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We estimate the deviation of the number of solutions of the
congruence

m2 − n2 ≡ c (mod q), 1 � m � M, 1 � n � N,

from its expected value on average over c = 1, . . . ,q. This estimate
is motivated by the connection, recently established by D.R. Heath-
Brown, between the distribution of solution to this congruence
and the pair correlation problem for the fractional parts of the
quadratic function αk2, k = 1,2, . . . with a real α.
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1. Introduction

For positive integers M , N and q and an arbitrary integer c, we denote

A(M, N;q, c) = #
{

1 � m � M, 1 � n � N: m2 − n2 ≡ c (mod q)
}
.

We also put A0(q, c) = A(q,q;q, c) and define

�(M, N;q, c) =
∣∣∣∣A(M, N;q, c) − MN

q2
A0(q, c)

∣∣∣∣.

It has been shown by Heath-Brown [2, Lemma 3] that the bound
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q∑
c=1

�(N, N;q, c)2 � q4/3+o(1)r3, (1)

holds for N � q2/3, where

r =
∏

p=2 or αp>1

pαp

and

q =
∏
p|q

pαp

is the prime number factorisation of q. The estimate (1) is a part of the approach of [2] to the pair
correlation problem for the fractional parts of the quadratic function αk2, k = 1,2, . . . , with a real α.

Here we use a different method that leads to an estimate which improves and generalises (1) for
most of the values of the parameters M and N . However, in the case of M , N = q2/3+o(1) , which is
apparently necessary in the applications to the pair correlation problem both bounds are of essentially
the same type (except for the extra factor of r3 in (1), which, however, is small for a “typical” q).

On the other hand, studying the distribution of solutions to the congruence m2 − n2 ≡ c (mod q),
in particular, estimating �(M, N;q, c) individually and on average, is of independent interest.

Since there does not seem to be any immediate implications of our estimate for the pair correlation
problem, we present it only in the case of odd q. For even q, one can easily obtain a similar result at
the cost of some minor technical changes.

Theorem 1. For any odd q � 1 and positive integers M, N � q, we have

q∑
c=1

�(M, N;q, c)2 � (M + N)2qo(1).

2. Preliminaries

As usual, we use ϕ(k) to denote the Euler function and τ (k) to denote the divisor function.

Lemma 2. If q is odd and gcd(c,q) = d then

A0(q, c) =
∑
f |d

f ϕ(q/ f ).

Proof. As in [2, Section 3] we note that if an odd q then A0(q, c) is equal to the number of solutions
to the congruence

uv ≡ c (mod q), 1 � u, v � q.

Now, for every divisor f |d we collect together the solutions (u, v) with gcd(u,q) = f . Writing u = f w
with 1 � w � q/ f and gcd(w,q/ f ) = 1, we see that uw ≡ c/ f (mod q/ f ). Thus, for each of the
ϕ(q/ f ) possible values for w , the corresponding value of u is uniquely defined modulo q/ f and thus
u takes f distinct values in the range 1 � u � q. �

We also need the following well-known consequence of the sieve of Eratosthenes.
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Lemma 3. For any real numbers W and Z � 1 and an integer s � 1, we have

∑
W <k�W +Z

gcd(k,s)=1

1 = ϕ(s)

s
Z + O

(
τ (s)

)
.

Proof. Using the inclusion–exclusion principle we write

∑
W <k�W +Z

gcd(k,s)=1

1 =
∑
d|s

μ(d)
∑

W <k�W +Z
d|k

1

where μ(d) is the Möbius function, see [1, Section 16.3]. Therefore,

∑
W <k�W +Z

gcd(k,s)=1

1 =
∑
d|s

μ(d)
(

Z/d + O (1)
) = Z

∑
d|s

μ(d)

d
+ O

(
τ (s)

)
.

Recalling that

∑
d|s

μ(d)

d
= ϕ(s)

s

see [1, Eq. (16.3.1)], we obtain the desired result. �
Using partial summation, we derive from Lemma 3:

Corollary 4. For any real numbers W and Z � 1 and an integer s � 1, we have

∑
W <k�W +Z

gcd(k,s)=1

k = ϕ(s)

2s
Z(W + Z) + O

(
(W + Z)τ (s)

)
.

Finally, we recall the bound

τ (k) = ko(1), (2)

see [1, Theorem 317].

3. Products in residue classes

Here we present our main technical tool. Assume that for an integer s we are given two sequences
of nonnegative real numbers

Y = {Yu}s
u=1 and Z = {Zu}s

u=1.

We denote by T (X, Y, Z; s,a) the number of solutions to the congruence

uv ≡ a (mod s), 2 � u � X, gcd(u, s) = 1, Zu � v � Zu + Yu .
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The following result is an immediate generalisation of [4, Theorem 1], which corresponds to the
constant values of the form Yu = Y and Zu = Z + 1 for some integers Y and Z .

Lemma 5. Assume that

max
2�u�X

Yu = Y .

Then

s∑
a=1

∣∣∣∣T (X, Y, Z; s,a) − 1

s

∑
2�u�X

gcd(u,s)=1

Yu

∣∣∣∣
2

� X(X + Y )so(1).

