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For every element w in the Weyl group of a simple Lie algebra g,
De Concini, Kac, and Procesi defined a subalgebra U w

q of the
quantized universal enveloping algebra Uq(g). The algebra U w

q is
a deformation of the universal enveloping algebra U (n+ ∩ w.n−).
We construct smash products of certain finite-type De Concini–
Kac–Procesi algebras to obtain ones of affine type; we have
analogous constructions in types An and Dn . We show that the
multiplication in the affine type De Concini–Kac–Procesi algebras
arising from this smash product construction can be twisted by
a cocycle to produce certain subalgebras related to the correspond-
ing Faddeev–Reshetikhin–Takhtajan bialgebras.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let k be an infinite field and suppose an algebraic k-torus H acts rationally on a noetherian k-
algebra A by k-algebra automorphisms. Goodearl and Letzter [10] showed that spec(A) is partitioned
into strata indexed by the H-invariant prime ideals of A. Furthermore, they showed that each stratum
is homeomorphic to the prime spectrum of a Laurent polynomial ring. The Goodearl–Letzter stratifi-
cation results apply to the case when A is a q-skew polynomial ring for q not a root of unity under
some assumptions relating the action of H to the structure of A. In this setting Cauchon’s deleting
derivations algorithm [5] gives an iterative procedure for classifying the H-primes. After several such
algebras were studied, such as the algebras of quantum matrices Oq(M�,p(k)) [5,9,14], it was noticed
that many of these algebras fall into the setting of De Concini–Kac–Procesi algebras [7].

The De Concini–Kac–Procesi algebras are subalgebras of quantized universal enveloping algebras
Uq(g) associated to the elements of the corresponding Weyl group Wg . They may be viewed as
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deformations of the universal enveloping algebra U (n+ ∩ w.n−), where n+ and n− are the posi-
tive and negative nilpotent Lie subalgebras of g, respectively. Yakimov [17] recently proved that the
poset of H-primes of a De Concini–Kac–Procesi algebra U w

q ordered under inclusion is isomorphic to

the poset W �w of Weyl group elements less than or equal to w under the Bruhat ordering. In [17],
Yakimov also gives explicit generating sets for the H-primes in terms of Demazure modules.

Into this setting we introduce a new algebra we refer to as Xn,q , closely tied to the FRT bialgebra
produced from the R-matrix of type Dn , a q-skew polynomial ring which fits nicely in the circle
of the other quantum algebras described above. We moreover argue that Xn,q forms an orthogonal
analogue of the algebra Oq(M2,n(k)). Unlike many the previous examples, Xn,q is not realizable as a
De Concini–Kac–Procesi algebra of finite type. We do give three descriptions of the algebra, relating
it to the FRT construction, a De Concini–Kac–Procesi algebra of affine type, and a smash product of
De Concini–Kac–Procesi algebras of finite type.

To demonstrate these connections, we introduce three type-D algebras and demonstrate isomor-
phisms between them. The first algebra we introduce is obtained from a De Concini–Kac–Procesi
algebra of type so2n+2 and a smash product construction. We show that this algebra is isomor-
phic to our second algebra, a De Concini–Kac–Procesi algebra associated to the affine Weyl group of
type D̂n+1. Finally, we show that twisting the multiplication in these algebras by a certain 2-cocycle
produces the algebra Xn,q described above.

We proceed to produce analogous results with type-A algebras to suggest a more general setting
for the above results and see explicitly the analogy between Xn,q and Oq(M2,n).

In more detail, Section 3 introduces the first of these algebras, an algebra which resembles a
smash product of a De Concini–Kac–Procesi algebra with itself. Suppose q ∈ k× is not a root of unity.
Fix an integer n � 3. Let W (Dn+1) be the Weyl group of type Dn+1 with standard generating set
{s1, . . . , sn+1} and let

wn = (sn+1sn · · · s2s1)(s3s4 · · · snsn+1) ∈ W (Dn+1). (1.1)

Let U �0
D denote the quantized positive Borel algebra of type Dn+1 and let U wn

q be the De Concini–

Kac–Procesi subalgebra of U �0
D corresponding to wn . In fact, U wn

q is isomorphic to Oq(ok2n), the

algebra of even-dimensional quantum Euclidean space. We define an action λ of U �0
D on U wn

q , which

is a modification of the adjoint action of the Hopf algebra U �0
D on itself. This action equips U wn

q with

the structure of a left U �0
D -module algebra. We then consider the smash product U wn

q #U �0
D with

respect to λ and set (U wn
q )# to be the subalgebra of U wn

q #U �0
D generated by {u#1,1#u | u ∈ U wn

q }.
This is the first of the three type-D algebras.

In Section 4 we introduce a second type-D algebra; it is a De Concini–Kac–Procesi algebra of affine
type. Let W (D̂n+1) denote the affine Weyl group of type D̂n+1 with generating set {s0, s1, . . . , sn+1}
and let

ŵn = (sn+1 · · · s1)(s3 · · · sn+1)s0(sn · · · s3)(s1 · · · sn)s0 ∈ W (D̂n+1). (1.2)

The main result of this section is Theorem 4.4, where we prove that the algebras U ŵn
q and (U wn

q )#

are isomorphic. The results of this section assume additional hypotheses to be consistent with Beck
[2,3]; in particular, we assume k is algebraically closed of characteristic zero and q is transcendental
over Q.

