The FRT-construction via quantum affine algebras and smash products

Garrett Johnson*, Christopher Nowlin
Department of Mathematics, University of California, Santa Barbara, CA 93106, United States

A R T I C L E I N F O

Article history:

Received 29 April 2011
Available online 27 December 2011
Communicated by J.T. Stafford

MSC:

16 T 20
$16 S 40$
Keywords:
Quantum algebras
Smash products
FRT-construction

Abstract

For every element w in the Weyl group of a simple Lie algebra \mathfrak{g}, De Concini, Kac, and Procesi defined a subalgebra \mathcal{U}_{q}^{w} of the quantized universal enveloping algebra $\mathcal{U}_{q}(\mathfrak{g})$. The algebra \mathcal{U}_{q}^{w} is a deformation of the universal enveloping algebra $\mathcal{U}\left(\mathfrak{n}_{+} \cap w \cdot \mathfrak{n}_{-}\right)$. We construct smash products of certain finite-type De Concini-Kac-Procesi algebras to obtain ones of affine type; we have analogous constructions in types A_{n} and D_{n}. We show that the multiplication in the affine type De Concini-Kac-Procesi algebras arising from this smash product construction can be twisted by a cocycle to produce certain subalgebras related to the corresponding Faddeev-Reshetikhin-Takhtajan bialgebras.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let k be an infinite field and suppose an algebraic k-torus H acts rationally on a noetherian k algebra A by k-algebra automorphisms. Goodearl and Letzter [10] showed that $\operatorname{spec}(A)$ is partitioned into strata indexed by the H-invariant prime ideals of A. Furthermore, they showed that each stratum is homeomorphic to the prime spectrum of a Laurent polynomial ring. The Goodearl-Letzter stratification results apply to the case when A is a q-skew polynomial ring for q not a root of unity under some assumptions relating the action of H to the structure of A. In this setting Cauchon's deleting derivations algorithm [5] gives an iterative procedure for classifying the H-primes. After several such algebras were studied, such as the algebras of quantum matrices $\mathcal{O}_{q}\left(M_{\ell, p}(k)\right)$ [5,9,14], it was noticed that many of these algebras fall into the setting of De Concini-Kac-Procesi algebras [7].

The De Concini-Kac-Procesi algebras are subalgebras of quantized universal enveloping algebras $\mathcal{U}_{q}(\mathfrak{g})$ associated to the elements of the corresponding Weyl group $W_{\mathfrak{g}}$. They may be viewed as

[^0]deformations of the universal enveloping algebra $\mathcal{U}\left(\mathfrak{n}_{+} \cap w . \mathfrak{n}_{-}\right)$, where \mathfrak{n}_{+}and \mathfrak{n}_{-}are the positive and negative nilpotent Lie subalgebras of \mathfrak{g}, respectively. Yakimov [17] recently proved that the poset of H-primes of a De Concini-Kac-Procesi algebra \mathcal{U}_{q}^{w} ordered under inclusion is isomorphic to the poset $W \leqslant w$ of Weyl group elements less than or equal to w under the Bruhat ordering. In [17], Yakimov also gives explicit generating sets for the H -primes in terms of Demazure modules.

Into this setting we introduce a new algebra we refer to as $\mathbb{X}_{n, q}$, closely tied to the FRT bialgebra produced from the R-matrix of type D_{n}, a q-skew polynomial ring which fits nicely in the circle of the other quantum algebras described above. We moreover argue that $\mathbb{X}_{n, q}$ forms an orthogonal analogue of the algebra $\mathcal{O}_{q}\left(M_{2, n}(k)\right)$. Unlike many the previous examples, $\mathbb{X}_{n, q}$ is not realizable as a De Concini-Kac-Procesi algebra of finite type. We do give three descriptions of the algebra, relating it to the FRT construction, a De Concini-Kac-Procesi algebra of affine type, and a smash product of De Concini-Kac-Procesi algebras of finite type.

To demonstrate these connections, we introduce three type- D algebras and demonstrate isomorphisms between them. The first algebra we introduce is obtained from a De Concini-Kac-Procesi algebra of type $\mathfrak{s o}_{2 n+2}$ and a smash product construction. We show that this algebra is isomorphic to our second algebra, a De Concini-Kac-Procesi algebra associated to the affine Weyl group of type \widehat{D}_{n+1}. Finally, we show that twisting the multiplication in these algebras by a certain 2-cocycle produces the algebra $\mathbb{X}_{n, q}$ described above.

We proceed to produce analogous results with type- A algebras to suggest a more general setting for the above results and see explicitly the analogy between $\mathbb{X}_{n, q}$ and $\mathcal{O}_{q}\left(M_{2, n}\right)$.

In more detail, Section 3 introduces the first of these algebras, an algebra which resembles a smash product of a De Concini-Kac-Procesi algebra with itself. Suppose $q \in k^{\times}$is not a root of unity. Fix an integer $n \geqslant 3$. Let $W\left(D_{n+1}\right)$ be the Weyl group of type D_{n+1} with standard generating set $\left\{s_{1}, \ldots, s_{n+1}\right\}$ and let

$$
\begin{equation*}
w_{n}=\left(s_{n+1} s_{n} \cdots s_{2} s_{1}\right)\left(s_{3} s_{4} \cdots s_{n} s_{n+1}\right) \in W\left(D_{n+1}\right) \tag{1.1}
\end{equation*}
$$

Let $\mathcal{U}_{D}^{\geqslant 0}$ denote the quantized positive Borel algebra of type D_{n+1} and let $\mathcal{U}_{q}^{w_{n}}$ be the De Concini-Kac-Procesi subalgebra of $\mathcal{U}_{D}^{\geqslant 0}$ corresponding to w_{n}. In fact, $\mathcal{U}_{q}^{w_{n}}$ is isomorphic to $\mathcal{O}_{q}\left(o k^{2 n}\right)$, the algebra of even-dimensional quantum Euclidean space. We define an action λ of $\mathcal{U}_{D}^{\geqslant 0}$ on $\mathcal{U}_{q}^{w_{n}}$, which is a modification of the adjoint action of the Hopf algebra $\mathcal{U}_{D}^{\geqslant 0}$ on itself. This action equips $\mathcal{U}_{q}^{w_{n}}$ with the structure of a left $\mathcal{U}_{D}^{\geqslant 0}$-module algebra. We then consider the smash product $\mathcal{U}_{q}^{w_{n}} \# \mathcal{U}_{D}^{\geqslant 0}$ with respect to λ and set $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ to be the subalgebra of $\mathcal{U}_{q}^{w_{n}} \# \mathcal{U}_{D}^{\geqslant 0}$ generated by $\left\{u \# 1,1 \# u \mid u \in \mathcal{U}_{q}^{w_{n}}\right\}$. This is the first of the three type- D algebras.

In Section 4 we introduce a second type-D algebra; it is a De Concini-Kac-Procesi algebra of affine type. Let $W\left(\widehat{D}_{n+1}\right)$ denote the affine Weyl group of type \widehat{D}_{n+1} with generating set $\left\{s_{0}, s_{1}, \ldots, s_{n+1}\right\}$ and let

$$
\begin{equation*}
\widehat{w}_{n}=\left(s_{n+1} \cdots s_{1}\right)\left(s_{3} \cdots s_{n+1}\right) s_{0}\left(s_{n} \cdots s_{3}\right)\left(s_{1} \cdots s_{n}\right) s_{0} \in W\left(\widehat{D}_{n+1}\right) . \tag{1.2}
\end{equation*}
$$

The main result of this section is Theorem 4.4, where we prove that the algebras $\mathcal{U}_{q}^{\widehat{w}_{n}}$ and $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ are isomorphic. The results of this section assume additional hypotheses to be consistent with Beck [2,3]; in particular, we assume k is algebraically closed of characteristic zero and q is transcendental over \mathbb{Q}.

In Section 5 we introduce the algebra $\mathbb{X}_{n, q}$. We show that $\mathbb{X}_{n, q}$ is related to the bialgebra $\mathcal{A}\left(R_{D_{n}}\right)$ arising from the type- D_{n} FRT construction. In particular, we label the standard generators of $\mathcal{A}\left(R_{D_{n}}\right)$ by $Y_{i j}$, for $1 \leqslant i, j \leqslant 2 n$, and let $T_{2, n} \subseteq \mathcal{A}\left(R_{D_{n}}\right)$ be the subalgebra generated by $\left\{Y_{i j}: 1 \leqslant i \leqslant 2,1 \leqslant j \leqslant 2 n\right\}$ and observe that there is a surjective algebra homomorphism $\mathbb{X}_{n, q} \rightarrow T_{2, n}$ (see Proposition 5.1). We thus refer to $\mathbb{X}_{n, q}$ as a parent of $T_{2, n}$. Finally, in Theorem 5.2 we prove that $\mathbb{X}_{n, q}$ is isomorphic to a cocycle twist (in the sense of [1]) of $\mathcal{U}_{q}^{\widehat{w}_{n}}$. From this, it follows that $\mathbb{X}_{n, q}$ is an iterated Ore extension over k.

