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A bound on the number of extreme points or sides necessary to approximate 
a convex planar figure by an enclosing polygon is described. This number is 
found to be proportional to the fourth root of the figure's area divided by the 
square of a maximum Euclidean distance approximation parameter. 

An extension of this bound, preserving its fourth root quality, is made to 
general planar figures. This is done by decomposing the general figure into 
nearly convex sets defined by inflection points, cusps, and multiple windings. 

A procedure for performing actual encoding of this type is described. 
Comparisons of parsimony are made with contemporary figure encoding 
schemes. 

INTRODUCTION 

The encoding of geometric figures in the Euclidean plane was a matter of 
little interest until fast, large-scale digital computation became commonly 
available. Soon after cathode-ray tube scanning for pictorial sampling and 
display became practical, it was noted that representations of black-and-white 
figures that had subjectively simple characteristics did not require specifi- 
cation of the intensity and location of each point. Freeman (1961) was the 
first to publish work considering the information lossless encoding of sampled 
images by contour representations. Most subsequent publications have been 
concerned with the determination of properties of sampled figures. Minsky 
and Papert (1972) and Duda  and Hart  (1973) have published bibliographies 
relevant to this area. 

There have been a number of primarily experimental studies on photo- 
graphs of natural objects. These include theses by Walpert (1970), Young 
(1966), Graham (1967), and Pan (1962). These results and others have shown 
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that for most real pictures, there are a variety of heuristic techniques that 
can achieve significant data compression either without loss of information 
or without loss of subjective quality. Progress in this area is reviewed by 
Huang, Schreiber, and Tretiak (1971). 

Recently, works have begun to consider some of the theoretical aspects of 
digital picture coding. Freeman and Glass (1969) have considered a contour 
"energy-related" procedure for determining adequacy of approximation. 
Montanari (1968, 1969) has considered finding skeletons as a binary picture 
compression device. Sklansky and his collaborators (1970, 1972a,b,c) have 
developed the minimum-perimeter polygon as an unambiguous descriptor 
of a cellular or sampled image. Montanari (1970) has studied the limiting 
properties of the Freeman and Sklansky representations in considerable detail. 
He found it necessary to define at least two types of equivalence for 
digitization schemes in order to find a unique and meaningful solution to the 
minimization problems that both the Freeman and Sklansky procedures 
require. 

The questions of bounds on the information required for these represen- 
tations has been discussed by Eden (1960, 1968) and Bolour and Cover (1972). 
The former shows that for nearly convex "blobs" the number of bits necessary 
to encode a figure of k cells is approximately k q- 4kl/2. The latter states the 
strong result that a convex figure of perimeter L can be c-approximated by 
about (rr(L/e))l/2 straight line segments. As we shall see, e is not the same as, 
but is related to, the sampling interval. 

This paper considers bounds on the number of points, and thus, on the 
number of bits, necessary to encode arbitrary geometric figures. The bounds 
are related to the figure's area for convex figures and to derived areas for 
figures with concavities. 

AN AREA-RELATED BOUND ON THE POLYGONAL APPROXIMATION OF 
CONVEX SETS 

This section considers one aspect of the coding of convex sets in two 
dimensions. I t  demonstrates that any convex set with area A can be e- 
approximated by a convex polygonal hull with no more than o(_d/e2)l/4 sides 
or extreme points. I t  is shown that the number n of sides in a polynogal 
c-approximation is bounded from above by 

n ~ mA = K(mA) ~al4(A/e2)ll~ + 3, 

where K(mA) is a monotonically deereasing function of m~, ranging in value 
from 39/s/TrY/~ (~1.46) for m~ : 6, to an asymptotic value of 1. 
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This result may be compared with a previous result by Bolour and Cover 
(1972) that the bound on the number of sides is related to the figure's 
perimeter L by 

n ~ rn L = ~-(LI2~,-e + 1)1/2. 

For a circle of radius R, we have 

=3/4(Ale~)l /~ = , , (R le ) l / 2  = ~ ( L l 2 ~ e ) l / ~ .  

Since it is well known that a circle is tile planar figure having the largest ratio 
of area to perimeter, it follows that for (A/e 2) and (L/2rre) large, rn A < m L . 

For an ellipse with semiaxes a and c, a < c, the asymptotic behavior is 

m A / m  L ~ (,~/2)l/~(a/c)t/4. 