In Section 5 we introduce the algebra Xn,q . We show that Xn,q is related to the bialgebra
A(R Dn ) arising from the type-Dn FRT construction. In particular, we label the standard genera-
tors of A(R Dn ) by Yij , for 1 � i, j � 2n, and let T2,n ⊆ A(R Dn ) be the subalgebra generated by
{Yij: 1 � i � 2, 1 � j � 2n} and observe that there is a surjective algebra homomorphism Xn,q → T2,n

(see Proposition 5.1). We thus refer to Xn,q as a parent of T2,n . Finally, in Theorem 5.2 we prove that

Xn,q is isomorphic to a cocycle twist (in the sense of [1]) of U ŵn
q . From this, it follows that Xn,q is an

iterated Ore extension over k.
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In Section 6 we proceed to demonstrate analogous results in the type Am setting. We fix an integer
m > 1 and let W (Am) be the Weyl group of type Am with generating set {s1, . . . , sm}. Let

cm = s1 · · · sm ∈ W (Am) (1.3)

denote a Coxeter element. Notice that the De Concini–Kac–Procesi algebra U cm
q is isomorphic to

Oq(km), the algebra known as quantum affine space. Quantum euclidean space, seen in Section 3,

can be thought of as a type-D analogue of quantum affine space. Let U �0
A denote the quantized pos-

itive Borel algebra of type Am . We define an action λA : U �0
A ⊗ U cm

q → U cm
q endowing U cm

q with the

structure of a left U �0
A -module algebra and define (U cm

q )# to be the subalgebra of U cm
q #U �0

A gener-
ated by {1#u, u#1 | u ∈ U cm

q }. Finally, we let W ( Âm) denote the affine Weyl group of type Âm with
generating set {s0, s1, . . . , sm} and let

ĉm = (s1 · · · sm)(s0s1 · · · sm−1) ∈ W ( Âm). (1.4)

In Theorem 6.4, we prove that the corresponding De Concini–Kac–Procesi algebra U ĉm
q is isomorphic

to (U cm
q )#. We further demonstrate that U ĉm

q is isomorphic to a cocycle twist of Oq(M2,m), the algebra
of 2 × m quantum matrices. We see Xm,q as a “type D” analogue of Oq(M2,m) because Oq(M2,m) is a
subalgebra of the FRT-bialgebra A(R Am−1 )

∼= Oq(Mm(k)). The key distinction is that Oq(M2,m(k)) is a
subalgebra of A(R Am−1 ), whereas Xm,q is a parent of the analogous subalgebra T2,m ⊆ A(R Dm ).

2. Preliminaries

Let X be a root system of type A, B, C, D, E, F , G with positive simple roots α1, . . . ,αn . The
root lattice is denoted by Q = Zα1 ⊕ · · · ⊕ Zαn . Let ci j denote the entries of the Cartan matrix
ci j = 2〈αi,α j〉/〈αi,αi〉, and let d1, . . . ,dn be coprime positive integers so that the matrix (dici j) is
symmetric. Let k be a field and suppose q ∈ k× is not a root of unity. For 1 � i � n, put qi = qdi

and define the quantized enveloping algebra U as the associative k-algebra (or algebra, for brevity)
generated by u±

1 , . . . , u±
n and {vμ: μ ∈ Q } and having the defining relations

v0 = 1, vμvρ = vμ+ρ (μ,ρ ∈ Q ), (2.1)

vμu±
i = q±〈μ,αi〉u±

i vμ

(
μ ∈ Q , i ∈ {1, . . . ,n}), (2.2)

u+
i u−

j = u−
j u+

i + δi j
vαi − v−αi

qi − q−1
i

(
i, j ∈ {1, . . . ,n}), (2.3)

1−ci j∑
r=0

(−1)r
[

1 − ci j
r

]
qi

(
u±

i

)1−ci j−r
u±

j

(
u±

i

)r = 0 (i �= j). (2.4)

Here,

[�]qi = q�
i − q−�

i

qi − q−1
i

, [�]qi ! = [1]qi · · · [�]qi ,

[
�

m

]
qi

= [�]qi !
[m]qi ![� − m]qi !

. (2.5)

The algebra U is Q -graded with deg(u+
i ) = αi , deg(u−

i ) = −αi and deg(Kμ) = 0 for every μ ∈ Q
and 1 � i � n. Furthermore, U has a Hopf algebra structure with comultiplication �, antipode S , and
counit ε maps given by



G. Johnson, C. Nowlin / Journal of Algebra 353 (2012) 158–173 161
�
(
u+

i

) = v−αi ⊗ u+
i + u+

i ⊗ 1, �(vμ) = vμ ⊗ vμ, �
(
u−

i

) = 1 ⊗ u−
i + u−

i ⊗ vαi , (2.6)

S
(
u+

i

) = −vαi u
+
i , S(vμ) = v−μ, S

(
u−

i

) = −u−
i v−αi , (2.7)

ε
(
u+

i

) = 0, ε(vμ) = 1, ε
(
u−

i

) = 0, (2.8)

for every μ ∈ Q and 1 � i � n.
For every i ∈ {1, . . . ,n}, we let si : Q → Q be the simple reflection

si : μ → μ − 2〈μ,αi〉
〈αi,αi〉 αi, (2.9)

and let W = 〈s1, . . . , sn〉 denote the Weyl group. The standard presentation for the braid group B is
the generating set {T w : w ∈ W } subject to the relations T w T w ′ = T w w ′ for every w, w ′ ∈ W satisfying
�(w) + �(w ′) = �(w w ′), where � is the length function on W . For each i ∈ {1, . . . ,n}, we set Ti :=
Tsi . Thus, the braid group B is generated by T1, . . . , Tn . It is well known that B acts via algebra
automorphisms on U as follows:

Ti vμ = vsi(μ), Tiu
+
i = −u−

i vαi , Tiu
−
i = −v−αi u

+
i , (2.10)

Tiu
+
j =

−ci j∑
r=0

(−qi)
−r

[−ci j − r]qi ![r]qi !
(
u+

i

)−ci j−r
u+

j

(
u+

i

)r
(i �= j), (2.11)

Tiu
−
j =

−ci j∑
r=0

(−qi)
r

[−ci j − r]qi ![r]qi !
(
u−

i

)r
u−

j

(
u−

i

)−ci j−r
(i �= j), (2.12)

for all i, j ∈ {1, . . . ,n}, μ ∈ Q . These automorphisms were first detailed by Lusztig (e.g. see [15]); our
presentation agrees with [4, I.6.7].

Fix w ∈ W . For a reduced expression

w = si1 · · · sit (2.13)

define the roots

β1 = αi1 , β2 = si1αi2 , . . . , βt = si1 · · · sit−1αit (2.14)

and the root vectors

Xβ1 = u+
i1
, Xβ2 = Tsi1

u+
i2
, . . . , Xβt = Tsi1

· · · Tsit−1
u+

it
. (2.15)

Following [7], let U w
q denote the subalgebra of U generated by the root vectors Xβ1 , . . . , Xβt .

While the construction of the subalgebra is dependent upon a choice of reduced expression for w ,
De Concini, Kac, and Procesi proved the following:

Theorem 2.1. (See [7, Proposition 2.2].) Up to isomorphism, the algebra U w
q does not depend on the reduced

expression for w. Furthermore, U w
q has the PBW basis

Xn1
β1

· · · Xnt
βt

, n1, . . . ,nt ∈ Z�0.

Beck later proved the analogous result for affine root systems (with k algebraically closed of char-
acteristic zero and q transcendental over Q) [3].
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3. A smash product of type Dn+1

For this section, q ∈ k× is not a root of unity. We assume no other hypotheses on the base field k.

3.1. The algebras Uq(so2n+2), U wn
q , and Oq(ok2n)

Fix an integer n � 3, and let Q (Dn+1) denote the root lattice of type Dn+1. We denote the sim-
ple roots by αi = ei − ei−1 for 2 � i � n + 1 and α1 = e1 + e2. With this choice of simple roots,
the root lattice is identified with the additive abelian subgroup of Rn+1 consisting of vectors having
integer-valued coordinates (a1, . . . ,an+1) where the sum

∑
ai is an even number. The inner prod-

uct on Q (Dn+1) will be identified with the restriction of the standard inner product on Rn+1 (i.e.
〈ei, e j〉 = δi j) to Q (Dn+1). For a positive simple root αi , let si denote the corresponding simple re-
flection and let W (Dn+1) = 〈s1, . . . , sn+1〉 denote the Weyl group. The associated finite-type Cartan
matrix (ci j) is symmetric. Hence, d1 = · · · = dn+1 = 1. Therefore, the parameters q1, . . . ,qn+1 are all
equal to q. As usual, we put q̂ = q − q−1. Let Uq(so2n+2) denote the corresponding quantized uni-
versal enveloping algebra. We label the generators of Uq(so2n+2) by E1, . . . , En+1, F1, . . . , Fn+1 and
{Kμ: μ ∈ Q (Dn+1)} and the defining relations are

K0 = 1, KμKλ = Kμ+λ, (3.1)

KμEi = q〈μ,αi〉Ei Kμ, KμFi = q−〈μ,αi〉 Fi Kμ, (3.2)

Ei E j = E j Ei, Fi F j = F j Fi
(〈αi,α j〉 = 0 or 2

)
, (3.3)

Ei[Ei, E j] = q[Ei, E j]Ei, Fi[Fi, F j] = q[Fi, F j]Fi
(〈αi,α j〉 = −1

)
, (3.4)

Ei F j = F j Ei + δi j

q̂
(Kαi − K−αi ), (3.5)

for every i, j ∈ {1, . . . ,n + 1} and μ,λ ∈ Q (Dn+1). Here we use the q−1-commutators, defined by

[u, v] := uv − q−1 vu

for every u, v ∈ Uq(so2n+2). Recall that Uq(so2n+2) is Q (Dn+1)-graded with deg(Ei) = αi , deg(Fi) =
−αi , and deg(Kμ) = 0 for every μ ∈ Q (Dn+1) and 1 � i � n + 1.

Let w0 denote the longest element of W (Dn+1) and let w L
0 be the longest element of the parabolic

subgroup 〈s1, . . . , sn〉 ⊆ W (Dn+1). Put wn = w L
0 w0. We have a reduced expression

wn = (sn+1 · · · s2s1)(s3 · · · snsn+1) ∈ W (Dn+1) (3.6)

and root vectors

Xen+1−en , Xen+1−en−1 , . . . , Xen+1−e1 , Xen+1+e1 Xen+1+e2 , . . . , Xen+1+en . (3.7)

For brevity, we put xi = Xen+1−ei and yi = Xen+1+ei for every i ∈ {1, . . . ,n}. Let U wn
q denote the corre-

sponding De Concini–Kac–Procesi algebra.
The following is suggested by [11], Section 5.6.a.