In Section 6 we proceed to demonstrate analogous results in the type A_{m} setting. We fix an integer $m>1$ and let $W\left(A_{m}\right)$ be the Weyl group of type A_{m} with generating set $\left\{s_{1}, \ldots, s_{m}\right\}$. Let

$$
\begin{equation*}
c_{m}=s_{1} \cdots s_{m} \in W\left(A_{m}\right) \tag{1.3}
\end{equation*}
$$

denote a Coxeter element. Notice that the De Concini-Kac-Procesi algebra $\mathcal{U}_{q}^{c_{m}}$ is isomorphic to $\mathcal{O}_{q}\left(k^{m}\right)$, the algebra known as quantum affine space. Quantum euclidean space, seen in Section 3, can be thought of as a type- D analogue of quantum affine space. Let $\mathcal{U}_{A}^{\geqslant 0}$ denote the quantized positive Borel algebra of type A_{m}. We define an action $\lambda_{A}: \mathcal{U}_{A}^{\geqslant 0} \otimes \mathcal{U}_{q}^{c_{m}} \rightarrow \mathcal{U}_{q}^{c_{m}}$ endowing $\mathcal{U}_{q}^{c_{m}}$ with the structure of a left $\mathcal{U}_{A}^{\geqslant 0}$-module algebra and define $\left(\mathcal{U}_{q}^{c_{m}}\right)^{\#}$ to be the subalgebra of $\mathcal{U}_{q}^{\mathcal{C}_{m}} \# \mathcal{U}_{A}^{\geqslant 0}$ generated by $\left\{1 \# u, u \# 1 \mid u \in \mathcal{U}_{q}^{c_{m}}\right\}$. Finally, we let $W\left(\widehat{A}_{m}\right)$ denote the affine Weyl group of type \widehat{A}_{m} with generating set $\left\{s_{0}, s_{1}, \ldots, s_{m}\right\}$ and let

$$
\begin{equation*}
\widehat{c}_{m}=\left(s_{1} \cdots s_{m}\right)\left(s_{0} s_{1} \cdots s_{m-1}\right) \in W\left(\widehat{A}_{m}\right) . \tag{1.4}
\end{equation*}
$$

In Theorem 6.4, we prove that the corresponding De Concini-Kac-Procesi algebra $\mathcal{U}_{q}^{\widehat{c}_{m}}$ is isomorphic to $\left(\mathcal{U}_{q}^{\mathcal{c}_{m}}\right)^{\#}$. We further demonstrate that $\mathcal{U}_{q}^{\widehat{c}_{m}}$ is isomorphic to a cocycle twist of $\mathcal{O}_{q}\left(M_{2, m}\right)$, the algebra of $2 \times m$ quantum matrices. We see $\mathbb{X}_{m, q}$ as a "type D" analogue of $\mathcal{O}_{q}\left(M_{2, m}\right)$ because $\mathcal{O}_{q}\left(M_{2, m}\right)$ is a subalgebra of the FRT-bialgebra $\mathcal{A}\left(R_{A_{m-1}}\right) \cong \mathcal{O}_{q}\left(M_{m}(k)\right)$. The key distinction is that $\mathcal{O}_{q}\left(M_{2, m}(k)\right)$ is a subalgebra of $\mathcal{A}\left(R_{A_{m-1}}\right)$, whereas $\mathbb{X}_{m, q}$ is a parent of the analogous subalgebra $T_{2, m} \subseteq \mathcal{A}\left(R_{D_{m}}\right)$.

2. Preliminaries

Let X be a root system of type A, B, C, D, E, F, G with positive simple roots $\alpha_{1}, \ldots, \alpha_{n}$. The root lattice is denoted by $Q=\mathbb{Z} \alpha_{1} \oplus \cdots \oplus \mathbb{Z} \alpha_{n}$. Let $c_{i j}$ denote the entries of the Cartan matrix $c_{i j}=2\left\langle\alpha_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{i}, \alpha_{i}\right\rangle$, and let d_{1}, \ldots, d_{n} be coprime positive integers so that the matrix ($d_{i} c_{i j}$) is symmetric. Let k be a field and suppose $q \in k^{\times}$is not a root of unity. For $1 \leqslant i \leqslant n$, put $q_{i}=q^{d_{i}}$ and define the quantized enveloping algebra \mathcal{U} as the associative k-algebra (or algebra, for brevity) generated by $u_{1}^{ \pm}, \ldots, u_{n}^{ \pm}$and $\left\{v_{\mu}: \mu \in Q\right\}$ and having the defining relations

$$
\begin{array}{ll}
v_{0}=1, \quad v_{\mu} v_{\rho}=v_{\mu+\rho} & (\mu, \rho \in Q), \\
v_{\mu} u_{i}^{ \pm}=q^{ \pm\left\langle\mu, \alpha_{i}\right\rangle} u_{i}^{ \pm} v_{\mu} & (\mu \in Q, i \in\{1, \ldots, n\}), \\
u_{i}^{+} u_{j}^{-}=u_{j}^{-} u_{i}^{+}+\delta_{i j} \frac{v_{\alpha_{i}}-v_{-\alpha_{i}}}{q_{i}-q_{i}^{-1}} & (i, j \in\{1, \ldots, n\}), \\
\sum_{r=0}^{1-c_{i j}}(-1)^{r}\left[\begin{array}{c}
1-c_{i j} \\
r
\end{array}\right]_{q_{i}}\left(u_{i}^{ \pm}\right)^{1-c_{i j}-r} u_{j}^{ \pm}\left(u_{i}^{ \pm}\right)^{r}=0 & (i \neq j) . \tag{2.4}
\end{array}
$$

Here,

$$
[\ell]_{q_{i}}=\frac{q_{i}^{\ell}-q_{i}^{-\ell}}{q_{i}-q_{i}^{-1}}, \quad[\ell]_{q_{i}}!=[1]_{q_{i}} \cdots[\ell]_{q_{i}}, \quad\left[\begin{array}{c}
\ell \tag{2.5}\\
m
\end{array}\right]_{q_{i}}=\frac{[\ell]_{q_{i}}!}{[m]_{q_{i}}![\ell-m]_{q_{i}}!} .
$$

The algebra \mathcal{U} is Q-graded with $\operatorname{deg}\left(u_{i}^{+}\right)=\alpha_{i}, \operatorname{deg}\left(u_{i}^{-}\right)=-\alpha_{i}$ and $\operatorname{deg}\left(K_{\mu}\right)=0$ for every $\mu \in Q$ and $1 \leqslant i \leqslant n$. Furthermore, \mathcal{U} has a Hopf algebra structure with comultiplication Δ, antipode S, and counit ϵ maps given by

$$
\begin{array}{lll}
\Delta\left(u_{i}^{+}\right)=v_{-\alpha_{i}} \otimes u_{i}^{+}+u_{i}^{+} \otimes 1, & \Delta\left(v_{\mu}\right)=v_{\mu} \otimes v_{\mu}, & \Delta\left(u_{i}^{-}\right)=1 \otimes u_{i}^{-}+u_{i}^{-} \otimes v_{\alpha_{i}}, \\
S\left(u_{i}^{+}\right)=-v_{\alpha_{i}} u_{i}^{+}, & S\left(v_{\mu}\right)=v_{-\mu}, & S\left(u_{i}^{-}\right)=-u_{i}^{-} v_{-\alpha_{i}}, \\
\epsilon\left(u_{i}^{+}\right)=0, & \epsilon\left(v_{\mu}\right)=1, & \epsilon\left(u_{i}^{-}\right)=0, \tag{2.8}
\end{array}
$$

for every $\mu \in Q$ and $1 \leqslant i \leqslant n$.
For every $i \in\{1, \ldots, n\}$, we let $s_{i}: Q \rightarrow Q$ be the simple reflection

$$
\begin{equation*}
s_{i}: \mu \rightarrow \mu-\frac{2\left\langle\mu, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \alpha_{i} \tag{2.9}
\end{equation*}
$$

and let $W=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ denote the Weyl group. The standard presentation for the braid group B is the generating set $\left\{T_{w}: w \in W\right\}$ subject to the relations $T_{w} T_{w^{\prime}}=T_{w w^{\prime}}$ for every $w, w^{\prime} \in W$ satisfying $\ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right)$, where ℓ is the length function on W. For each $i \in\{1, \ldots, n\}$, we set $T_{i}:=$ $T_{s_{i}}$. Thus, the braid group B is generated by T_{1}, \ldots, T_{n}. It is well known that B acts via algebra automorphisms on \mathcal{U} as follows:

$$
\begin{align*}
& T_{i} v_{\mu}=v_{s_{i}(\mu)}, \quad T_{i} u_{i}^{+}=-u_{i}^{-} v_{\alpha_{i}}, \quad T_{i} u_{i}^{-}=-v_{-\alpha_{i}} u_{i}^{+}, \tag{2.10}\\
& T_{i} u_{j}^{+}=\sum_{r=0}^{-c_{i j}} \frac{\left(-q_{i}\right)^{-r}}{\left.\left[-c_{i j}-r\right]_{q_{i}!}!r\right]_{q_{i}}!}\left(u_{i}^{+}\right)^{-c_{i j}-r} u_{j}^{+}\left(u_{i}^{+}\right)^{r} \quad(i \neq j), \tag{2.11}\\
& T_{i} u_{j}^{-}=\sum_{r=0}^{-c_{i j}} \frac{\left(-q_{i}\right)^{r}}{\left.\left[-c_{i j}-r\right]_{q_{i}!}!r\right]_{q_{i}}!}\left(u_{i}^{-}\right)^{r} u_{j}^{-}\left(u_{i}^{-}\right)^{-c_{i j}-r} \quad(i \neq j), \tag{2.12}
\end{align*}
$$

for all $i, j \in\{1, \ldots, n\}, \mu \in Q$. These automorphisms were first detailed by Lusztig (e.g. see [15]); our presentation agrees with [4, I.6.7].

