eq. (63). The mass terms cancel leaving us with

ı∂a

(
ψ̄γ aLνψ

) − gAμaψ̄γ a(LνLμ − LμLν)ψ = 0. (64)

Employing the group commutation law LνLμ − LμLν = ıCλνμLλ we have

∂aJ
a
ν + gCλμνAμaJ

a
λ = 0; J a

ν ≡ ψ̄γ aLνψ. (65)

This is the well known local conservation law for the SU(n) charges (one for each genera-
tor Lμ) [6,8]. The form of Eq. (65) parallels that of Eq. (49), which informs us that the former is 
also gauge covariant.

As in the abelian case, the above derivation of the charge conservation laws appears to off-
shell, i.e. we have yet to find the field equations of motion for ψ and ψ̄ .

4.5. A novel partial symmetry

While not immediately related to our main line of reasoning, the following discussion turns 
up a novel symmetry in the system (34). We observe from Eq. (39) that the Dirac part of the 
action (including the gauge interaction term) from Eq. (34) can be written

SD =
∫

ψ̄Eψ̄d4x. (66)

Consider now the unitary transformation ψ → Wψ and ψ̄ → ψ̄W† with

W = exp(−ıενLν) (67)

where the εν are real constants and we have added to the generators L0 = I, the unit matrix of 
the relevant rank. In the SU(n) case there will be n2 different ενs. The gauge potentials Aνa are 
to be regarded as entirely unchanged under the said transformation, which thus differs from a 
global nonabelian gauge transformation, cf. Eq. (35). Now because W commutes with the γ a , it 
is immediate to see that ψ̄Eψ̄ → ψ̄Eψ̄ +gAμaψ̄γ a(Lμ −W†LμW)ψ . Expanding W in a series 
in the εμ and keeping up to first order terms, we get Lμ−W†LμW = −ıεν[Lν, Lμ] = ενCλνμLλ. 
Accordingly under the said transformations

ψ̄Eψ̄ → ψ̄Eψ̄ − gενAμaCλμνψ̄γ aLλψ = ψ̄Eψ̄ + εν∂aJ
a
ν , (68)

where use has been made of Eq. (65).
By Gauss’ theorem the spacetime integral of ∂aJ

a
μ reduces to a boundary term. Conse-

quently, in essence the total action (34) is invariant under the unitary transformation ψ → Wψ , 
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ψ̄ → ψ̄W†, Aμa → Aμa . By this we mean that the only change is addition of a “surface term” 
which leads, so we know from the standard approach, to no changes in the field equations. Un-
like the usual symmetries, this one requires that we already impose the gauge field equations of 
motions, Eq. (49), which are the predecessor of the charge conservation laws, Eq. (65). It must 
be stressed, however, that no use has been made of the spinor equations of motions which have 
yet to be formally identified.

4.6. Spinor field equations: nonabelian case

Let us now combine all laws of the form (63) into the equation (the εν are, again, real con-
stants)

Eψ(ενLνψ) − (ψ̄ενLν)Eψ̄ = 0; 1 ≤ ν ≤ N. (69)

We recall that Eψ stands for a row comprising N adjoint 4-spinors Eψ
(j). Thus the first term 

in the equation above is the scalar product of this row with a column with N entries, each of 
which is a linear superposition of the Dirac 4-spinors ψ(j) that make up ψ (the Lν responsible 
for the superposition do not mix the individual components of each 4-spinor ψ(j)). The second 
term is identical to Eψ̄

T (ενLν
T ψ̄T ) (again, the “T ” here stands for transpose between rows and 

columns) whose structure is the same as that of the first term, except that the Dirac 4-spinors 
being superposed are now the ψ̄(j)T .

Now focus on a specific spinor configuration. We can think of the ψ(j) and ψ̄(j)T together 
as constituting a column of 2N Dirac spinors. Multiplication of it by a 2N × 2N matrix having 
Lν and Lν

T along the diagonal engenders a “rotation” of this column in a space of columns of 
dimension 2N . It is intuitively clear that multiplying with different Lν, Lν

T pairs gives linearly 
independent columns. Similarly, the Eψ and Eψ̄

T together can be regarded as comprising a row 
of 2N adjoint Dirac spinors residing in the co-space of the column space mentioned. So Eq. (69)
says that an appropriately defined scalar product between spinor column and adjoint spinor row 
vanishes identically for any combination of the εν parameters. Now suppose that the number of 
ratios εν/ε1, e.g. n2 − 2 for SU(n), is no smaller than 2N . Then as the ενs independently sweep 
over their range of values, the column made up of the ενLνψ and ενLν

T ψ̄T spans the whole 2N

dimensional space. How then can the scalar product in Eq. (69) vanish consistently? Obviously 
only if the row composed of the adjoint spinors Eψ and Eψ̄

T vanishes identically. According to 
Eq. (37) this means that all field equations for the spinor fields are satisfied.

Of course the above establishes the field equations only for representations with limited di-
mensions. In SU(n), for example, the fundamental representation is of dimension n, and 2n is 
less than n2 − 2 for all n ≥ 3. Thus for SU(3), SU(4), . . . the field equations in the fundamental 
representation of the fields can be obtained by the method just described. What of higher or-
der representations? All experience suggests that one obtains the correct field equations for the 
spinor fields by just replacing the fundamental representation’s Lνs by the corresponding ma-
trices of the higher order representation, and introducing spinor multiplets of the correct order. 
What of the lower order unitary groups? The case U(1) has actually been dealt with already in 
Section 4.3; the case of SU(2) remains outstanding. It is clear that the method here described 
should be applicable to many physical systems deriving from the action (34) and subject to many 
practically interesting symmetry groups. Again, it is clear that the LAP does not enter at any 
point.
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5. Summary

Traditionally for any classical field theory (defined by an action) the least action principle 
(LAP) is used to derive the field equations. We have argued here, on the basis of three detailed 
examples, that it may be possible to get by without the LAP by beginning with the action and then 
exploiting only the symmetries pertaining to it and energy–momentum conservation. Conserva-
tion laws are here taken to be experimental facts. Our examples all involve mutually interacting 
fields; they include a set of most generally interacting real scalar fields in curved space–time, 
scalar electrodynamics in flat space–time, and a Dirac multiplet in interaction with a nonabelian 
gauge field in the absence of gravitation. We have been able to derive the field equations of 
all field components by using only the action, some of its symmetries and the conservation of 
energy–momentum.

There are, of course, disadvantages to the latter method. The strategies for the solution vary 
from case to case, in contrast to the very standardized procedure for implementing the LAP. Fur-
ther, the computations required by the symmetries-based procedure tend to be intricate. Thus, in 
practice, the latter method will not replace the LAP approach. However, provided it is a gener-
ally successful approach, the latter method shows that as a matter of principle, the LAP is not 
an obligatory starting point of a classical field theory. For this alternative road map to the field 
equations to be generally applicable an obstacle must be surmounted. As well illustrated by the 
scalar fields example, and the spinor-gauge field one, the number of conservation laws may not 
suffice in every case to determine field equations for all field components. That is, overly com-
plex physics, e.g. five interacting scalar fields in four dimensions, and on occasion very simple 
systems, e.g. SU(2) gauge theory with spinors, may not be covered by the scheme that sidesteps 
the use of the LAP. This issue is still moot, and provides material for further research.
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