Theorem 3.1. The algebra U wn
q is isomorphic to the even-dimensional quantum Euclidean space Oq(ok2n).
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Proof. We observe that the root vectors x1, . . . , xn, y1, . . . , yn of U wn
q can be written inductively as

xn = En+1, y1 = [x2, E1] and

xi = [xi+1, Ei+1], (3.8)

yi+1 = [yi, Ei+1], (3.9)

for all 1 � i < n. Using these identities, one can readily check that the root vectors satisfy the defining
relations of Oq(ok2n) (cf. [13, Section 9.3.2]),

xi x j = q−1x jxi, yi y j = qy j yi (1 � i < j � n), (3.10)

xi y j = q1−δi j y jxi + δi j q̂
i−1∑
r=1

(−q)i−r−1xr yr
(
i, j ∈ {1, . . . ,n}). (3.11)

Since U wn
q has a PBW basis of ordered monomials, Eqs. (3.10) and (3.11) are the defining relations.

Hence, U wn
q

∼= Oq(ok2n). �
3.2. U wn

q as a left U �0
D -module algebra

Let U �0
D be the sub-Hopf algebra of Uq(so2n+2) generated by E1, . . . , En+1, and Kμ for all μ ∈

Q (Dn+1). We let π : U �0
D → U �0

D be the unique algebra map such that

π(En+1) = 0, (3.12)

π(Ei) = Ei (i � n), (3.13)

π(Kμ) = Kμ

(
μ ∈ Q (Dn+1)

)
. (3.14)

We define a function λ : U �0
D ⊗ U wn

q → U �0
D by the following sequence of linear maps:

λ : U �0
D ⊗ U wn

q
incl. (

U �0
D

)⊗2 π⊗id (
U �0

D

)⊗2 adjoint
U �0

D (3.15)

and have the following:

Theorem 3.2. For the function λ above, we have Im(λ) ⊆ U wn
q . In particular, λ endows U wn

q with the structure

of a left U �0
D -module algebra.

Proof. For brevity, we set u.v = λ(u ⊗ v) for every u ∈ U �0
D and v ∈ U wn

q . One can verify that

E j .xr =
{−q(δ1r y2 + δ2r y1) ( j = 1),

−qδ jr xr−1 ( j �= 1),
(3.16)

E j .yr =
{

0 ( j = n + 1),

−qδ j,r+1 yr+1 ( j �= n + 1),
(3.17)

for all r ∈ {1, . . . ,n}, j ∈ {1, . . . ,n + 1}. Since U �0
D is a left U �0

D -module algebra (with respect to the
adjoint action), Eqs. (3.16) and (3.17) above, together with the fact that the Kμ ’s act diagonally on
U wn

q , prove the desired result. �
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We remark that Theorem 3.2 depends heavily on the fact that the set �+ ∩ wn.�− is an upper
set of �+: i.e. if μ ∈ �+ ∩ wn.�− and λ ∈ �+ with λ − μ a nonnegative linear combination of the
simple roots α1, . . . ,αn+1, then λ ∈ �+ ∩ wn.�− as well.

Using the action map λ, we form the smash product algebra U wn
q #U �0

D and define the following
subalgebra

(
U wn

q
)# := 〈

1#u, u#1
∣∣ u ∈ U wn

q
〉 ⊆ U wn

q #U �0
D . (3.18)

Loosely speaking, we can think of (U wn
q )# as being a smash product of U wn

q with itself. Observe for
example that (U wn

q )# is isomorphic as a vector space to U wn
q ⊗ U wn

q .

3.3. A presentation of (U wn
q )#

We will spend the rest of this section giving an explicit presentation for the algebra (U wn
q )# be-

cause this will be necessary for proving the main result of Section 4 (Theorem 4.4).
The algebra (U wn

q )# is generated by 1#xi , 1#yi , xi#1, yi#1 for i ∈ {1, . . . ,n}. To compute the re-
lations among these generators, we need comultiplication formulas for the root vectors x1, . . . , xn,

y1, . . . , yn ∈ U wn
q . First, we must introduce the elements εi j, Er↓s, Es↑r ∈ U �0

D for every i, j ∈ {1, . . . ,n}
and r, s ∈ {1, . . . ,n + 1} with r � s. They are defined recursively via

Er↓s =
{

Er (r = s),

[Er↓s+1, Es] (r �= s),
(3.19)

Es↑r =
{

Es (r = s),

[Es↑r−1, Er] (r �= s),
(3.20)

ε1 j =
{

0 ( j = 1),

T j T j−1 · · · T2 E1 ( j �= 1),
(3.21)

εi+1, j =

⎧⎪⎨⎪⎩
[εi j, Ei+1] ( j �= i, i + 1),

qεi,i+1 Ei+1 − q−1 Ei+1εi,i+1 ( j = i + 1),

εi,i+1 + q−1(εii Ei+1 − Ei+1εii) ( j = i).