Fix $w \in W$. For a reduced expression

$$
\begin{equation*}
w=s_{i_{1}} \cdots s_{i_{t}} \tag{2.13}
\end{equation*}
$$

define the roots

$$
\begin{equation*}
\beta_{1}=\alpha_{i_{1}}, \beta_{2}=s_{i_{1}} \alpha_{i_{2}}, \ldots, \beta_{t}=s_{i_{1}} \cdots s_{i_{t-1}} \alpha_{i_{t}} \tag{2.14}
\end{equation*}
$$

and the root vectors

$$
\begin{equation*}
X_{\beta_{1}}=u_{i_{1}}^{+}, X_{\beta_{2}}=T_{s_{i_{1}}} u_{i_{2}}^{+}, \ldots, X_{\beta_{t}}=T_{s_{i_{1}}} \cdots T_{s_{i_{t-1}}} u_{i_{t}}^{+} . \tag{2.15}
\end{equation*}
$$

Following [7], let \mathcal{U}_{q}^{w} denote the subalgebra of \mathcal{U} generated by the root vectors $X_{\beta_{1}}, \ldots, X_{\beta_{t}}$.
While the construction of the subalgebra is dependent upon a choice of reduced expression for w, De Concini, Kac, and Procesi proved the following:

Theorem 2.1. (See [7, Proposition 2.2].) Up to isomorphism, the algebra \mathcal{U}_{q}^{w} does not depend on the reduced expression for w. Furthermore, \mathcal{U}_{q}^{w} has the PBW basis

$$
X_{\beta_{1}}^{n_{1}} \cdots X_{\beta_{t}}^{n_{t}}, \quad n_{1}, \ldots, n_{t} \in \mathbb{Z}_{\geqslant 0}
$$

Beck later proved the analogous result for affine root systems (with k algebraically closed of characteristic zero and q transcendental over \mathbb{Q}) [3].

3. A smash product of type D_{n+1}

For this section, $q \in k^{\times}$is not a root of unity. We assume no other hypotheses on the base field k.
3.1. The algebras $\mathcal{U}_{q}\left(\mathfrak{s o}_{2 n+2}\right), \mathcal{U}_{q}^{w_{n}}$, and $\mathcal{O}_{q}\left(\mathrm{ok}^{2 n}\right)$

Fix an integer $n \geqslant 3$, and let $Q\left(D_{n+1}\right)$ denote the root lattice of type D_{n+1}. We denote the simple roots by $\alpha_{i}=e_{i}-e_{i-1}$ for $2 \leqslant i \leqslant n+1$ and $\alpha_{1}=e_{1}+e_{2}$. With this choice of simple roots, the root lattice is identified with the additive abelian subgroup of \mathbb{R}^{n+1} consisting of vectors having integer-valued coordinates $\left(a_{1}, \ldots, a_{n+1}\right)$ where the sum $\sum a_{i}$ is an even number. The inner product on $Q\left(D_{n+1}\right)$ will be identified with the restriction of the standard inner product on \mathbb{R}^{n+1} (i.e. $\left.\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}\right)$ to $Q\left(D_{n+1}\right)$. For a positive simple root α_{i}, let s_{i} denote the corresponding simple reflection and let $W\left(D_{n+1}\right)=\left\langle s_{1}, \ldots, s_{n+1}\right\rangle$ denote the Weyl group. The associated finite-type Cartan matrix $\left(c_{i j}\right)$ is symmetric. Hence, $d_{1}=\cdots=d_{n+1}=1$. Therefore, the parameters q_{1}, \ldots, q_{n+1} are all equal to q. As usual, we put $\hat{q}=q-q^{-1}$. Let $\mathcal{U}_{q}\left(\mathfrak{s o}_{2 n+2}\right)$ denote the corresponding quantized universal enveloping algebra. We label the generators of $\mathcal{U}_{q}\left(\mathfrak{s o}_{2 n+2}\right)$ by $E_{1}, \ldots, E_{n+1}, F_{1}, \ldots, F_{n+1}$ and $\left\{K_{\mu}: \mu \in Q\left(D_{n+1}\right)\right\}$ and the defining relations are

$$
\begin{array}{ll}
K_{0}=1, \quad K_{\mu} K_{\lambda}=K_{\mu+\lambda}, & \\
K_{\mu} E_{i}=q^{\left\langle\mu, \alpha_{i}\right\rangle} E_{i} K_{\mu}, \quad K_{\mu} F_{i}=q^{-\left\langle\mu, \alpha_{i}\right\rangle} F_{i} K_{\mu}, & \\
E_{i} E_{j}=E_{j} E_{i}, \quad F_{i} F_{j}=F_{j} F_{i} & \left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle=0 \text { or } 2\right), \\
E_{i}\left[E_{i}, E_{j}\right]=q\left[E_{i}, E_{j}\right] E_{i}, \quad F_{i}\left[F_{i}, F_{j}\right]=q\left[F_{i}, F_{j}\right] F_{i} & \left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle=-1\right), \\
E_{i} F_{j}=F_{j} E_{i}+\frac{\delta_{i j}}{\hat{q}}\left(K_{\alpha_{i}}-K_{-\alpha_{i}}\right), & \tag{3.5}
\end{array}
$$

for every $i, j \in\{1, \ldots, n+1\}$ and $\mu, \lambda \in Q\left(D_{n+1}\right)$. Here we use the q^{-1}-commutators, defined by

$$
[u, v]:=u v-q^{-1} v u
$$

for every $u, v \in \mathcal{U}_{q}\left(\mathfrak{s o}_{2 n+2}\right)$. Recall that $\mathcal{U}_{q}\left(\mathfrak{s o}_{2 n+2}\right)$ is $Q\left(D_{n+1}\right)$-graded with $\operatorname{deg}\left(E_{i}\right)=\alpha_{i}, \operatorname{deg}\left(F_{i}\right)=$ $-\alpha_{i}$, and $\operatorname{deg}\left(K_{\mu}\right)=0$ for every $\mu \in Q\left(D_{n+1}\right)$ and $1 \leqslant i \leqslant n+1$.

Let w_{0} denote the longest element of $W\left(D_{n+1}\right)$ and let w_{0}^{L} be the longest element of the parabolic subgroup $\left\langle s_{1}, \ldots, s_{n}\right\rangle \subseteq W\left(D_{n+1}\right)$. Put $w_{n}=w_{0}^{L} w_{0}$. We have a reduced expression

$$
\begin{equation*}
w_{n}=\left(s_{n+1} \cdots s_{2} s_{1}\right)\left(s_{3} \cdots s_{n} s_{n+1}\right) \in W\left(D_{n+1}\right) \tag{3.6}
\end{equation*}
$$

and root vectors

$$
\begin{equation*}
X_{e_{n+1}-e_{n}}, X_{e_{n+1}-e_{n-1}}, \ldots, X_{e_{n+1}-e_{1}}, X_{e_{n+1}+e_{1}} X_{e_{n+1}+e_{2}}, \ldots, X_{e_{n+1}+e_{n}} . \tag{3.7}
\end{equation*}
$$

For brevity, we put $x_{i}=X_{e_{n+1}-e_{i}}$ and $y_{i}=X_{e_{n+1}+e_{i}}$ for every $i \in\{1, \ldots, n\}$. Let $\mathcal{U}_{q}^{w_{n}}$ denote the corresponding De Concini-Kac-Procesi algebra.

The following is suggested by [11], Section 5.6.a.
Theorem 3.1. The algebra $\mathcal{U}_{q}^{w_{n}}$ is isomorphic to the even-dimensional quantum Euclidean space $\mathcal{O}_{q}\left(\mathrm{ok}{ }^{2 n}\right)$.

Proof. We observe that the root vectors $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ of $\mathcal{U}_{q}^{w_{n}}$ can be written inductively as $x_{n}=E_{n+1}, y_{1}=\left[x_{2}, E_{1}\right]$ and

$$
\begin{align*}
& x_{i}=\left[x_{i+1}, E_{i+1}\right] \tag{3.8}\\
& y_{i+1}=\left[y_{i}, E_{i+1}\right] \tag{3.9}
\end{align*}
$$

for all $1 \leqslant i<n$. Using these identities, one can readily check that the root vectors satisfy the defining relations of $\mathcal{O}_{q}\left(o k^{2 n}\right)$ (cf. [13, Section 9.3.2]),

$$
\begin{align*}
& x_{i} x_{j}=q^{-1} x_{j} x_{i}, \quad y_{i} y_{j}=q y_{j} y_{i} \quad(1 \leqslant i<j \leqslant n) \tag{3.10}\\
& x_{i} y_{j}=q^{1-\delta_{i j}} y_{j} x_{i}+\delta_{i j} \hat{q} \sum_{r=1}^{i-1}(-q)^{i-r-1} x_{r} y_{r} \quad(i, j \in\{1, \ldots, n\}) \tag{3.11}
\end{align*}
$$

Since $\mathcal{U}_{q}^{w_{n}}$ has a PBW basis of ordered monomials, Eqs. (3.10) and (3.11) are the defining relations. Hence, $\mathcal{U}_{q}^{w_{n}} \cong \mathcal{O}_{q}\left(\mathfrak{o k}^{2 n}\right)$.
3.2. $\mathcal{U}_{q}^{w_{n}}$ as a left $\mathcal{U}_{D}{ }^{\geqslant 0}$-module algebra

