
doi: 10.1016/j.procs.2015.05.238 

A novel Factorized Sparse Approximate Inverse

preconditioner with supernodes

Massimiliano Ferronato1, Carlo Janna1, and Giuseppe Gambolati1

Department ICEA, University of Padova, Padova, Italy
massimiliano.ferronato@unipd.it

Abstract

Krylov methods preconditioned by Factorized Sparse Approximate Inverses (FSAI) are an effi-
cient approach for the solution of symmetric positive definite linear systems on massively parallel
computers. However, FSAI often suffers from a high set-up cost, especially in ill-conditioned
problems. In this communication we propose a novel algorithm for the FSAI computation
that makes use of the concept of supernode borrowed from sparse LU factorizations and direct
methods.

Keywords: linear systems, preconditioned iterative methods, approximate inverse, parallel computing

1 Introduction

Current computer simulations, especially related to earth models, may easily require the compu-
tation of several millions or even billions of unknowns, and the efficient solution to the sequences
of sparse linear systems of equations

Ax = b (1)

may represent one of the most, and often the most, expensive tasks. Roughly speaking, two
main classes of algorithms are available, namely direct [3] and iterative methods [14]. The
former are based on the sparse Gaussian elimination procedure and obtain the solution x

in (1) with a number of operations that can be predicted a priori. The latter start from a
tentative guess solution and improve it through a problem- and algorithm-dependent number
of iterations. The flop count of direct methods is typically much higher than that of efficient
iterative methods, especially in sparse three dimensional problems. However, direct methods are
still competitive because of the use of the so-called supernodes, i.e., clusters of unknowns that are
grouped and processed together with cache efficient dense linear algebra kernels. By distinction,
iterative methods typically use an indirect memory indexing that prevents an intensive use of
the processor cache. Recently, the supernodes have already been successfully used with iterative
methods in the field of incomplete LU preconditioning [6, 15].

In recent years the growing diffusion of parallel computers has fostered the development
of algorithms able to take advantage of the potential offered by multiple processors. Iterative

Procedia Computer Science

Volume 51, 2015, Pages 266–275

ICCS 2015 International Conference On Computational Science

266 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82677545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.238&domain=pdf


methods are in principle much more attractive than direct methods because of their intrinsic
better parallelism. The bottleneck, however, is generally the preconditioner, that can be ex-
pensive in terms of both computation and application to a vector. Approximate inverses can
address the demand for efficient parallel preconditioner [1, 5, 10, 8]. They can be computed in
several ways, e.g., through a bi-orthogonalization process or a Frobenius norm minimization,
and are applied to a vector with a matrix-by-vector multiplication. Even though approximate
inverses can be effective in a large number of problems, with ill-conditioned matrices their com-
putation can be very time consuming and may represent a barrier to their diffusion in industrial
applications.

In the present communication, we address such a drawback by introducing the concept of
supernodes to accelerate the set-up stage of the Factorized Sparse Approximate Inverse (FSAI)
preconditioner [13] for symmetric positive definite (SPD) problems. Identifying a supernodal
structure in the system matrixAmay help reduce significantly both the cost for computing FSAI
and the iteration count to converge, with an improvement of the overall FSAI performance.

2 The FSAI preconditioner

The classical FSAI preconditioner M−1 for an SPD matrix A reads:

M−1 = GTG � A−1 (2)

where G is computed minimizing the Frobenius norm

‖I −GL‖F (3)

over the set WS of matrices having a prescribed lower triangular non-zero pattern S. The
matrix L in (3) is the exact lower triangular factor of A and actually is not required to get G.
In fact, differentiating (3) with respect to the G entries gij and setting to zero give:

[GA]ij = [LT ]ij ∀ (i, j) ∈ S (4)

Since LT is upper triangular and S is a lower triangular pattern, the matrix equation (4) can
be rewritten as:

[GA]ij =

{
0 i �= j, (i, j) ∈ S
lii i = j

(5)

where [·]ij is the entry in row i and column j of the matrix between square brackets, and lii

is the i-th diagonal element of L. L is unknown, so lii in (5) is replaced by 1. The matrix G̃

computed by solving:
[G̃A]ij = δij (6)

with δij the Kronecker delta, is scaled as:

G = DG̃, D = [diag(G̃)]−1/2 (7)

thus obtaining the matrix G used in the FSAI definition (2). The scaling (7) ensures that the
diagonal entries of the preconditioned matrix GAGT are unitary, and its Kaporin condition
number is minimum over all matrices G ∈ WS [11, 12]. The Kaporin number of an SPD
matrix is defined as the ratio between the arithmetic and geometric mean of its eigenvalues and
gives a measure of the number of iterations required by the Preconditioned Conjugate Gradient
(PCG) method to converge. The FSAI preconditioner is very robust as it can be computed

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

267



for any choice of the non-zero pattern S and the resulting preconditioned matrix is SPD by
construction.

The main computational cost in the FSAI set-up is the solution of the sequence of n small
dense linear systems, n being the size of A, arising from the component-wise equation (5). In
particular, it depends on the non-zero pattern S that can be selected either statically, i.e.,
prescribed a priori, or dynamically, i.e., generated during the computation of G. In this work
we introduce the use of supernodes in the static FSAI computation.

2.1 Supernodes

The effective a priori selection of S usually is not trivial. Inspection of the Neumann power
series of A−1 suggests the use of non-zero patterns of small powers of A, recalling that for FSAI
only the lower triangular pattern is needed. This idea may be effectively combined with both
prefiltration [2] and recursion [7].

Recalling equation (5), it can be observed that the i-th row of G̃ is computed by solving
a dense mi × mi system, with mi the number of non-zeroes assigned to row i. As a major
consequence, the cost for computing G is asimptotically proportional to

∑n
i=1

m3

i and grows
very quickly with mi. Supernodes aim at reducing such a cost by aggregating the solution of
the systems required by different rows in one dense system only. In the sequel, we will often
use the term “node” to denote a row of A, as it is typically done in graph theory.

Suppose that S is given and denote by Pi the set of column indices belonging to the i-th
row of S:

Pi = {j : (i, j) ∈ S} (8)

A[Pi,Pi] is the submatrix of A consisting of the elements with row and column indices in Pi.
Denote by g̃i and gi the dense vectors collecting the non-zero entries prescribed in the i-th row

of G̃ and G, respectively. With this notation the component-wise equation (6) is equivalent to:

A[Pi,Pi]g̃i = emi
i = 1, . . . , n (9)

where emi
= [0, 0, . . . , 1]T is the mi-th vector of the canonical basis of Rmi . The vector gi is

g̃i scaled by the square root of its last entry:

gi =
g̃i√
g̃i,mi

(10)

For any row i, the most expensive operation is the solution of the system (9). If two rows,
say i1 and i2, have a similar pattern, solving an enlarged system obtained from merging Pi1 and
Pi2 might be less expensive than solving two smaller systems. Let us clarify this idea using the

example of Figure 1. Assume i1 < i2 and P̃ = Pi1

⋃
Pi2 , with mi1 , mi2 and m̃ the cardinalities

of |Pi1 |, |Pi2 | and |P̃|, respectively. The vectors g̃i1 and g̃i2 can be found simultaneously by
solving the multiple right-hand side system:

A[P̃ , P̃ ]
{
g̃i1 g̃i2

}
= {b1 b2} (11)

with b1, b2 ∈ R
m̃. Finding the explicit expression for b1 and b2 is easy. Define the two sets:

P̃1 = {j : j ∈ P̃ and j ≤ i1} P̃2 = P̃ \ P̃1 (12)

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

268



i1

i2

i2

i1 i1

i2

A[P,P]

A[P ,P ]

A[P ,P ]

Figure 1: Schematic representation of the merging process of two rows, i1 and i2. The entries
of A corresponding to Pi1 and Pi2 are denoted by circles and crosses, respectively. Squares

denote the A entries that do not belong to Pi1 or Pi2 but are collected in A[P̃ , P̃].