(3.22)

We have the following:

Lemma 3.3. For every i ∈ {1, . . . ,n},

�(xi) = K−deg(xi) ⊗ xi + xi ⊗ 1 + q̂
n∑

j=i+1

E j↓i+1 K−deg(x j) ⊗ x j, (3.23)

�(yi) = K−deg(yi) ⊗ yi + yi ⊗ 1

+ q̂

(
n∑

j=1

εi j K−deg(x j) ⊗ x j +
i−1∑
j=1

E j+1↑i K−deg(y j) ⊗ y j

)
. (3.24)

Proof. Use the induction formulas from Eqs. (3.8) and (3.9) together with the comultiplication for-
mula given in Eq. (2.6). �
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From Eqs. (3.16) and (3.17) it follows that for all r ∈ {1, . . . ,n}, we have

E j↓i+1.xr = −qδ jr xi, E j↓i+1.yr = (−q) j−iδir y j (1 � i < j � n), (3.25)

E j+1↑i .xr = (−q)i− jδir x j, E j+1↑i.yr = −qδ jr yi (1 � j < i � n), (3.26)

εi j .xr = (−q)i+ j−2qδi j δir y j − qδ jr yi, εi j.yr = 0 (1 � i, j � n). (3.27)

Using the identities (3.25)–(3.27) together with the comultiplication formulas, (3.23)–(3.24), we com-
pute the following “cross-relations” in (U wn

q )#.

Proposition 3.4. For every i, j ∈ {1, . . . ,n},

(1#xi)(x j#1) =

⎧⎪⎨⎪⎩
q−1x j#xi − q−1q̂xi#x j, i < j,

q−2x j#xi, i = j,

q−1x j#xi, i > j,

(3.28)

(1#yi)(y j#1) =

⎧⎪⎨⎪⎩
q−1 y j#yi − q−1q̂ yi#y j, i > j,

q−2 y j#yi, i = j,

q−1 y j#yi, i < j,

(3.29)

(1#yi)(x j#1) = q−1+δi j x j#yi − q̂q−1 yi#x j

+ q̂q−1δi j

(
n∑

m=1

(−q)i+m−2 ym#xm +
i−1∑

m=1

(−q)i−mxm#ym

)
, (3.30)

(1#xi)(y j#1) = q−1+δi j y j#xi + q̂q−1δi j

n∑
m=i+1

(−q)m−i ym#xm. (3.31)

We have the following presentation for (U wn
q )#:

Theorem 3.5. The algebra (U wn
q )# is generated by 1#xi , xi#1, 1#yi , yi#1 for 1 � i � n, and its defining

relations are Eqs. (3.28)–(3.31) together with the relations

(1#xi)(1#x j) = q−1(1#x j)(1#xi) (1 � i < j � n), (3.32)

(1#yi)(1#y j) = q(1#y j)(1#yi) (1 � i < j � n), (3.33)

(1#xi)(1#y j) = q1−δi j (1#y j)(1#xi) + δi j q̂
i−1∑
r=1

(−q)i−r−1(1#xr)(1#yr)
(
i, j ∈ {1, . . . ,n}),

(3.34)

(xi#1)(x j#1) = q−1(x j#1)(xi#1) (1 � i < j � n), (3.35)

(yi#1)(y j#1) = q(y j#1)(yi#1) (1 � i < j � n), (3.36)

(xi#1)(y j#1) = q1−δi j (y j#1)(xi#1) + δi j q̂
i−1∑
r=1

(−q)i−r−1(xr#1)(yr#1)
(
i, j ∈ {1, . . . ,n}).

(3.37)
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Proof. The generators 1#x1, . . . ,1#xn,1#y1, . . . ,1#yn generate a subalgebra isomorphic to U wn
q , as

do the generators x1#1, . . . , xn#1, y1#1, . . . , yn#1, giving us the relations (3.32)–(3.37). The universal
property of smash products (for example, see [12, Section 1.8]) and the PBW basis of De Concini–Kac–
Procesi algebras imply that the cross relations of (3.28)–(3.31) together with the above relations are a
presentation of (U wn

q )#. �
4. The quantum affine algebra U ŵn

q

For this section, we assume the base field k is algebraically closed of characteristic zero, and q ∈ k
is transcendental over Q. These hypotheses are chosen to be consistent with Beck [3].

Let Q (D̂n+1) = Q (Dn+1) ⊕ Z denote the root lattice of type D̂n+1. As an abelian group, Q (D̂n+1)

is generated additively by the positive simple roots α0 := −en+1 − en + 1, α1 := e1 + e2, and
αi := ei − ei−1 for 2 � i � n + 1. We extend the bilinear form 〈 , 〉 on Q (Dn+1) to Q (D̂n+1) by
setting 1 ∈ Q (D̂n+1) to be isotropic. As before, let si denote the corresponding simple reflection
si : Q (D̂n+1) → Q (D̂n+1), for 0 � i � n + 1, and W (D̂n+1) = 〈s0, . . . , sn+1〉 is the Weyl group. The cor-
responding quantized enveloping algebra Uq(ŝo2n+2) is generated by E0, . . . , En+1, F0, . . . , Fn+1 and
{Kμ: μ ∈ Q (D̂n+1)} and has defining relations

K0 = 1, KμKλ = Kμ+λ, (4.1)

KμEi = q〈μ,αi〉Ei Kμ, KμFi = q−〈μ,αi〉 Fi Kμ, (4.2)

Ei E j = E j Ei, Fi F j = F j Fi
(〈αi,α j〉 = 0 or 2

)
, (4.3)

Ei[Ei, E j] = q[Ei, E j]Ei, Fi[Fi, F j] = q[Fi, F j]Fi
(〈αi,α j〉 = −1

)
, (4.4)

Ei F j = F j Ei + δi j

q̂
(Kαi − K−αi ), (4.5)

for every i, j ∈ {0, . . . ,n + 1} and μ,λ ∈ Q (D̂n+1) (cf. Eqs. (3.1)–(3.5)).
Let ŵn ∈ W (D̂n+1) be the Weyl group element given by

ŵn : v + r �→ v + r + 2an+1 (4.6)

for every v = ∑n+1
i=1 aiei ∈ Q (Dn+1) and r ∈ Z. We have the reduced expression

ŵn := (sn+1 · · · s1)(s3 · · · sn+1)s0(sn · · · s3)(s1 · · · sn)s0 ∈ W (D̂n+1). (4.7)

We let B̂so2n+2 = 〈T0, . . . , Tn+1〉 denote the corresponding braid group of ŝo2n+2 and label the

corresponding ordered root vectors for U ŵn
q by

Xn, . . . , X1, Y1, . . . , Yn, Xn, . . . , X1, Y 1, . . . , Y n. (4.8)

One can readily verify the following lemmas.