Let $\mathcal{U}_{D}^{\geqslant 0}$ be the sub-Hopf algebra of $\mathcal{U}_{q}\left(\mathfrak{s o}_{2 n+2}\right)$ generated by E_{1}, \ldots, E_{n+1}, and K_{μ} for all $\mu \in$ $Q\left(D_{n+1}\right)$. We let $\pi: \mathcal{U}_{D}^{\geqslant 0} \rightarrow \mathcal{U}_{D}^{\geqslant 0}$ be the unique algebra map such that

$$
\begin{align*}
& \pi\left(E_{n+1}\right)=0 \tag{3.12}\\
& \pi\left(E_{i}\right)=E_{i} \quad(i \leqslant n) \tag{3.13}\\
& \pi\left(K_{\mu}\right)=K_{\mu} \quad\left(\mu \in Q\left(D_{n+1}\right)\right) \tag{3.14}
\end{align*}
$$

We define a function $\lambda: \mathcal{U}_{D}^{\geqslant 0} \otimes \mathcal{U}_{q}^{w_{n}} \rightarrow \mathcal{U}_{D}^{\geqslant 0}$ by the following sequence of linear maps:

$$
\begin{equation*}
\lambda: \mathcal{U}_{D}^{\geqslant 0} \otimes \mathcal{U}_{q}^{w_{n}} \xrightarrow{\text { incl. }}\left(\mathcal{U}_{D}^{\geqslant 0}\right)^{\otimes 2} \xrightarrow{\pi \otimes i d}\left(\mathcal{U}_{D}^{\geqslant 0}\right)^{\otimes 2} \xrightarrow{\text { adjoint }} \mathcal{U}_{D}^{\geqslant 0} \tag{3.15}
\end{equation*}
$$

and have the following:
Theorem 3.2. For the function λ above, we have $\operatorname{Im}(\lambda) \subseteq \mathcal{U}_{q}^{w_{n}}$. In particular, λ endows $\mathcal{U}_{q}^{w_{n}}$ with the structure of a left $\mathcal{U}_{D} \geqslant 0$-module algebra.

Proof. For brevity, we set $u . v=\lambda(u \otimes v)$ for every $u \in \mathcal{U}_{D}^{\geqslant 0}$ and $v \in \mathcal{U}_{q}^{w_{n}}$. One can verify that

$$
\begin{align*}
& E_{j} \cdot x_{r}= \begin{cases}-q\left(\delta_{1 r} y_{2}+\delta_{2 r} y_{1}\right) & (j=1) \\
-q \delta_{j r} x_{r-1} & (j \neq 1)\end{cases} \tag{3.16}\\
& E_{j} \cdot y_{r}= \begin{cases}0 & (j=n+1) \\
-q \delta_{j, r+1} y_{r+1} & (j \neq n+1)\end{cases} \tag{3.17}
\end{align*}
$$

for all $r \in\{1, \ldots, n\}, j \in\{1, \ldots, n+1\}$. Since $\mathcal{U}_{D}^{\geqslant 0}$ is a left $\mathcal{U}_{D}^{\geqslant 0}$-module algebra (with respect to the adjoint action), Eqs. (3.16) and (3.17) above, together with the fact that the K_{μ} 's act diagonally on $\mathcal{U}_{q}^{w_{n}}$, prove the desired result.

We remark that Theorem 3.2 depends heavily on the fact that the set $\Delta_{+} \cap w_{n} \cdot \Delta_{-}$is an upper set of Δ_{+}: i.e. if $\mu \in \Delta_{+} \cap w_{n} . \Delta_{-}$and $\lambda \in \Delta_{+}$with $\lambda-\mu$ a nonnegative linear combination of the simple roots $\alpha_{1}, \ldots, \alpha_{n+1}$, then $\lambda \in \Delta_{+} \cap w_{n} . \Delta_{-}$as well.

Using the action map λ, we form the smash product algebra $\mathcal{U}_{q}^{w_{n}} \# \mathcal{U}_{D}^{\geqslant 0}$ and define the following subalgebra

$$
\begin{equation*}
\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}:=\left\langle 1 \# u, u \# 1 \mid u \in \mathcal{U}_{q}^{w_{n}}\right\rangle \subseteq \mathcal{U}_{q}^{w_{n}} \# \mathcal{U}_{D}^{\geqslant} \tag{3.18}
\end{equation*}
$$

Loosely speaking, we can think of $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ as being a smash product of $\mathcal{U}_{q}^{w_{n}}$ with itself. Observe for example that $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ is isomorphic as a vector space to $\mathcal{U}_{q}^{w_{n}} \otimes \mathcal{U}_{q}^{w_{n}}$.

3.3. A presentation of $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$

We will spend the rest of this section giving an explicit presentation for the algebra $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ because this will be necessary for proving the main result of Section 4 (Theorem 4.4).

The algebra $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ is generated by $1 \# x_{i}, 1 \# y_{i}, x_{i} \# 1, y_{i} \# 1$ for $i \in\{1, \ldots, n\}$. To compute the relations among these generators, we need comultiplication formulas for the root vectors x_{1}, \ldots, x_{n}, $y_{1}, \ldots, y_{n} \in \mathcal{U}_{q}^{w_{n}}$. First, we must introduce the elements $\epsilon_{i j}, E_{r \downarrow s}, E_{s \uparrow r} \in \mathcal{U}_{D}{ }^{\geqslant 0}$ for every $i, j \in\{1, \ldots, n\}$ and $r, s \in\{1, \ldots, n+1\}$ with $r \geqslant s$. They are defined recursively via

$$
\begin{align*}
E_{r \downarrow s} & = \begin{cases}E_{r} & (r=s), \\
{\left[E_{r \downarrow s+1}, E_{s}\right]} & (r \neq s),\end{cases} \tag{3.19}\\
E_{s \uparrow r} & = \begin{cases}E_{S} & (r=s), \\
{\left[E_{s \uparrow r-1}, E_{r}\right]} & (r \neq s),\end{cases} \tag{3.20}\\
\epsilon_{1 j} & = \begin{cases}0 & (j=1), \\
T_{j} T_{j-1} \cdots T_{2} E_{1} & (j \neq 1),\end{cases} \tag{3.21}\\
\epsilon_{i+1, j} & = \begin{cases}{\left[\epsilon_{i j}, E_{i+1}\right]} & (j \neq i, i+1), \\
q \epsilon_{i, i+1} E_{i+1}-q^{-1} E_{i+1} \epsilon_{i, i+1} & (j=i+1), \\
\epsilon_{i, i+1}+q^{-1}\left(\epsilon_{i i} E_{i+1}-E_{i+1} \epsilon_{i i}\right) & (j=i) .\end{cases} \tag{3.22}
\end{align*}
$$

We have the following:

Lemma 3.3. For every $i \in\{1, \ldots, n\}$,

$$
\begin{align*}
\Delta\left(x_{i}\right)= & K_{-\operatorname{deg}\left(x_{i}\right)} \otimes x_{i}+x_{i} \otimes 1+\hat{q} \sum_{j=i+1}^{n} E_{j \downarrow i+1} K_{-\operatorname{deg}\left(x_{j}\right)} \otimes x_{j}, \tag{3.23}\\
\Delta\left(y_{i}\right)= & K_{-\operatorname{deg}\left(y_{i}\right)} \otimes y_{i}+y_{i} \otimes 1 \\
& +\hat{q}\left(\sum_{j=1}^{n} \epsilon_{i j} K_{-\operatorname{deg}\left(x_{j}\right)} \otimes x_{j}+\sum_{j=1}^{i-1} E_{j+1 \uparrow i} K_{-\operatorname{deg}\left(y_{j}\right)} \otimes y_{j}\right) . \tag{3.24}
\end{align*}
$$

Proof. Use the induction formulas from Eqs. (3.8) and (3.9) together with the comultiplication formula given in Eq. (2.6).

From Eqs. (3.16) and (3.17) it follows that for all $r \in\{1, \ldots, n\}$, we have

$$
\begin{align*}
& E_{j \downarrow i+1} \cdot x_{r}=-q \delta_{j r} x_{i}, \quad E_{j \downarrow i+1} \cdot y_{r}=(-q)^{j-i} \delta_{i r} y_{j} \quad(1 \leqslant i<j \leqslant n), \tag{3.25}\\
& E_{j+1 \uparrow i} . x_{r}=(-q)^{i-j} \delta_{i r} x_{j}, \quad E_{j+1 \uparrow i} . y_{r}=-q \delta_{j r} y_{i} \quad(1 \leqslant j<i \leqslant n), \tag{3.26}\\
& \epsilon_{i j} \cdot x_{r}=(-q)^{i+j-2} q^{\delta_{i j}} \delta_{i r} y_{j}-q \delta_{j r} y_{i}, \quad \epsilon_{i j} \cdot y_{r}=0 \quad(1 \leqslant i, j \leqslant n) . \tag{3.27}
\end{align*}
$$

Using the identities (3.25)-(3.27) together with the comultiplication formulas, (3.23)-(3.24), we compute the following "cross-relations" in $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$.