with cardinalities m̃1 and m̃2, respectively, and write (11) in the block form:[
A[P̃1, P̃1] A[P̃1, P̃2]

A[P̃2, P̃1] A[P̃2, P̃2]

]{
g̃i1,1

g̃i1,2

g̃i2,1

g̃i2,2

}
=

{
b1,1
b1,2

b2,1
b2,2

}
(13)

Then, we can set:
b1,1 = em̃1

b2,1 = 0

b1,2 = H21L
−1

11
em̃1

b2,2 = em̃2

(14)

where em̃1
and em̃2

are the m̃1-th and the m̃2-th vectors of the canonical basis of Rm̃1 and

R
m̃2 , respectively, and H21 and L−1

11
are part of the block factorization of A[P̃ , P̃]:[

A[P̃1, P̃1] A[P̃1, P̃2]

A[P̃2, P̃1] A[P̃2, P̃2]

]
=

[
L11 0
H21 L22

] [
LT
11

HT
21

0 LT
22

]
(15)

Note that the computation of b1,2 is relatively inexpensive since em̃1
has only one non-zero

component. This procedure can be generalized to merge an arbitrary number of rows.
It is now necessary to define a rule for deciding when it is convenient to aggregate two or

more rows into a supernode. The computational burden to gather and solve from scratch a
linear system of size m with l right-hand sides is:

c(m, l) =
3∑

i=0

aim
i + l

2∑
i=0

bim
i (16)

where the coefficients ai and bi depend on the hardware. Their values can be found by perform-
ing a least square regression on an ensemble of test runs. A supernode ĩ merging i1 and i2 is
formed if c(m̃, 2) < c(m1, 1) + c(m2, 1), otherwise i1 and i2 are computed separately. A similar

argument is used if we want to merge the node ik to the supernode ĩ that already aggregates
l̃ nodes. Let mk and m̃ denote the cardinality of Pik and P̃ , respectively, and h the number

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

269



of mismatches, that is the number of column indices lying in Pik but not in P̃ . The node ik is

included into the supernode ĩ if:

c(m̃+ h, l̃ + 1) < c(m̃, l̃) + c(mk, 1) (17)

Condition (17) reduces the FSAI setup time and generally accelerates the PCG convergence.

In fact, the use of supernodes enlarges the non-zero pattern S, i.e., S ⊆ S̃, and the new
preconditioner minimizes the Kaporin condition number over a wider set. As a drawback, the
cost per iteration may grow because of the larger density. Hence, condition (17) can be relaxed
by introducing the parameter α:

c(m̃+ h, l̃ + 1) < α
[
c(m̃, l̃) + c(mk, 1)

]
(18)

Finally, we define the score function:

sα(m̃, l̃,mk, h) = α
[
c(m̃, l̃) + c(mk, 1)

]
− c(m̃+ h, l̃+ 1) (19)

A supernode is generated if sα > 0. The larger sα, the more cost effective the merging.
To find the supernodal structure a systematic comparison of all the nodes in the adjacency

graph is necessary. For this task an efficient gready strategy based on level set traversals can
be employed. Level sets of a graph are defined recursively:

• Basis: level 0 is a simple set of nodes;

• Recursion: level k+1 includes all the neighbouring nodes of level k (adj(k)) not belonging
to level k − 1.