Lemma 4.1. We have the following recursion formulas in the algebra U ŵn
q :

Xn = En+1, Xi = [Xi+1, Ei+1] (i �= n), (4.9)

Y1 = [X2, E1], Yi = [Yi−1, Ei] (i �= 1), (4.10)

Xn = [Yn−1, Tn+1Tn E0], Xi = [Xi+1, Ei+1] (i �= n), (4.11)
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Y 1 = [X2, E1], Y i = [Y i−1, Ei] (i �= 1), (4.12)

Y2 = [X1, E1], Y 2 = [X1, E1]. (4.13)

Lemma 4.2. For all i, j ∈ {1, . . . ,n}, we have the following:

Ti .X j =

⎧⎪⎨⎪⎩
[Ei, X j] (i = j or (i, j) = (1,2)),

X j+1 (i = j + 1),

X j, otherwise,

(4.14)

Ti .Y j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y j−1 (i = j and i �= 1),

X3− j (i = 1, j ∈ {1,2}),
[E j+1, Y j] (i = j + 1),

Y j, otherwise,

(4.15)

Ti .X j =

⎧⎪⎨⎪⎩
[Ei, X j] (i = j or (i, j) = (1,2)),

X j+1 (i = j + 1),

X j, otherwise,

(4.16)

Ti .Y j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y j−1 (i = j and i �= 1),

X3− j (i = 1, j ∈ {1,2}),
[E j+1, Y j] (i = j + 1),

Y j, otherwise.

(4.17)

With the help of Lemmas 4.1 and 4.2, we prove the following.

Proposition 4.3. The defining relations for the algebra U ŵn
q are

Xi X j = q−1 X j Xi, Y j Yi = q−1Yi Y j (i < j), (4.18)

Xi X j = q−1 X j Xi, Y j Y i = q−1Y i Y j (i < j), (4.19)

Y j Xi = qδi j−1 Xi Y j − δi j q̂
i−1∑
r=1

(−q)i−r−1 Xr Yr, (4.20)

Y j Xi = qδi j−1 Xi Y j − δi j q̂
i−1∑
r=1

(−q)i−r−1 Xr Y r, (4.21)

Xi Xi = q−2 Xi Xi, Y i Yi = q−2Yi Y i, (4.22)

X j Xi = q−1 Xi X j, Y i Y j = q−1Y j Y i (i < j), (4.23)

Xi X j = q−1 X j Xi − q−1q̂Xi X j, Y j Yi = q−1Yi Y j − q−1q̂Y j Y i (i < j), (4.24)

Xi Y j = q−1+δi j Y j X i + q̂q−1δi j

n∑
m=i+1

(−q)m−i Ym Xm, (4.25)
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Y i X j = q−1+δi j X j Y i − q̂q−1Yi X j + q̂q−1δi j

[
n∑

m=1

(−q)i+m−2Ym Xm +
i−1∑

m=1

(−q)i−m XmY m

]
,

(4.26)

for i, j ∈ {1, . . . ,n}.

Proof. The first 2n letters in the reduced expression for ŵn coincide with wn , as do the last 2n letters.
This gives us the relations (4.18)–(4.21). Using Lemmas 4.1 and 4.2, one can prove inductively that the
remaining relations hold. To illustrate how to obtain the identities in Eq. (4.22) for example, one can
first verify the base cases, X1 X1 = q−2 X1 X1 and Y nYn = q−2YnY n , and then apply appropriate braid
group automorphisms (refer to Lemma 4.2) to both sides of the equations. Since U ŵn

q has a PBW basis
of ordered monomials, Eqs. (4.18)–(4.26) are the defining relations. �

By comparing Eqs. (3.28)–(3.37) with Eqs. (4.18)–(4.26), we observe the following theorem.

Theorem 4.4. As k-algebras, U ŵn
q

∼= (U wn
q )# via the isomorphism

Xi �→ (xi#1), Yi �→ (yi#1),

Xi �→ (1#xi), Y i �→ (1#yi),
for i = 1, . . . ,n.

5. The FRT-construction and the algebra XXXn,q

We will briefly review the Faddeev–Reshetikhin–Takhtajan (FRT) construction of [8] (see [6, Sec-
tion 7.2] for more details). We let V be a k-module with basis {v1, . . . , v N }. For a linear map
R ∈ Endk(V ⊗ V ), we write

R(vi ⊗ v j) =
∑
s,t

Rst
i j vs ⊗ vt for all 1 � i, j < N, (5.1)

with all Rst
i j ∈ k. The FRT algebra A(R) associated to R is the k-algebra presented by generators Xij for

1 � i, j � N and has the defining relations

∑
s,t

R ji
st Xsl Xtm =

∑
s,t

Rts
lm Xis X jt (5.2)

for every i, j, l,m ∈ {1, . . . , N}. Up to algebra isomorphism, A(R) is independent of the chosen basis
of V .