Proposition 3.4. For every $i, j \in\{1, \ldots, n\}$,

$$
\begin{align*}
\left(1 \# x_{i}\right)\left(x_{j} \# 1\right)= & \begin{cases}q^{-1} x_{j} \# x_{i}-q^{-1} \hat{q} x_{i} \# x_{j}, & i<j, \\
q^{-2} x_{j} \# x_{i}, & i=j, \\
q^{-1} x_{j} \# x_{i}, & i>j,\end{cases} \tag{3.28}\\
\left(1 \# y_{i}\right)\left(y_{j} \# 1\right)= & \begin{cases}q^{-1} y_{j} \# y_{i}-q^{-1} \hat{q} y_{i} \# y_{j}, & i>j, \\
q^{-2} y_{j} \# y_{i}, & i=j, \\
q^{-1} y_{j} \# y_{i}, & i<j,\end{cases} \tag{3.29}\\
\left(1 \# y_{i}\right)\left(x_{j} \# 1\right)= & q^{-1+\delta_{i j} x_{j} \# y_{i}-\hat{q} q^{-1} y_{i} \# x_{j}} \\
& +\hat{q} q^{-1} \delta_{i j}\left(\sum_{m=1}^{n}(-q)^{i+m-2} y_{m} \# x_{m}+\sum_{m=1}^{i-1}(-q)^{i-m} x_{m} \# y_{m}\right), \tag{3.30}\\
\left(1 \# x_{i}\right)\left(y_{j} \# 1\right)= & q^{-1+\delta_{i j} y_{j} \# x_{i}+\hat{q} q^{-1} \delta_{i j} \sum_{m=i+1}^{n}(-q)^{m-i} y_{m} \# x_{m} .} \tag{3.31}
\end{align*}
$$

We have the following presentation for $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$:
Theorem 3.5. The algebra $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ is generated by $1 \# x_{i}, x_{i} \# 1,1 \# y_{i}, y_{i} \# 1$ for $1 \leqslant i \leqslant n$, and its defining relations are Eqs. (3.28)-(3.31) together with the relations

$$
\begin{array}{ll}
\left(1 \# x_{i}\right)\left(1 \# x_{j}\right)=q^{-1}\left(1 \# x_{j}\right)\left(1 \# x_{i}\right) & (1 \leqslant i<j \leqslant n), \\
\left(1 \# y_{i}\right)\left(1 \# y_{j}\right)=q\left(1 \# y_{j}\right)\left(1 \# y_{i}\right) & (1 \leqslant i<j \leqslant n), \\
\left(1 \# x_{i}\right)\left(1 \# y_{j}\right)=q^{1-\delta_{i j}\left(1 \# y_{j}\right)\left(1 \# x_{i}\right)+\delta_{i j} \hat{q} \sum_{r=1}^{i-1}(-q)^{i-r-1}\left(1 \# x_{r}\right)\left(1 \# y_{r}\right)} \begin{array}{ll}
& (i, j \in\{1, \ldots, n\}), \\
\left(x_{i} \# 1\right)\left(x_{j} \# 1\right)=q^{-1}\left(x_{j} \# 1\right)\left(x_{i} \# 1\right) & (1 \leqslant i<j \leqslant n), \\
\left(y_{i} \# 1\right)\left(y_{j} \# 1\right)=q\left(y_{j} \# 1\right)\left(y_{i} \# 1\right) & (1 \leqslant i<j \leqslant n), \\
\left(x_{i} \# 1\right)\left(y_{j} \# 1\right)=q^{1-\delta_{i j}\left(y_{j} \# 1\right)\left(x_{i} \# 1\right)+\delta_{i j} \hat{q} \sum_{r=1}^{i-1}(-q)^{i-r-1}\left(x_{r} \# 1\right)\left(y_{r} \# 1\right)} & (i, j \in\{1, \ldots, n\}) .
\end{array}, l
\end{array}
$$

Proof. The generators $1 \# x_{1}, \ldots, 1 \# x_{n}, 1 \# y_{1}, \ldots, 1 \# y_{n}$ generate a subalgebra isomorphic to $\mathcal{U}_{q}^{w_{n}}$, as do the generators $x_{1} \# 1, \ldots, x_{n} \# 1, y_{1} \# 1, \ldots, y_{n} \# 1$, giving us the relations (3.32)-(3.37). The universal property of smash products (for example, see [12, Section 1.8]) and the PBW basis of De Concini-KacProcesi algebras imply that the cross relations of (3.28)-(3.31) together with the above relations are a presentation of $\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$.

4. The quantum affine algebra $\mathcal{U}_{q}^{\widehat{w}_{n}}$

For this section, we assume the base field k is algebraically closed of characteristic zero, and $q \in k$ is transcendental over \mathbb{Q}. These hypotheses are chosen to be consistent with Beck [3].

Let $Q\left(\widehat{D}_{n+1}\right)=Q\left(D_{n+1}\right) \oplus \mathbb{Z}$ denote the root lattice of type \widehat{D}_{n+1}. As an abelian group, $Q\left(\widehat{D}_{n+1}\right)$ is generated additively by the positive simple roots $\alpha_{0}:=-e_{n+1}-e_{n}+1, \alpha_{1}:=e_{1}+e_{2}$, and $\alpha_{i}:=e_{i}-e_{i-1}$ for $2 \leqslant i \leqslant n+1$. We extend the bilinear form 〈, \rangle on $Q\left(D_{n+1}\right)$ to $Q\left(\widehat{D}_{n+1}\right)$ by setting $1 \in Q\left(\widehat{D}_{n+1}\right)$ to be isotropic. As before, let s_{i} denote the corresponding simple reflection $s_{i}: Q\left(\widehat{D}_{n+1}\right) \rightarrow Q\left(\widehat{D}_{n+1}\right)$, for $0 \leqslant i \leqslant n+1$, and $W\left(\widehat{D}_{n+1}\right)=\left\langle s_{0}, \ldots, s_{n+1}\right\rangle$ is the Weyl group. The corresponding quantized enveloping algebra $\mathcal{U}_{q}\left(\widehat{\mathfrak{s o}}_{2 n+2}\right)$ is generated by $E_{0}, \ldots, E_{n+1}, F_{0}, \ldots, F_{n+1}$ and $\left\{K_{\mu}: \mu \in Q\left(\widehat{D}_{n+1}\right)\right\}$ and has defining relations

$$
\begin{align*}
& K_{0}=1, \quad K_{\mu} K_{\lambda}=K_{\mu+\lambda}, \tag{4.1}\\
& K_{\mu} E_{i}=q^{\left\langle\mu, \alpha_{i}\right\rangle} E_{i} K_{\mu}, \quad K_{\mu} F_{i}=q^{-\left\langle\mu, \alpha_{i}\right\rangle} F_{i} K_{\mu}, \tag{4.2}\\
& E_{i} E_{j}=E_{j} E_{i}, \quad F_{i} F_{j}=F_{j} F_{i} \quad\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle=0 \text { or } 2\right), \tag{4.3}\\
& E_{i}\left[E_{i}, E_{j}\right]=q\left[E_{i}, E_{j}\right] E_{i}, \quad F_{i}\left[F_{i}, F_{j}\right]=q\left[F_{i}, F_{j}\right] F_{i} \quad\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle=-1\right), \tag{4.4}\\
& E_{i} F_{j}=F_{j} E_{i}+\frac{\delta_{i j}}{\hat{q}}\left(K_{\alpha_{i}}-K_{-\alpha_{i}}\right), \tag{4.5}
\end{align*}
$$

for every $i, j \in\{0, \ldots, n+1\}$ and $\mu, \lambda \in Q\left(\widehat{D}_{n+1}\right)$ (cf. Eqs. (3.1)-(3.5)).
Let $\widehat{w}_{n} \in W\left(\widehat{D}_{n+1}\right)$ be the Weyl group element given by

$$
\begin{equation*}
\widehat{w}_{n}: v+r \mapsto v+r+2 a_{n+1} \tag{4.6}
\end{equation*}
$$

for every $v=\sum_{i=1}^{n+1} a_{i} e_{i} \in Q\left(D_{n+1}\right)$ and $r \in \mathbb{Z}$. We have the reduced expression

$$
\begin{equation*}
\widehat{w}_{n}:=\left(s_{n+1} \cdots s_{1}\right)\left(s_{3} \cdots s_{n+1}\right) s_{0}\left(s_{n} \cdots s_{3}\right)\left(s_{1} \cdots s_{n}\right) s_{0} \in W\left(\widehat{D}_{n+1}\right) . \tag{4.7}
\end{equation*}
$$

We let $\widehat{B}_{\mathfrak{S o}_{2 n+2}}=\left\langle T_{0}, \ldots, T_{n+1}\right\rangle$ denote the corresponding braid group of $\widehat{\mathfrak{s o}}_{2 n+2}$ and label the corresponding ordered root vectors for $\mathcal{U}_{q}^{\widehat{w}_{n}}$ by

$$
\begin{equation*}
X_{n}, \ldots, X_{1}, Y_{1}, \ldots, Y_{n}, \bar{X}_{n}, \ldots, \bar{X}_{1}, \bar{Y}_{1}, \ldots, \bar{Y}_{n} . \tag{4.8}
\end{equation*}
$$

One can readily verify the following lemmas.
Lemma 4.1. We have the following recursion formulas in the algebra $\mathcal{U}_{q}^{\widehat{w}_{n}}$:

$$
\begin{array}{lll}
X_{n}=E_{n+1}, & X_{i}=\left[X_{i+1}, E_{i+1}\right] & (i \neq n), \\
Y_{1}=\left[X_{2}, E_{1}\right], & Y_{i}=\left[Y_{i-1}, E_{i}\right] & (i \neq 1), \\
\bar{X}_{n}=\left[Y_{n-1}, T_{n+1} T_{n} E_{0}\right], & \bar{X}_{i}=\left[\bar{X}_{i+1}, E_{i+1}\right] & (i \neq n), \tag{4.11}
\end{array}
$$

$$
\begin{array}{lll}
\bar{Y}_{1}=\left[\bar{X}_{2}, E_{1}\right], & \bar{Y}_{i}=\left[\bar{Y}_{i-1}, E_{i}\right] & (i \neq 1), \\
Y_{2}=\left[X_{1}, E_{1}\right], & \bar{Y}_{2}=\left[\bar{X}_{1}, E_{1}\right] . & \tag{4.13}
\end{array}
$$