The Bolour and Cover result, in turn, may be compared with the Freeman 
chain approach (Freeman, 1961) of connecting me = L / e  adjacent samples 
at intervals of • along the perimeter of the set. The  latter is a great 
improvement itself over the idea of specifying the values of an entire grid 
large enough to cover the figure with precision •[ 

The  approach taken here is based conceptually on that used by Bolour 
and Cover. Specifically, a circumscribing polygon that satisfies the conditions 
imposed is constructed. Thus,  the existence of a solution is explicitly shown. 
Then  an inscribed polygon, which touches the circumscribing polygon and 
the coded periphery at the tangency points of the latter two, is used in a series 
of dominance relations to establish a bound on a trigonometric function of 
the number  of sides. The  positive second derivative nature of the functions 
found is used to establish the result for normal or "slowly turning" regions of 
the periphery and to set the limits of this behavior. It  is shown that no more 
than three regions of a curve can be "sharp corners" or abnormal in this 
sense. 

Before turning to the technical aspects of e-approximation, we define the 
term. We say that a set S e-approximates a set S if N _C S ,  and d ( S ,  S) ~< •; 
where d ( S ,  S ) =  max~minsll s - - s  II, s and s are members of S and S, 
respectively, and [I II is the Euclidean metric in the plane. Figure 1 illustrates 
this concept. 

For the purpose of proof, we will inscribe a polygon in the convex set. 
Then, a central point may be picked for the purpose of forming disjoint sets 
covering the polygon. One such wedge is illustrated in Fig. 2. I t  should be 
obvious that any point interior to the convex set is sufficient for the arguments 
that follow, although the centroid of the set or some point near it is intuitively 
satisfying as a center for the wedges. 



FIG. I. 
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Illustration of an c-approximation of a convex set by a polygon. 
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FIo. 2. Detailed drawing of a wedge of the inscribed polygon. A /  = A~ + A~ 
is the area of the inscribed polygon within the wedge's central angle. It is shaded as K-~. 
A~ is the area of the convex set within the wedge's central angle. It is shaded as 
,xx!  u ~ .  0 is the central point, T~ and Ts2 are tangency points of the set and its 
circumscribed polygon, and E is the extreme point of the intersection of these tangent 
lines. Other l inesegments and angles should be easily interpretable. 
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The  normal distance from the extreme point to the chord of the inscribed 
polygon may be used to relate the outer angles and tangential distances: 

e' = Lil sin(/3il ) = n~2 sin(fii~). (1) 

The  inscribed chord's length is 

ci = r i l  cos(fi~l) -+- Li~ cos(fiie). (2) 

Using the normal distance relation to rewrite the chord length in terms of 
one distance parameter, we obtain: 

ci = Lia(cos(flil) + (sin(fiil)/sin(fiie)) cos(fiie) (3a) 

= L i l  s in( f i i l ) (cot( f i i l  ) @ cot(fii2)). (3b)  

Similar relationships hold for the radial distances r~ and the central angles ~i - 

Because of the definitions used, sines and cosines are interchanged in these 
similar equations: 

C i = r i l  cos(Yil)( tan(Yil  ) ~- tan(~i2)).  (3c) 

We can now write the area of the inscribed polygon in terms of a single 
distance and trigonometric functions of these angles. 

Ai" = A~I + A~2, (4a) 

= (1/2) ri 1 cos(yil)(Li 1 cos(fii~) + Lie cos(fiie)), (4b) 

= (Lil sin(/~il)(Cot(/3n) + cot(Piz)) 2) (4c) 
(2(tan(yil) + tan(vie))) 

Since 
e' > /e ,  (5rl) 

using (1), we obtain an inequality relating A i' and e: 

Ai'  >~ ee(cot(fiil) + cot(fiie))2/(Z(tan(Yil) -}- tan(yie))). (5) 

The  right-hand side of this inequality has positive second derivatives with 
respect to all angles for which 

0 ~< ~i~,/31~, va ,  vi~ ~< ~/2, (5r2) 
and 

l y,1 q- Yi2 [ ~< ~r/2. (5r3) 

We will use the fact that if f (x) has nonnegative second derivative, 

E 1(Z  ixl), (Sup1) 
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where 0 ~< Ai ~< 1 ; ~ h i = 1. For reference, we label this Lemma 1. One 
clear example is 

(f(a) q-f(b))/2 ~ f (a  + b)/2. (5up2) 

Inequality (5upl) follows by obvious induction. 
Let us consider separately the wedges associated with extreme points at 

which the positive second derivative restriction (partial derivatives, to be 
correct) is true--that is, those that satisfy (5r3)--and those at which it is not. 