Let us specialize now to the case when N = 2n. Following [13, Section 8.4.2], for each i, j ∈
{1, . . . ,2n}, let Eij denote the linear map on V defined by Eij .v� = δ j�vi . Let i′ := 2n + 1 − i, and
let

R Dn = q
∑

i: i �=i′
(Eii ⊗ Eii) +

∑
i, j:i �= j, j′

(Eii ⊗ E jj) + q−1
∑
i:i �=i′

(Ei′ i′ ⊗ Eii)

+ q̂

( ∑
i, j: i> j

(Eij ⊗ E ji) −
∑

i, j: i> j

qρi−ρ j (Eij ⊗ Ei′ j′)

)
, (5.3)

where (ρ1,ρ2, . . . , ρ2n) is the 2n-tuple (n − 1,n − 2, . . . ,1,0,0,−1, . . . ,−n + 1).
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We define an algebra Xn,q presented by generators Xij with i ∈ {1,2}, j ∈ {1, . . . ,2n}, and having
the defining relations

Xrt Xrs = q−1 Xrs Xrt
(
r ∈ {1,2}, s < t, t �= s′), (5.4)

Xrs′ Xrs = Xrs Xrs′ + q̂
n∑

l=s+1

ql−s−1 Xrl Xrl′
(
r ∈ {1,2}, s < s′), (5.5)

X2s X1s = q−1 X1s X2s, (5.6)

X2s X1t = X1t X2s
(
s < t, t �= s′), (5.7)

X2t X1s = X1s X2t − q̂X1t X2s
(
s < t, t �= s′), (5.8)

X2s X1s′ = qX1s′ X2s + q̂
s−1∑
l=1

qs−l X1l′ X2l
(
s < s′), (5.9)

X2s′ X1s = qX1s X2s′ + q̂
n∑

l=s+1

ql−s X1l X2l′ ,+q̂q−1
n∑

l=1

ql′−s X1l′ X2l − q̂X1s′ X2s
(
s < s′). (5.10)

We label the canonical generators of A(R Dn ) by Yij for i, j = 1, . . . ,2n, and let T2,n be the subal-
gebra of A(R Dn ) generated by {Yij: 1 � i � 2, 1 � j � 2n}.

Proposition 5.1. There is a surjective algebra homomorphism Xn,q → T2,n with kernel 〈Ω1,Ω2,Υ 〉, where

Ω1 :=
n∑

r=1

qρr′ X1,r X1,r′ , Ω2 :=
n∑

r=1

qρr′ X2,r X2,r′ , Υ :=
2n∑

r=1

qρr X1,r′ X2,r . (5.11)

Proof. Using the FRT construction (see Eqs. (5.2) and (5.3)), one can readily compute the defining re-
lations for the algebra A(R Dn ) and see that they line up appropriately with Eqs. (5.4)–(5.10) together
with Ω1 = Ω2 = Υ = 0. �

Notice that the definition of Xn,q makes sense when n = 2, and Proposition 5.1 holds in this case
as well. However, the rest of the results of this paper require n � 3.

Following [1], we recall the details on twisting algebras by cocycles. Let M be an additive abelian
group and c : M × M → k× a 2-cocycle of M . If Λ is a k-algebra graded by M , we can twist Λ by c
to obtain a new M-graded k-algebra Λ′ that is canonically isomorphic to Λ as a k-module via x ↔ x′ .
Multiplication of homogeneous elements in Λ′ is given by

x′ y′ = c
(
deg(x),deg(y)

)
(xy)′.

For our purposes, we will let β : Q (D̂n+1) × Q (D̂n+1) → k× be the bicharacter (hence, also a 2-
cocycle) defined by

β(αi,α j) =
{

q, (i, j) = (0,n + 1),

1, (i, j) �= (0,n + 1),
(5.12)

and have the following:

Theorem 5.2. Suppose k is algebraically closed of characteristic zero, and q ∈ k is transcendental over Q. The
β-twisted algebra (U ŵn

q )′ is isomorphic to Xn,q.
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Proof. We label the corresponding generators of (U ŵn
q )′ by

X ′
n, . . . , X ′

1, Y ′
1, . . . , X ′

n, X ′
n, . . . , X ′

1, Y ′
1, . . . , Y ′

n. (5.13)

By comparing Eqs. (4.18)–(4.26) and (5.4)–(5.10), we observe that the algebra map (U ŵn
q )′ → Xn,q

defined by

X ′
i �→ (−1)n+1−i X1,n+1−i, X ′

i �→ (−1)n+1−i X2,n+1−i, (5.14)

Y ′
i �→ X1,n+i, Y ′

i �→ X2,n+i, (5.15)

for every i ∈ {1, . . . ,n}, is an isomorphism. �
From this, we deduce the following:

Theorem 5.3. Using the same hypothesis as Theorem 5.2, the algebra Xn,q is an iterated Ore extension over k,

Xn,q = k[X11][X12;τ12, δ12] · · · [X2,2n;τ2,2n, δ2,2n].

Proof. It suffices to check that ordered monomials are linearly independent. From Theorem 5.2, we
have a canonical vector space isomorphism U ŵn

q → Xn,q that preserves the ordered generating sets.

Since U ŵn
q has a basis of ordered monomials, Xn,q does as well. �

A straightforward computation gives δi jτi j = q2τi jδi j all for i ∈ {1,2}, j ∈ {1, . . . ,2n}. Hence, Xn,q is
an iterated q2-skew polynomial algebra over k.