Lemma 4.2. For all $i, j \in\{1, \ldots, n\}$, we have the following:

$$
\begin{align*}
& T_{i} \cdot X_{j}= \begin{cases}{\left[E_{i}, X_{j}\right]} & (i=j \text { or }(i, j)=(1,2)), \\
X_{j+1} & (i=j+1), \\
X_{j}, & \text { otherwise, }\end{cases} \tag{4.14}\\
& T_{i} \cdot Y_{j}= \begin{cases}Y_{j-1} & (i=j \text { and } i \neq 1), \\
X_{3-j} & (i=1, j \in\{1,2\}), \\
{\left[E_{j+1}, Y_{j}\right]} & (i=j+1), \\
Y_{j}, & \text { otherwise, }\end{cases} \tag{4.15}\\
& T_{i} \cdot \bar{X}_{j}= \begin{cases}{\left[E_{i}, \bar{X}_{j}\right]} & (i=j \text { or }(i, j)=(1,2)), \\
\bar{X}_{j+1} & (i=j+1), \\
\bar{X}_{j}, & \text { otherwise, }\end{cases} \tag{4.16}\\
& T_{i} \cdot \bar{Y}_{j}= \begin{cases}\bar{Y}_{j-1} & (i=j \text { and } i \neq 1), \\
\bar{X}_{3-j} & (i=1, j \in\{1,2\}), \\
{\left[E_{j+1}, \bar{Y}_{j}\right]} & (i=j+1), \\
\bar{Y}_{j}, & \text { otherwise. }\end{cases} \tag{4.17}
\end{align*}
$$

With the help of Lemmas 4.1 and 4.2, we prove the following.
Proposition 4.3. The defining relations for the algebra $\mathcal{U}_{q}^{\widehat{w}_{n}}$ are

$$
\begin{align*}
& X_{i} X_{j}=q^{-1} X_{j} X_{i}, \quad Y_{j} Y_{i}=q^{-1} Y_{i} Y_{j} \quad(i<j), \tag{4.18}\\
& \bar{X}_{i} \bar{X}_{j}=q^{-1} \bar{X}_{j} \bar{X}_{i}, \quad \bar{Y}_{j} \bar{Y}_{i}=q^{-1} \bar{Y}_{i} \bar{Y}_{j} \quad(i<j), \tag{4.19}\\
& Y_{j} X_{i}=q^{\delta_{i j}-1} X_{i} Y_{j}-\delta_{i j} \hat{q} \sum_{r=1}^{i-1}(-q)^{i-r-1} X_{r} Y_{r}, \tag{4.20}\\
& \bar{Y}_{j} \bar{X}_{i}=q^{\delta_{i j}-1} \bar{X}_{i} \bar{Y}_{j}-\delta_{i j} \hat{q} \sum_{r=1}^{i-1}(-q)^{i-r-1} \bar{X}_{r} \bar{Y}_{r}, \tag{4.21}\\
& \bar{X}_{i} X_{i}=q^{-2} X_{i} \bar{X}_{i}, \quad \bar{Y}_{i} Y_{i}=q^{-2} Y_{i} \bar{Y}_{i}, \tag{4.22}\\
& \bar{X}_{j} X_{i}=q^{-1} X_{i} \bar{X}_{j}, \quad \bar{Y}_{i} Y_{j}=q^{-1} Y_{j} \bar{Y}_{i} \quad(i<j), \tag{4.23}\\
& \bar{X}_{i} X_{j}=q^{-1} X_{j} \bar{X}_{i}-q^{-1} \hat{q} X_{i} \bar{X}_{j}, \quad \bar{Y}_{j} Y_{i}=q^{-1} Y_{i} \bar{Y}_{j}-q^{-1} \hat{q} Y_{j} \bar{Y}_{i} \quad(i<j), \tag{4.24}\\
& \bar{X}_{i} Y_{j}=q^{-1+\delta_{i j}} Y_{j} \bar{X}_{i}+\hat{q} q^{-1} \delta_{i j} \sum_{m=i+1}^{n}(-q)^{m-i} Y_{m} \bar{X}_{m}, \tag{4.25}
\end{align*}
$$

$$
\begin{equation*}
\bar{Y}_{i} X_{j}=q^{-1+\delta_{i j}} X_{j} \bar{Y}_{i}-\hat{q} q^{-1} Y_{i} \bar{X}_{j}+\hat{q} q^{-1} \delta_{i j}\left[\sum_{m=1}^{n}(-q)^{i+m-2} Y_{m} \bar{X}_{m}+\sum_{m=1}^{i-1}(-q)^{i-m} X_{m} \bar{Y}_{m}\right], \tag{4.26}
\end{equation*}
$$

for $i, j \in\{1, \ldots, n\}$.
Proof. The first $2 n$ letters in the reduced expression for \widehat{w}_{n} coincide with w_{n}, as do the last $2 n$ letters. This gives us the relations (4.18)-(4.21). Using Lemmas 4.1 and 4.2 , one can prove inductively that the remaining relations hold. To illustrate how to obtain the identities in Eq. (4.22) for example, one can first verify the base cases, $\bar{X}_{1} X_{1}=q^{-2} X_{1} \bar{X}_{1}$ and $\bar{Y}_{n} Y_{n}=q^{-2} Y_{n} \bar{Y}_{n}$, and then apply appropriate braid group automorphisms (refer to Lemma 4.2) to both sides of the equations. Since $\mathcal{U}_{q}^{\widehat{w}_{n}}$ has a PBW basis of ordered monomials, Eqs. (4.18)-(4.26) are the defining relations.

By comparing Eqs. (3.28)-(3.37) with Eqs. (4.18)-(4.26), we observe the following theorem.
Theorem 4.4. As k-algebras, $\mathcal{U}_{q}^{\widehat{w}_{n}} \cong\left(\mathcal{U}_{q}^{w_{n}}\right)^{\#}$ via the isomorphism

$$
\begin{array}{ll}
X_{i} \mapsto\left(x_{i} \# 1\right), & Y_{i} \mapsto\left(y_{i} \# 1\right), \\
\bar{X}_{i} \mapsto\left(1 \# x_{i}\right), & \bar{Y}_{i} \mapsto\left(1 \# y_{i}\right),
\end{array} \quad \text { for } i=1, \ldots, n .
$$

5. The FRT-construction and the algebra $\mathbb{X}_{n, q}$

We will briefly review the Faddeev-Reshetikhin-Takhtajan (FRT) construction of [8] (see [6, Section 7.2] for more details). We let V be a k-module with basis $\left\{v_{1}, \ldots, v_{N}\right\}$. For a linear map $R \in \operatorname{End}_{k}(V \otimes V)$, we write

$$
\begin{equation*}
R\left(v_{i} \otimes v_{j}\right)=\sum_{s, t} R_{i j}^{s t} v_{s} \otimes v_{t} \quad \text { for all } 1 \leqslant i, j<N, \tag{5.1}
\end{equation*}
$$

with all $R_{i j}^{s t} \in k$. The $F R T$ algebra $\mathcal{A}(R)$ associated to R is the k-algebra presented by generators $X_{i j}$ for $1 \leqslant i, j \leqslant N$ and has the defining relations

$$
\begin{equation*}
\sum_{s, t} R_{s t}^{j i} X_{s l} X_{t m}=\sum_{s, t} R_{l m}^{t s} X_{i s} X_{j t} \tag{5.2}
\end{equation*}
$$

for every $i, j, l, m \in\{1, \ldots, N\}$. Up to algebra isomorphism, $\mathcal{A}(R)$ is independent of the chosen basis of V.

Let us specialize now to the case when $N=2 n$. Following [13, Section 8.4.2], for each $i, j \in$ $\{1, \ldots, 2 n\}$, let $E_{i j}$ denote the linear map on V defined by $E_{i j} \cdot v_{\ell}=\delta_{j \ell} v_{i}$. Let $i^{\prime}:=2 n+1-i$, and let

$$
\begin{align*}
R_{D_{n}}= & q \sum_{i: i \neq i^{\prime}}\left(E_{i i} \otimes E_{i i}\right)+\sum_{i, j: i \neq j, j^{\prime}}\left(E_{i i} \otimes E_{j j}\right)+q^{-1} \sum_{i: i \neq i^{\prime}}\left(E_{i^{\prime} i^{\prime}} \otimes E_{i i}\right) \\
& +\hat{q}\left(\sum_{i, j: i>j}\left(E_{i j} \otimes E_{j i}\right)-\sum_{i, j: i>j} q^{\rho_{i}-\rho_{j}}\left(E_{i j} \otimes E_{i^{\prime} j^{\prime}}\right)\right), \tag{5.3}
\end{align*}
$$

where ($\rho_{1}, \rho_{2}, \ldots, \rho_{2 n}$) is the $2 n$-tuple ($n-1, n-2, \ldots, 1,0,0,-1, \ldots,-n+1$).