For the former, or normal segments, use of Lemma 1 gives 

2 (Ai(cot(fl il) jr- c°t(fii2))2/(tan(7il) @ tan(yi2))) 

(cot (~  Ai(]3il ~-/3iz)/2))2/(tan (~  Ai(Til @ 'i2))) , (6) 

when (5r3) is satisfied (i.e., 0 ~< "//1 ~ 7/2 ~'~ ~r/2, and where 

0 ~ A /  ~ 1; (6a) 

Z Ai = 1. (6b) 

Summations are over all i, assumed to be 1 ~< i ~< m 1 . Specifically, we will 
u s e  

A i = 1/m I . (6c) 
Since 

(fiil -[- fii2) ~ B ~ 2~r, (7a) 
and 

(7il q- 7i2) ~ G ~ 2rr, (7b) 

we can obtain an algebraic bound on the number of sides of the polygons 
under the positive second-derivative restriction. Using relations (5), (6), 
and (7), we get 

A ~ ~ A i' (8a) 

~ @2/2)((cot(fi/1) + cot(fi/2))2/(tan(Til) -+- tan(7i2)) ). (8b) 

2AlE 2 >~ ~ (22(cot((fiil @ fii2)/2))2/(tan(yfl) -}- tan(7i2))), (8c) 

>~ ~ (22(cot((/3a q- [3i2)/2))2/tan(yil -~ Yiu)). (8d) 

~//,2 ~ 2m 1 ((cot (Z  (/~il -J- fiiz)/2ml))21 tan ( Z  (,il -[- , i2)/m,)),  (Be) 

= 2ml((cot(B/2ml))~/tan(G/m~)), (8f) 

2ml(cot(~r/ml) ) ~ cot(2~r/ml), (8g) 

---- 2mx(mx/rr)~(m~/27r)(co@r/m~)(,r/m~))2(cot(2zr/m~)(2~r/mx)). (8h) 
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Collect ing terms,  we obtain  

ml 4 ~ ~ra(d/e2)(tan(Tr/ml)/Or/ml))2(tan(2~r/ml)/(27r/ml)). (9a) 

Then ,  using (tan(x)/x) bounds,  we get 

m 1 ~ ((3a/2/vr)arrZ(~//e=))l/4 = 39/s(d/e2)s/4, for m~ ~> 6; (9b) 

l im (ml) = rral4(d/e~)*/4. (9c) 
m l - ~  

I f  a wedge  falls into the  second class, we can always add another  side to the  

c i rcumscr ib ing  polygon wherever  a central  angle of  more  than  7r/2 is 

encountered .  T h i s  is i l lustrated in Fig. 3. Since a convex polygon has a total 

C 

A "( 

o 
FIG. 3. Illustration of the addition of a side to the circumscribing polygon which 

• -approximates a convex region, but which gives a central angle of greater than ~r/2. 
Clearly, E~ 1~ and E~+~ 1 are less than • from the region's perimeter, and y~l~ and m Yi+l 
can be made less than 7r/2, by repeated applications if necessary. 

central  angle of  2% there  can be at mos t  three angles greater  than 7r/2. Thus ,  

we have shown that  the bound  on the n u m b e r  of  member s  of  the second class 

is 

m2 = 3. (10) 

T h e  upper  bound  we are seeking is jus t  the total n u m b e r  of  e lements  in 

these two classes. T h i s  is clearly 

m = m  1 - ~ m  2. (11) 

643/3o/z-5 
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Substituting (9a) for ml ,  we have Theorem 1: 

~< 7r3/~ r 2 (tan(Tr/ml)) 2 tan(2rr/ml ) ]114 
m [(A/e ) - -  (~r/ml)2 (27r/ma) + 3. (12a) 

As m becomes very large, 

Two items seem worth noting here. First, if we are interested in 
E-approximating a convex figure that is roughly 1000 × 1000 e-units in area, 
this bound says that no more than about 90 sides are necessary for con- 
struction of the polygon. 

Second, intuition suggests that the limiting case as e -~-0  for polygonal 
approximation is the circle. Which convex figure of area -//actually requires 
a maximal number of e-approximating edges is an open question. For a circle 
of radius R, both this bound and the perimeter bound give 

m ~ ~(R/E)I/~. (13a) 

Straightforward construction gives 

ncircle ~ ~r(2-x/Z)(R/e) 1/2. (13b) 

The  difference was finally traced to inequality (5rl), where in the case of 
a circle 

e' ~ 2e. (13c) 

Bolour and Cover's proof has a similar generous overbound. 
The  bound is a very smooth, monotonically increasing function of t//e z. 