Our procedure works as follows. Let S and Q = ∅ be the initial static pattern and list of
supernodes, respectively. Level 0 is represented by node n only. Visit all the nodes in the
adjacency graph following the level set hierarchy and inspecting the elements within a level
from the last to the first with respect to the original ordering. Level 0 is trivially processed by
adding node n to the list of supernodes Q. Level k is processed by exploring its nodes in reverse
order. Each node i is compared to the supernodes listed in Q to determine the maximum sα
value. If the maximum sα > 0 the current node i is merged, otherwise i is pushed into the head
of Q as a new supernode. The traversal is carried out in reverse order because it is most likely
that lower rows include upper rows as S is lower triangular. A drawback of this procedure can
occur when the list of supernodes Q becomes too long and comparing a new node with all the
supernodes may be too expensive. It can be observed that a node in a level generally shares
more column indices with the nodes from adjacent levels than those from far levels. Hence, it
is likely for a node to achieve the best score with a newly generated supernode. As a major
consequence, we can consider in our comparison the last lmax supernodes only. A reasonable
value for lmax is not overly difficult to set. With lmax = 30, the cost of the above procedure
is negligible with respect to the FSAI set-up time, while larger lmax values slow down the
procedure without producing less supernodes.

3 Numerical results

The FSAI computational performance using supernodes is investigated in a set of large size
test problems arising from different applications. All the test matrices are publicly available

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

270



Name Size # of non-zeroes Problem description
Sebe 742,793 37,138,461 3D pressure-temperature in porous media
Emilia 923 923,136 40,373,538 3D geomechanical reservoir simulation
Audikw 1 943,695 77,651,847 3D automotive structural problem
Serena 1,391,349 64,531,701 3D structural mechanics
Bump 2911 2,911,419 130,378,257 3D geomechanical reservoir simulation
Queen 4147 4,147,110 329,499,288 3D structural problem

Table 1: Size, number of non-zeroes and brief description of the test matrices.

a0 a1 a2 a3
0.527655 · 10−5 0.132448 · 10−5 0.131749 · 10−7 0.230335 · 10−9

b0 b1 b2
0.153699 · 10−5 0.618331 · 10−7 0.317156 · 10−8

Table 2: Cost model parameters, according to equation (16), for the IBM-BG/Q FERMI su-
percomputer.

from the University of Florida Sparse Matrix Collection [4] and are summarized in Table 1. In
all test cases the Preconditioned Conjugate Gradient (PCG) solver is used with the right-hand
side computed so that the solution is the unitary vector. The iterations are completed when
the relative residual is smaller than 10−10. The computational performance is evaluated in
terms of the number of iterations niter , the wall clock time in seconds Tp and Ts needed for
the preconditioner computation and the PCG convergence, respectively, with the total time
Tt = Tp + Ts. The algorithm is coded in Fortran90 with OpenMP directives to exploit shared
memory architectures. All tests are performed on the IBM-BG/Q FERMI at the CINECA
Centre for High Performance Computing, equipped with IBM PowerA2 processors at 1.6 GHz
with 10,240 nodes, 163,840 computing cores, and 1 Gbyte/core of RAM. For each test case a
parallel run using 16 cores is performed. The cost model parameters ai and bi (equation (16))
for the IBM-BG/Q FERMI supercomputer are given in Table 2.

Let us consider the SPD matrix EMILIA 923. Table 3 shows the outcome of a set of simu-
lations performed with this test case. The user-specified parameters κ, τ1, and τ2 required to
set the static pattern have the following meaning:

• κ is the power of the lower triangular part of A used as reference pattern;

• τ1 is the pre-filtration tolerance used to sparsify A before computing the pattern of Aκ;

• τ2 is the post-filtration tolerance used to sparsify G after its computation.

For more details on the meaning and the suggested range of the user-specified parameters, see
Janna et al. [9].

As expected, the use of supernodes decreases the cost for computing the preconditioner, but
the most significant impact is on the PCG acceleration due to the increase of the preconditioner
density μ defined as the ratio between the number of non-zeroes of G and A:

μ =
nnz(G)

nnz(A)
(20)

Table 3 provides also the average size dimĩ of the supernodes, denoting the average number of
rows collapsed to the same sparsity pattern. In the computation of the score sα we have set

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

271



Parameters FSAI FSAI with supernodes
κ τ1 τ2 niter Tp Ts Tt dimĩ niter Tp Ts Tt

1 10−3 0.01 4758 5.1 200.7 205.8 10.3 3189 4.1 154.1 158.2
2 10−3 0.03 3143 22.7 146.3 169.0 6.4 2164 16.0 103.7 119.7
3 10−2 0.05 2315 11.2 97.8 109.0 5.6 1720 9.9 75.9 85.8
4 10−2 0.05 1749 34.9 77.5 112.4 6.1 1372 29.4 62.9 92.3
5 10−1 0.03 1899 4.6 76.0 80.6 3.2 1616 2.8 66.9 69.7

Table 3: EMILIA 923 test case: FSAI computational performance with the standard pattern
(on the left) and the supernode approach (on the right) in a set of simulations. dimĩ is the
average size of the supernodes.