We define an algebra $\mathbb{X}_{n, q}$ presented by generators $X_{i j}$ with $i \in\{1,2\}, j \in\{1, \ldots, 2 n\}$, and having the defining relations

$$
\begin{align*}
& X_{r t} X_{r s}=q^{-1} X_{r s} X_{r t} \quad\left(r \in\{1,2\}, s<t, t \neq s^{\prime}\right), \tag{5.4}\\
& X_{r s^{\prime}} X_{r s}=X_{r s} X_{r s^{\prime}}+\hat{q} \sum_{l=s+1}^{n} q^{l-s-1} X_{r l} X_{r l^{\prime}} \quad\left(r \in\{1,2\}, s<s^{\prime}\right), \tag{5.5}\\
& X_{2 s} X_{1 s}=q^{-1} X_{1 s} X_{2 s}, \tag{5.6}\\
& X_{2 s} X_{1 t}=X_{1 t} X_{2 s} \quad\left(s<t, t \neq s^{\prime}\right), \tag{5.7}\\
& X_{2 t} X_{1 s}=X_{1 s} X_{2 t}-\hat{q} X_{1 t} X_{2 s} \quad\left(s<t, t \neq s^{\prime}\right), \tag{5.8}\\
& X_{2 s} X_{1 s^{\prime}}=q X_{1 s^{\prime}} X_{2 s}+\hat{q} \sum_{l=1}^{s-1} q^{s-l} X_{1 l^{\prime}} X_{2 l} \quad\left(s<s^{\prime}\right), \tag{5.9}\\
& X_{2 s^{\prime}} X_{1 s}=q X_{1 s} X_{2 s^{\prime}}+\hat{q} \sum_{l=s+1}^{n} q^{l-s} X_{1 l} X_{2 l^{\prime}},+\hat{q} q^{-1} \sum_{l=1}^{n} q^{l^{\prime}-s} X_{1 l^{\prime}} X_{2 l}-\hat{q} X_{1 s^{\prime}} X_{2 s} \quad\left(s<s^{\prime}\right) . \tag{5.10}
\end{align*}
$$

We label the canonical generators of $\mathcal{A}\left(R_{D_{n}}\right)$ by $Y_{i j}$ for $i, j=1, \ldots, 2 n$, and let $T_{2, n}$ be the subalgebra of $\mathcal{A}\left(R_{D_{n}}\right)$ generated by $\left\{Y_{i j}: 1 \leqslant i \leqslant 2,1 \leqslant j \leqslant 2 n\right\}$.

Proposition 5.1. There is a surjective algebra homomorphism $\mathbb{X}_{n, q} \rightarrow T_{2, n}$ with kernel $\left\langle\Omega_{1}, \Omega_{2}, \Upsilon\right\rangle$, where

$$
\begin{equation*}
\Omega_{1}:=\sum_{r=1}^{n} q^{\rho_{r^{\prime}}} X_{1, r} X_{1, r^{\prime}}, \quad \Omega_{2}:=\sum_{r=1}^{n} q^{\rho_{r^{\prime}}} X_{2, r} X_{2, r^{\prime}}, \quad \Upsilon:=\sum_{r=1}^{2 n} q^{\rho_{r}} X_{1, r^{\prime}} X_{2, r} . \tag{5.11}
\end{equation*}
$$

Proof. Using the FRT construction (see Eqs. (5.2) and (5.3)), one can readily compute the defining relations for the algebra $\mathcal{A}\left(R_{D_{n}}\right)$ and see that they line up appropriately with Eqs. (5.4)-(5.10) together with $\Omega_{1}=\Omega_{2}=\Upsilon=0$.

Notice that the definition of $\mathbb{X}_{n, q}$ makes sense when $n=2$, and Proposition 5.1 holds in this case as well. However, the rest of the results of this paper require $n \geqslant 3$.

Following [1], we recall the details on twisting algebras by cocycles. Let M be an additive abelian group and $c: M \times M \rightarrow k^{\times}$a 2 -cocycle of M. If Λ is a k-algebra graded by M, we can twist Λ by c to obtain a new M-graded k-algebra Λ^{\prime} that is canonically isomorphic to Λ as a k-module via $x \leftrightarrow x^{\prime}$. Multiplication of homogeneous elements in Λ^{\prime} is given by

$$
x^{\prime} y^{\prime}=c(\operatorname{deg}(x), \operatorname{deg}(y))(x y)^{\prime}
$$

For our purposes, we will let $\beta: Q\left(\widehat{D}_{n+1}\right) \times Q\left(\widehat{D}_{n+1}\right) \rightarrow k^{\times}$be the bicharacter (hence, also a 2 cocycle) defined by

$$
\beta\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}q, & (i, j)=(0, n+1), \tag{5.12}\\ 1, & (i, j) \neq(0, n+1),\end{cases}
$$

and have the following:
Theorem 5.2. Suppose k is algebraically closed of characteristic zero, and $q \in k$ is transcendental over \mathbb{Q}. The β-twisted algebra $\left(\mathcal{U}_{q}^{\widehat{W}_{n}}\right)^{\prime}$ is isomorphic to $\mathbb{X}_{n, q}$.

Proof. We label the corresponding generators of $\left(\mathcal{U}_{q}^{\widehat{w}_{n}}\right)^{\prime}$ by

$$
\begin{equation*}
X_{n}^{\prime}, \ldots, X_{1}^{\prime}, Y_{1}^{\prime}, \ldots, X_{n}^{\prime}, \bar{X}_{n}^{\prime}, \ldots, \bar{X}_{1}^{\prime}, \bar{Y}_{1}^{\prime}, \ldots, \bar{Y}_{n}^{\prime} \tag{5.13}
\end{equation*}
$$

By comparing Eqs. (4.18)-(4.26) and (5.4)-(5.10), we observe that the algebra map $\left(\mathcal{U}_{q}^{\widehat{w}_{n}}\right)^{\prime} \rightarrow \mathbb{X}_{n, q}$ defined by

$$
\begin{array}{ll}
X_{i}^{\prime} \mapsto(-1)^{n+1-i} X_{1, n+1-i}, & \bar{X}_{i}^{\prime} \mapsto(-1)^{n+1-i} X_{2, n+1-i}, \\
Y_{i}^{\prime} \mapsto X_{1, n+i}, & \bar{Y}_{i}^{\prime} \mapsto X_{2, n+i}, \tag{5.15}
\end{array}
$$

for every $i \in\{1, \ldots, n\}$, is an isomorphism.
From this, we deduce the following:
Theorem 5.3. Using the same hypothesis as Theorem 5.2, the algebra $\mathbb{X}_{n, q}$ is an iterated Ore extension over k,

$$
\mathbb{X}_{n, q}=k\left[X_{11}\right]\left[X_{12} ; \tau_{12}, \delta_{12}\right] \cdots\left[X_{2,2 n} ; \tau_{2,2 n}, \delta_{2,2 n}\right] .
$$

Proof. It suffices to check that ordered monomials are linearly independent. From Theorem 5.2, we have a canonical vector space isomorphism $\mathcal{U}_{q}^{\widehat{W}_{n}} \rightarrow \mathbb{X}_{n, q}$ that preserves the ordered generating sets. Since $\mathcal{U}_{q}^{\widehat{w}_{n}}$ has a basis of ordered monomials, $\mathbb{X}_{n, q}$ does as well.

A straightforward computation gives $\delta_{i j} \tau_{i j}=q^{2} \tau_{i j} \delta_{i j}$ all for $i \in\{1,2\}, j \in\{1, \ldots, 2 n\}$. Hence, $\mathbb{X}_{n, q}$ is an iterated q^{2}-skew polynomial algebra over k.

6. A type $\boldsymbol{A}_{\boldsymbol{m}}$ analogue

For this section, we assume $q \in k^{\times}$is not a root of unity.
6.1. The algebras $\mathcal{U}_{q}\left(\mathfrak{s l}_{m+1}\right), \mathcal{U}_{q}^{{c_{m}}^{m}}$, and $\mathcal{O}_{q}\left(k^{m}\right)$

Fix an integer $m>1$, and let $Q\left(A_{m}\right)$ denote the root lattice of type A_{m}. The positive simple roots are given by $\alpha_{i}:=e_{i}-e_{i+1}$ for $i \in\{1, \ldots, m\}$. With this choice, we identify $Q\left(A_{m}\right)$ with the abelian subgroup of \mathbb{R}^{m+1} consisting of integral $(m+1)$-tuples $\left(a_{1}, \ldots, a_{m+1}\right)$ with the sum $\sum a_{i}$ equaling 0 . Let $W\left(A_{m}\right)$ and $B_{\mathfrak{s} l_{m+1}}$ denote the corresponding Weyl group and braid group, respectively. Let $\mathcal{U}_{q}\left(\mathfrak{s l}_{m+1}\right)$ denote the corresponding quantum enveloping algebra, and let $\mathcal{U}_{A}^{\geqslant 0}$ be the positive Borel subalgebra of $\mathcal{U}_{q}\left(\mathfrak{s l}_{m+1}\right)$. We consider the Coxeter element

$$
\begin{equation*}
c_{m}=s_{1} \cdots s_{m} \in W\left(A_{m}\right) \tag{6.1}
\end{equation*}
$$

and the associated De Concini-Kac-Procesi algebra $\mathcal{U}_{q}^{\mathcal{c}_{m}}$. We label the root vectors in $\mathcal{U}_{q}^{\mathcal{c}_{m}}$ by

$$
\begin{equation*}
z_{1}:=X_{e_{1}-e_{2}}, \quad z_{2}:=X_{e_{1}-e_{3}}, \ldots, z_{m}:=X_{e_{1}-e_{m+1}} \tag{6.2}
\end{equation*}
$$

and have the following

Proposition 6.1. The root vectors z_{1}, \ldots, z_{m} satisfy the relations

$$
\begin{equation*}
z_{i} z_{j}=q z_{j} z_{i} \tag{6.3}
\end{equation*}
$$

for all $i, j \in\{1, \ldots, m\}$ with $i<j$.