Because it must dominate many discrete cases, where n must make integral 
jumps at certain values of e for a given A, it is not clear that the lower 
bound indeed has an overgenerous factor of ~/2. In  particular, the E- 
approximation of regular or nearly regular ~-sided polygons by n2-sided 
polygons, where nl < nz and n 1 is relatively prime to n2, sometimes requires 
a larger n2 than a circle of the same area. For example, the minimum e for 
which it is possible to find a triangular approximation is smaller for a circle 
than for a square. 

EXTENSION OF THE BOUND TO NONCONVEX SETS 

To extend the result obtained previously for convex sets, we may note 
first of all that for simply connected sets that are fairly simple or "blob-like," 
we can decompose the boundary by finding its inflection points. Then  we can 
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apply the bound to the convex and nearly convex sets (to be defined below) 
formed by the portion of the boundary between two adjacent inflection points 
and the straight line segment between these points. 

I f  there are Nip (NIp ~> 2) inflection points and cusps on a figure's 
boundary, and the figure has a convex hull with area A, then clearly there 
are no more than N1p sets, and each has an area no greater than A. So the 
number of sides necessary for such a figure is bounded by 

n ~ m B ~ N~pmNc(A), (14) 

where mNc is the bound for nearly convex regions, defined in Eq. (16). 
An example of this decomposition is given in Fig. 4. 

\ 

l \ 

/i6 A5 

Fro. 4. Illustration of the decomposition of a nonconvex set into convex (and 
nearly convex) subsets. Convex hull boundaries are dashed lines where different from 
original set boundary. 

A better bound can be generated with relatively little work using the same 
ideas. The boundary is traced, and the convex break points are found. Then  

m~ ~< ~ (/(A(m~0 ~/~(A~/e~) ~/~ + 3), (15) 
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where, as before, rnl~ is the number  of sides in the smooth section bound, and 
KA(j)  = (tan(j)/j)2(tan(2j)/2j). Each of the areas in this sum is associated 
with one of the smaller sets indicated in Fig. 4. I f  any of these sets is not  
convex, then the nearly convex bound should be used as necessary in Eq. (15). 

One definition of such blob-like regions is that  at least one point  exist for 
which the winding number  of a point  traversing the boundary goes from 0 
monotonically to 1. When  this winding number  condition is not satisfied, 
one encounters some difficulty defining a minimal number  of convex regions 
that  include all of the boundary.  This  occurs, for example, in Fig. 5. 

) 
FIG. 5. A spiral region illustrating a large winding number situation. 

Note that a figure of this sort can be drawn with only two inflection points. 
In  this case, a line segment drawn between the inflection points results in a 
number  of nearly convex sets similar to the one shown in Fig. 6a. 

For  such a region, the arguments made in the convex-set coding bound 
proof  hold with slight modifications. First ,  in Eq. (7a), B could be somewhat 
greater than 2~r, say 3% but  no greater. Second, there might  be two more sides 
for the extra turning angle segment. In  this case, a factor of (3~r/2~r) is intro- 
duced into the cot~(B/2ml) term in Eq. (Sf), so that the coefficient in rn a goes 
from rr~l 4 to 7ra/4(3/2) 1/~, and m s goes from 3 to 5 in Eq. (10). 

FIG. 6a. An example of a nearly convex component of a spiral. 
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FIG. 6b. Illustration of a few nearly convex regions. For the centers indicated by 
dotted line intersections, both the central and peripheral turning angles are mono- 
tonically increasing (or decreasing) and satisfy the integral limits B ~ 3~r (peripheral 
turning angle), and G ~< 27r (central turning angle). 

Changing the limits allows one to avoid consideration of the value of the 
angles of the boundary Crossing the straight line break segments. Regions 
such as the one illustrated in Fig. 6b are included. We will call regions 
satisfying these less restrictive conditions "nearly convex." For purposes of 
reference, we will write the e-coding bound for such regions as Theorem 2: 

mNc ~< KA(ml) 7ra/~(3/2)l/2(~//e2)l/~ 4- S. (16) 

It  seems that such a change in the limits allows one to use only inflection 
points and cusps as critical points, and thus, to find the coding limits with 
purely local boundary operations. 