Test case S maxRt minRt Ri Rp Rs Rt Rμ

Sebe 62.5% 1.85 0.83 1.06 1.19 0.97 1.09 0.81
Emilia 923 93.7% 2.70 0.98 1.27 1.49 1.20 1.32 0.78
Audikw 1 57.8% 1.56 0.83 1.01 1.12 0.95 1.03 0.70
Serena 72.0% 1.82 0.95 1.03 1.20 1.01 1.08 0.85
Bump 2911 80.0% 1.75 0.88 1.41 1.19 1.25 1.23 0.63
Queen 4147 79.4% 1.92 0.92 1.23 1.12 1.14 1.12 0.58

Table 4: Summary of the performance obtained with and without using supernodes.

α = 1. Usually, the larger dimĩ, the smaller the iteration count. In the previous example the
overall gain in terms of total wall clock time can be up to 25%.

The supernode efficiency is problem-dependent. An extensive numerical experimentation has
been performed on the set of matrices of Table 1 varying for each test case the user-specified
parameters κ, τ1 and τ2. The total wall clock time obtained using FSAI with and without
supernodes is shown in Figure 2. In each diagram the experiments are reported according to
the ascending order of Tt. The numerical results show that supernodes are generally helpful.
In particular, the supernodes help reduce the variability range of the PCG performance with
κ, τ1 and τ2, thus decreasing the solver sensitivity to the user-defined parameters.

The global outcome of the numerical experiments for the different test cases is summarized
in Table 4. The meaning of the symbols is as follows:

• S: percentage of experiments where the supernodes prove effective in increasing the com-
putational efficiency;

• maxRt: maximal Tt ratio without and with supernodes, i.e., a measure of the best com-
putational gain obtained from the tests;

• minRt: minimal Tt ratio without and with supernodes, i.e., the most unfavourable case;

• Ri: average niter ratio without and with supernodes;

• Rx, with x = p, s, t: average Tx ratio without and with supernodes;

• Rμ: average μ ratio without and with supernodes.

Table 4 shows that supernodes yield a performance improvement in the majority of experi-
ments. Emilia 923 is the most favourable test case with the supernodes allowing for a best
computational gain of almost 3, and with most of the other matrices the best gain is not far

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

272



10 20 30 40 50
experiment id

0

200

400

600

800
T

t [
s]

static FSAI
static FSAI with supernodes

Sebe

10 20 30 40 50 60
experiment id

0

200

400

600

800

1000

T
t [

s]

static FSAI
static FSAI with supernodes

Emilia_923

10 20 30 40
experiment id

0

100

200

300

400

500

600

T
t [

s]

static FSAI
static FSAI with supernodes

Audikw_1

10 20 30 40
experiment id

0

50

100

150

200

T
t [

s]

static FSAI
static FSAI with supernodes

Serena

10 20 30 40
experiment id

0

100

200

300

400

500

600

700

T
t [

s]

static FSAI
static FSAI with supernodes

Bump_2911

10 20 30
experiment id

0

500

1000

1500

2000

2500

3000

T
t [

s]

static FSAI
static FSAI with supernodes

Queen_4147

Figure 2: Static FSAI: total wall clock time [s] with and without supernodes. For each experi-
ment id different user-specified parameters have been used within a plausible range.

from 2. Where supernodes are not convenient, the efficiency loss is limited to a small percent-
age, say 10-15% in the worst cases. Also note that on the average the iteration count and the
time for computing the preconditioner is generally reduced with supernodes, while the time for
iterating may increase because of a denser FSAI preconditioner.