Since $\mathcal{U}_{q}^{c_{m}}$ has a PBW basis of ordered monomials, the relations of Eq. (6.3) are the defining relations for $\mathcal{U}_{q}^{c_{m}}$. In particular, we have the following well-known result (cf. for example [16]):

Corollary 6.2. The algebra $\mathcal{U}_{q}^{c_{m}}$ is isomorphic to the algebra of quantum affine space $\mathcal{O}_{q}\left(k^{m}\right)$.
Denote by $\pi_{A}: \mathcal{U}_{A}^{\geqslant 0} \rightarrow \mathcal{U}_{A}^{\geqslant 0}$ the unique algebra map such that

$$
\begin{align*}
& \pi\left(E_{1}\right)=0 \tag{6.4}\\
& \pi\left(E_{i}\right)=E_{i} \quad(1<i \leqslant m), \tag{6.5}\\
& \pi\left(K_{\mu}\right)=K_{\mu} \quad\left(\mu \in Q\left(A_{m}\right)\right) . \tag{6.6}
\end{align*}
$$

Let $\lambda_{A}: \mathcal{U}_{A}^{\geqslant 0} \otimes \mathcal{U}_{q}^{c_{m}} \rightarrow \mathcal{U}_{A}^{\geqslant 0}$ be defined by the following sequence of linear maps:

$$
\begin{equation*}
\lambda_{A}: \mathcal{U}_{A}^{\geqslant 0} \otimes \mathcal{U}_{q}^{c_{m}} \xrightarrow{\text { incl. }}\left(\mathcal{U}_{A}^{\geqslant 0}\right)^{\otimes 2} \xrightarrow{\pi_{A} \otimes i d}\left(\mathcal{U}_{A}^{\geqslant 0}\right)^{\otimes 2} \xrightarrow{\text { adjoint }} \mathcal{U}_{A}^{\geqslant 0} . \tag{6.7}
\end{equation*}
$$

The identities in Eq. (3.16) imply the following
Corollary 6.3. The linear map λ_{A} satisfies $\operatorname{Im}\left(\lambda_{A}\right) \subseteq \mathcal{U}_{q}^{c_{m}}$. In particular, λ_{A} endows the algebra $\mathcal{U}_{q}^{c_{m}}$ with the structure of a left $\mathcal{U}_{A}^{\geqslant 0}$-module algebra.

As before (see (3.18)), we use the action map λ_{A} to construct the smash product $\mathcal{U}_{q}^{c_{m}} \# \mathcal{U}_{A}^{\geqslant 0}$ and let $\left(\mathcal{U}_{q}^{\mathcal{C}_{m}}\right)^{\#}$ denote the subalgebra

$$
\begin{equation*}
\left.\left(\mathcal{U}_{q}^{c_{m}}\right)^{\#}:=\langle 1 \# u, u \# 1| u \in \mathcal{U}_{q}^{c_{m}}\right) \subseteq \mathcal{U}_{q}^{c_{m}} \# \mathcal{U}_{A}^{\geqslant 0} . \tag{6.8}
\end{equation*}
$$

6.2. The quantum affine algebra $\mathcal{U}_{q}^{\widehat{c}_{m}}$

Let $Q\left(\widehat{A}_{m}\right)=Q\left(A_{m}\right) \oplus \mathbb{Z}$ denote the root lattice of type \widehat{A}_{m}. As an abelian group, $Q\left(\widehat{A}_{m}\right)$ is generated additively by the positive simple roots $\alpha_{0}:=e_{m}-e_{1}+1$, and $\alpha_{i}:=e_{i}-e_{i+1}$ for $i \in\{1, \ldots, m\}$. We extend the inner product \langle,$\rangle on Q\left(A_{m}\right)$ to an inner product on $Q\left(\widehat{A}_{m}\right)$ by setting $1 \in Q\left(\widehat{A}_{m}\right)$ to be isotropic. We let s_{i} denote the corresponding simple reflection $s_{i}: Q\left(\widehat{A}_{m}\right) \rightarrow Q\left(\widehat{A}_{m}\right)$, for $0 \leqslant i \leqslant m$, and let $W\left(\widehat{A}_{m}\right)=\left\langle s_{0}, \ldots, s_{m}\right\rangle$ denote the corresponding affine Weyl group. We let $\mathcal{U}_{q}\left(\widehat{\mathfrak{s}}_{m+1}\right)$ denote the corresponding quantized enveloping algebra.

We set

$$
\begin{equation*}
\widehat{c}_{m}:=\left(s_{1} \cdots s_{m}\right)\left(s_{0} s_{1} \cdots s_{m-1}\right) \in W\left(\widehat{A}_{m}\right) \tag{6.9}
\end{equation*}
$$

and note the following analogue of Theorem 4.4.

Theorem 6.4. Suppose k is an algebraically closed field of characteristic zero, and $q \in k$ is transcendental over \mathbb{Q}. As k-algebras, $\mathcal{U}_{q}^{\widehat{c}_{m}} \cong\left(\mathcal{U}_{q}^{c_{m}}\right)^{\#}$.

Proof. Compute. One can use an analogous isomorphism of Theorem 4.4.
Now let V be a k-module with basis $\left\{v_{1}, \ldots, v_{m}\right\}$, and for all $i, j, \ell \in\{1, \ldots, m\}$, define linear maps $e_{i j}$ by the rule $e_{i j} \cdot v_{\ell}=\delta_{j \ell} v_{i}$.

Set

$$
\begin{equation*}
R_{A_{m-1}}=q \sum_{i=1}^{m}\left(e_{i i} \otimes e_{i i}\right)+\sum_{i \neq j}\left(e_{i i} \otimes e_{j j}\right)+\hat{q} \sum_{i>j}\left(e_{i j} \otimes e_{j i}\right) . \tag{6.10}
\end{equation*}
$$

This is the standard R-matrix of type A_{m-1} (see [13, Section 8.4.2]).
The algebra of $m \times m$ quantum matrices, denoted $\mathcal{O}_{q}\left(M_{m}(k)\right)$, is the algebra $\mathcal{A}\left(R_{A_{m-1}}\right)$ and was defined in [8]. More generally, one considers $\ell \times p$ quantum matrices, denoted $\mathcal{O}_{q}\left(M_{\ell, p}(k)\right)$, by looking at appropriate subalgebras of square quantum matrices.

We let $\gamma: Q\left(\widehat{A}_{m}\right) \times Q\left(\widehat{A}_{m}\right) \rightarrow k^{\times}$be the bicharacter defined by

$$
\gamma\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}q, & (i, j)=(0,1), \tag{6.11}\\ 1, & (i, j) \neq(0,1),\end{cases}
$$

and have the following analogue of Theorem 5.2.
Theorem 6.5. Assuming the same hypotheses on k and q from Theorem 6.4, the γ-twisted algebra $\left(\mathcal{U}_{q}^{\widehat{\mathcal{M}}_{m}}\right)^{\prime}$ is isomorphic to $\mathcal{O}_{q}\left(M_{2, m}\right)$.

Proof. Compute (cf. Theorem 5.2).
Theorem 6.5, together with Proposition 5.1, allows us to view $\mathbb{X}_{n, q}$ as an orthogonal analogue of $2 \times n$ quantum matrices. The key distinction is that $\mathcal{O}_{q}\left(M_{2, n}(k)\right)$ is a subalgebra of $\mathcal{A}\left(R_{A_{n-1}}\right)$, whereas $\mathbb{X}_{n, q}$ is a parent of the analogous subalgebra $T_{2, n} \subseteq \mathcal{A}\left(R_{D_{n}}\right)$.

Acknowledgments

We would like to acknowledge Ken Goodearl and Milen Yakimov for helpful conversations.

References

[1] M. Artin, W.F. Schelter, J. Tate, Quantum deformations of $G L_{n}$, Comm. Pure Appl. Math. 44 (1991) 879-895.
[2] J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994) 555-568.
[3] J. Beck, Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys. 165 (1994) 193-199.
[4] K.A. Brown, K.R. Goodearl, Lectures on Algebraic Quantum Groups, Birkhäuser, 2002.
[5] G. Cauchon, Effacement des dérivations et spectres premiers d'algébres quantiques, J. Algebra 260 (2003) 476-518.
[6] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, New York, 1994.
[7] C. De Concini, V. Kac, C. Procesi, Some quantum analogues of solvable Lie groups, in: Geometry and Analysis, Bombay, 1992, Tata Inst. Fund. Res., Bombay, 1995, pp. 41-65.
[8] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtajan, Quantization of Lie groups and Lie algebras, in: Algebraic Analysis, vol. I, Academic Press, Boston, MA, 1988, pp. 129-139.
[9] K.R. Goodearl, T.H. Lenagan, Winding-invariant prime ideals in quantum 3×3 matrices, J. Algebra 260 (2003) 657-687.
[10] K.R. Goodearl, E.S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 362 (3) (2000) 1381-1403.
[11] K.R. Goodearl, M. Yakimov, Poisson structures on affine spaces and flag varieties, II, Trans. Amer. Math. Soc. 361 (2009) 5753-5780.
[12] R.G. Heyneman, M.E. Sweedler, Affine Hopf algebras, I, J. Algebra 13 (1969) 192-241.
[13] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer-Verlag, Berlin, 1997.
[14] S. Launois, Combinatorics of H-primes in quantum matrices, J. Algebra 309 (2007) 139-167.
[15] G. Lusztig, Introduction to Quantum Groups, Progr. Math., vol. 220, Birkhäuser, 1993.
[16] A. Mériaux, G. Cauchon, Admissible diagrams in quantum nilpotent algebras and combinatoric properties of Weyl groups, Represent. Theory 14 (2010) 645-687.
[17] M. Yakimov, Invariant prime ideals in quantizations of nilpotent Lie algebras, Proc. Lond. Math. Soc. (3) 101 (2) (2010) 454-476.

[^0]: * Corresponding author.

 E-mail addresses: johnson@math.ucsb.edu (G. Johnson), cnowlin@math.ucsb.edu (C. Nowlin).