Proof. We recall that by [3, Bound (8.6)], for 2 � u � X we have

∑
Zu�v�Zu+Yu

es(ry) � min
{

Yu, s/|r|} � min
{

Y , s/|r|},

which holds for any integer with 0 < |r| � s/2. Now the proof of [4, Theorem 1] extends to this more
general case without any changes. �
4. Proof of Theorem 1

Without loss of generality we may assume that

M � N. (3)

Using the variables x = m + n and y = m − n we see that A(M, N;q, c) is equal to the number of
solutions to the congruence

xy ≡ c (mod q), (4)

where

2 � x + y � 2M, 2 � x − y � 2N, y ≡ x (mod 2). (5)

Putting ϑx = 0 if x ≡ 0 (mod 2) and ϑx = 1, otherwise, and writing y = ϑx + 2v , we see that (4)
and (5) are equivalent to

x(ϑx + 2v) ≡ c (mod q), 2 � x � X, Lx � v � Ux, (6)

where X = M + N and

Lx = max

{
1 − x + ϑx

2
,

x − ϑx

2
− N

}
,

Ux = min

{
1 + x − ϑx

2
, M − x + ϑx

2

}
. (7)
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We note that it is enough to prove that for every d|q we have

q∑
c=1

gcd(c,q)=d

�(M, N;q, c)2 � M2qo(1). (8)

Now, assume that gcd(c,q) = d.
For every divisor f |d, we collect together the solutions to (6) with gcd(x,q) = f and denote the

number of such solutions by B(M, N;q, c, f ).
In particular, if gcd(c,q) = d then we have

A(M, N;q, c) =
∑
f |d

B(M, N;q, c, f ).

Hence, using Lemma 2, the Cauchy inequality and the bound (2), we derive

�(M, N;q, c)2 � qo(1)
∑
f |d

∣∣∣∣B(M, N;q, c, f ) − MN f ϕ(q/ f )

q2

∣∣∣∣
2

. (9)

To estimate B(M, N;q, c, f ), writing x = f u with gcd(u,q/ f ) = 1, and taking into account that
since q is odd, we have ϑx = ϑu , we see that B(M, N;q, c, f ) is equal to the number of solutions to
the congruence

u(ϑu + 2v) ≡ c f (mod q f ), (10)

where

2 � u � X f , gcd(u,q f ) = 1, L f u � v � U f u,

and

c f = c/ f , q f = q/ f , X f = �X/ f �.

We now rewrite (10) as u(2−1ϑu + v) ≡ 2−1c f (mod q f ). Defining h f ,u by the conditions

2h f ,u ≡ ϑu (mod q f ), 0 � h f ,u < q f ,

we see that

B(M, N;q, c, f ) = T
(

X f , Y f , Z f ;q f ,2−1c f
)
, (11)

where T (X, Y, Z; s,a) is defined in Section 3 and with the sequences Y f = {Y f ,u}q f

u=1 and Z f =
{Z f ,u}q f

u=1 given by

Z f ,u = h f ,u + L f u and Y f ,u = U f u − L f u .
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In order to apply Lemma 5 we need to evaluate the main term

W f = 1

q f

X f∑
u=2

gcd(u,q f )=1

(U f u − L f u).

Recalling the condition (3) and the definition (7), we see that

U f u − L f u =
⎧⎨
⎩

f u + O (1), if u � N f ,

N + O (1), if N f < u � M f ,

N + M − f u + O (1), if M f < u � X f ,

where

M f = �M/ f � and N f = �N/ f �.

Thus, using Lemma 3 and Corollary 4, we derive

W f = f

q f

∑
u�N f

gcd(u,q f )=1

u + N

q f

∑
N f <u�M f

gcd(u,q f )=1

1

+ M + N

q f

∑
N f <u�M f

gcd(u,q f )=1

1 − f

q f

∑
M f <u�X f

gcd(u,q f )=1

u + O
(

X f q−1
f

)

= f ϕ(q f )

2q2
f

N2
f + Nϕ(q f )

q2
f

(M f − N f )

+ (M + N)ϕ(q f )

q2
f

(X f − M f ) − f ϕ(q f )

2q2
f

(
X2

f − M2
f

) + O
(

X f q−1
f τ (q f )

)
.

Thus recalling the values of q f , M f , N f and X f , the assumption (3) and using (2), we see that

W f = f N2ϕ(q f )

2q2
+ f N(M − N)ϕ(q f )

q2

+ f N(M − N)ϕ(q f )

q2
− f N(2M − N)ϕ(q f )

2q2
+ O

(
Mq−1τ (q)

)

= f MNϕ(q f )

q2
+ O

(
Mq−1+o(1)

)
.

Thus, by the Cauchy inequality we have

∣∣∣∣B(M, N;q, c, f ) − MN f ϕ(q/ f )

q2

∣∣∣∣ �
∣∣B(M, N;q, c, f ) − W f

∣∣2 + O
(
M2q−2+o(1)

)
.
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Therefore, we derive from (9) that

�(M, N;q, c)2 � qo(1)
∑
f |d

∣∣B(M, N;q, c, f ) − W f
∣∣2 + O

(
M2q−2+o(1)

)
.

Hence,

q∑
c=1

gcd(c,q)=d

�(M, N;q, c)2 �
q∑

c=1
gcd(c,q)=d

∑
f |d

∣∣B(M, N;q, c, f ) − W f
∣∣2 + O

(
M2q−1+o(1)

)

�
∑
f |d

q∑
c=1
f |c

∣∣B(M, N;q, c, f ) − W f
∣∣2 + O

(
M2q−1+o(1)

)

�
∑
f |d

q f∑
c f =1

∣∣B(M, N;q, f c f , f ) − W f
∣∣2 + O

(
M2q−1+o(1)

)
.

Recalling (11) and applying Lemma 5, we obtain (8) and conclude the proof.
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