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

273



4 Conclusions

The technique of supernodes is widely and successfully used in the parallel solution of sparse
linear systems by direct methods. The concept is here developed for the FSAI preconditioning
of SPD systems. In the present work, we have introduced the supernodes in static FSAI and
performed a numerical experimentation of their performance in a set of test problems.

The supernodal structure is generated evaluating the cost for computing each row of G.
A set of rows are merged into a supernode if the cost for solving a larger multiple right-hand
side system is lower than that required for several smaller systems. This procedure is helpful
for reducing the FSAI set-up time, improving the preconditioner quality and decreasing the
iteration count for the PCG convergence. The use of supernodes is cost effective in 75% of the
runs carried out, allowing for a PCG scheme that may be up to about three times faster than
the standard FSAI. In cases where supernodes are not convenient, the total wall-clock time
increase is limited to 10-15% only. Moreover, the use of supernodes reduce to some extent the
solver sensitivity to the user-specified parameters, thus improving the overall robustness of the
final PCG scheme.

Currently, the supernodal concept is going to be extended to two FSAI variants: (i) for
non-symmetric and/or symmetric indefinite matrices, and (ii) using a dynamic computation
of the FSAI non-zero pattern, that is generally more efficient than static FSAI especially in
ill-conditioned problems.

References

References

[1] M. Benzi. Preconditioning techniques for large linear systems: a survey. J. Comp. Phys., 182
(2002), pp. 418–477.

[2] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM

J. Sci. Comput., 21 (2000), pp. 1804–1822.

[3] T. A. Davis. Direct Methods for Sparse Linear Systems. Philadelphia (PA), SIAM, 2006.

[4] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math.

Softw., 38 (2011), pp. 1–25.

[5] M. Ferronato. Preconditioning of sparse linear systems at the dawn of the 21st century: history,
current developments, and future perspectives. ISRN Appl. Math., 2012 (2012), article ID 127647,
doi: 10.5402/2012/127647.

[6] A. Gupta and T. George. Adaptive techniques for improving the performance of incomplete fac-
torization preconditioning. SIAM J. Sci. Comput., 32 (2010), pp. 84–110.

[7] T. Huckle. Approximate sparsity patterns for the inverse of a matrix and preconditioning. Appl.

Numer. Math., 30 (1999), pp. 291–303.

[8] C. Janna, M. Ferronato and G. Gambolati. Enhanced block FSAI preconditioning using domain
decomposition techniques. SIAM J. Sci. Comput., 35 (2013), pp. S229–S249.

[9] C. Janna, M. Ferronato, F. Sartoretto and G. Gambolati. FSAIPACK: a software package for high
performance FSAI preconditioning. ACM Trans. Math. Softw., 41 (2015), pages to be defined.

[10] Z. Jia and B. Zhu. A power sparse approximate inverse preconditioning procedure for large sparse
linear systems. Numer. Lin. Alg. Appl., 16 (2009), pp. 259–299.

[11] I. E. Kaporin. A preconditioned conjugate gradient method for solving discrete analogs of differ-
ential problems. Diff. Equat., 26 (1990), pp. 897–906.

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

274



[12] I. E. Kaporin. New convergence results and preconditioning strategies for the conjugate gradient
method. Numer. Lin. Alg. Appl., 1 (1994), pp. 179–210.

[13] L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse preconditioning. I.
Theory. SIAM J. Mat. Anal. Appl., 14 (1993), pp. 45–58.

[14] Y. Saad. Iterative Methods for Sparse Linear Systems. Philadelphia (PA), SIAM, 2003.

[15] N. Vannieuwenhoven and K. Meerbergen. IMF: An incomplete multifrontal LU-factorization for
element-structured sparse linear systems. SIAM J. Sci. Comput., 35 (2013), pp. A270–A293.

FSAI preconditioner with supernodes Ferronato, Janna and Gambolati

275