6. A type Am analogue

For this section, we assume q ∈ k× is not a root of unity.

6.1. The algebras Uq(slm+1), U cm
q , and Oq(km)

Fix an integer m > 1, and let Q (Am) denote the root lattice of type Am . The positive simple roots
are given by αi := ei − ei+1 for i ∈ {1, . . . ,m}. With this choice, we identify Q (Am) with the abelian
subgroup of Rm+1 consisting of integral (m + 1)-tuples (a1, . . . ,am+1) with the sum

∑
ai equal-

ing 0. Let W (Am) and Bslm+1 denote the corresponding Weyl group and braid group, respectively.

Let Uq(slm+1) denote the corresponding quantum enveloping algebra, and let U �0
A be the positive

Borel subalgebra of Uq(slm+1). We consider the Coxeter element

cm = s1 · · · sm ∈ W (Am) (6.1)

and the associated De Concini–Kac–Procesi algebra U cm
q . We label the root vectors in U cm

q by

z1 := Xe1−e2 , z2 := Xe1−e3 , . . . , zm := Xe1−em+1 (6.2)

and have the following
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Proposition 6.1. The root vectors z1, . . . , zm satisfy the relations

zi z j = qz j zi (6.3)

for all i, j ∈ {1, . . . ,m} with i < j.

Since U cm
q has a PBW basis of ordered monomials, the relations of Eq. (6.3) are the defining rela-

tions for U cm
q . In particular, we have the following well-known result (cf. for example [16]):

Corollary 6.2. The algebra U cm
q is isomorphic to the algebra of quantum affine space Oq(km).

Denote by πA : U �0
A → U �0

A the unique algebra map such that

π(E1) = 0, (6.4)

π(Ei) = Ei (1 < i � m), (6.5)

π(Kμ) = Kμ

(
μ ∈ Q (Am)

)
. (6.6)

Let λA : U �0
A ⊗ U cm

q → U �0
A be defined by the following sequence of linear maps:

λA : U �0
A ⊗ U cm

q
incl. (

U �0
A

)⊗2 πA⊗id (
U �0

A

)⊗2 adjoint
U �0

A
. (6.7)

The identities in Eq. (3.16) imply the following

Corollary 6.3. The linear map λA satisfies Im(λA) ⊆ U cm
q . In particular, λA endows the algebra U cm

q with the

structure of a left U �0
A -module algebra.

As before (see (3.18)), we use the action map λA to construct the smash product U cm
q #U �0

A and
let (U cm

q )# denote the subalgebra

(
U cm

q
)# := 〈

1#u, u#1
∣∣ u ∈ U cm

q
〉 ⊆ U cm

q #U �0
A . (6.8)

6.2. The quantum affine algebra U ĉm
q

Let Q ( Âm) = Q (Am) ⊕ Z denote the root lattice of type Âm . As an abelian group, Q ( Âm) is gen-
erated additively by the positive simple roots α0 := em − e1 + 1, and αi := ei − ei+1 for i ∈ {1, . . . ,m}.
We extend the inner product 〈 , 〉 on Q (Am) to an inner product on Q ( Âm) by setting 1 ∈ Q ( Âm) to
be isotropic. We let si denote the corresponding simple reflection si : Q ( Âm) → Q ( Âm), for 0 � i � m,
and let W ( Âm) = 〈s0, . . . , sm〉 denote the corresponding affine Weyl group. We let Uq(ŝlm+1) denote
the corresponding quantized enveloping algebra.

We set

ĉm := (s1 · · · sm)(s0s1 · · · sm−1) ∈ W ( Âm) (6.9)

and note the following analogue of Theorem 4.4.
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Theorem 6.4. Suppose k is an algebraically closed field of characteristic zero, and q ∈ k is transcendental
over Q. As k-algebras, U ĉm

q
∼= (U cm

q )# .

Proof. Compute. One can use an analogous isomorphism of Theorem 4.4. �
Now let V be a k-module with basis {v1, . . . , vm}, and for all i, j, � ∈ {1, . . . ,m}, define linear maps

ei j by the rule ei j .v� = δ j�vi .
Set

R Am−1 = q
m∑

i=1

(eii ⊗ eii) +
∑
i �= j

(eii ⊗ e jj) + q̂
∑
i> j

(eij ⊗ e ji). (6.10)

This is the standard R-matrix of type Am−1 (see [13, Section 8.4.2]).
The algebra of m × m quantum matrices, denoted Oq(Mm(k)), is the algebra A(R Am−1 ) and was

defined in [8]. More generally, one considers �× p quantum matrices, denoted Oq(M�,p(k)), by looking
at appropriate subalgebras of square quantum matrices.

We let γ : Q ( Âm) × Q ( Âm) → k× be the bicharacter defined by

γ (αi,α j) =
{

q, (i, j) = (0,1),

1, (i, j) �= (0,1),
(6.11)

and have the following analogue of Theorem 5.2.

Theorem 6.5. Assuming the same hypotheses on k and q from Theorem 6.4, the γ -twisted algebra (U ĉm
q )′ is

isomorphic to Oq(M2,m).

Proof. Compute (cf. Theorem 5.2). �
Theorem 6.5, together with Proposition 5.1, allows us to view Xn,q as an orthogonal analogue of

2 ×n quantum matrices. The key distinction is that Oq(M2,n(k)) is a subalgebra of A(R An−1 ), whereas
Xn,q is a parent of the analogous subalgebra T2,n ⊆ A(R Dn ).
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