I f  the smallest integer greater than or equal to the maximum winding 
number is N ~ ,  then there may be 2N~ regions of this type. There also may be 
two regions at the ends of the "loop" that must be bounded separately. So, 
with A the convex hull area, as previously, we can write a bound for spiral 
regions as Corollary 2A: 

rn~ <~ 2(Nw + 1)(39/s(312)a/~(Ald) a/4 + 5). (17) 

If, as before, we identify the individual areas, a stronger bound may be 
obtained at the cost of more computation. In  this case, we have Corollary 2B: 

mw ~ Z (KA(m~i)(312)~/2~3/~(Ai/~2) ~/4 4- 5), (lS) 
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where the symbols have the same meaning as before. I f  the sets into which the 
original figure is decomposed are selected by the use of adjacent critical 
points, where critical points are defined as inflection points, cusps, or points 
where the tangent vector of the boundary has swept through 27r without 
encountering an inflection point or cusp, then Corollary 2B can be used for 
computing the bound for any closed figure in that form. 

A slightly different approach is the following. I f  we pick a central point 
more restrictively, so that the winding number of our boundary is monotone 
(as it is in the case of a point near the center of a spiral), we can then define 
"area" as the integral swept over by a line segment from our central point 
to the periphery. Thus,  some areas of the figure (and its convex-hull 
complement) are counted multiply, as in Fig. 7. 

FIG. 7. 

t 
Illustration of mult iply counted areas in a spiral decomposition. 

In  this situation, we can set the limits on G as G ~< 2~rNw, and, assuming 
the worst case on the periphery, on B as B ~< 27rN~ -]- 7r. B and G are 
defined in Eqs. (7a) and (7b). Since the total turning angle of the boundary 
is also bounded by B, ms,  the sharp corner bound, becomes 

ms ~ B/(~/2) --  1 = 4N~ + 1. (19) 

Thus,  the e-approximation polygonal bound for a figure having monotone 
winding number N~ and area A '  is Corollary 2C: 

m ~ ~3/4(N w + 1/2)l/2N~/4(A'/e2)l/4KA(ml) + 4N w + 1, (20a) 

39/SN~I4(N w + 1/2)~lS(A'/es)~/~ -]- 4N~ + 1. (20b) 
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This bound is better than the previous one only in the case where the area 
in the spiral is concentrated near its center, except for the factor of (~_)1/2. 
That  factor is about ~- better, which can be nontrivial for large mw• 

Appropriate application of Theorem 2, Corollary 2A, and Corollary 2B 
should give polygonal approximation bounds for any figure of interest in 
pattern recognition or image coding. 

A PROCEDURE FOR APPROACHING THESE ]~OUNDS 

We base our procedure on the Sklansky-Chazin-Hansen (1972) (SCH) 
algorithm. First, we find the minimum-perimeter polygon (MPP) of a cellular 
complex in the SCH sense. Call this ~J. Then, shift the boundary of the 
MPP normally outward by e and connect adjacents ends of its expansion by 
straight line segments. This gives us a cellular boundary of the type shown 
in Fig. 8, which we call 0(J + e). 

~ l - -  - -  ~ 8 (J+~) 

FIe. 8. Illustration of a boundary expansion for an MPP. 

We will assume essentially infinite-precision arithmetic, and sampling and 
extreme-point specification on a be-net. The parameter b will need to be less 
than 1 for the following arguments to apply, most conveniently b ---~ 2 -n, 
where n is a positive integer. We will first assume a convex cellular image. 

We will fit line segments into the tube formed by ~J and ~(J + e). The 
extreme points will be be lattice points close to (or on) the outer boundary 
o(J + e). The vertices of ~J  will be constraint points through which or close 
to which the line segments will pass. Note that we are seeking a minimum- 
number-of-sides polygon rather than a minimum-perimeter polygon. Some 
aspects of the differences and similarities between the two will be discussed 
later. 
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The Procedure 

(0) Pick an initial point. For example, take the E-expanded point normal 
to the line segment to the right of (or clockwise from) the upper left vertex 
of the sampling polygon. This will be the initial current origin of the next 
steps. 

(1) Find the minimum clockwise angle of the vectors from the current 
origin to the constraint points on ~J, and the maximum of the angles of the 
ends of the line segments in ~(J @ e) for each segment in paired (MPP 
segment to expanded segment) sequence clockwise. Continue until an 
end-point of a segment on ~(J @ e) has an angle greater than the minimum 
angle of constraint on ~], or the initial origin is encountered. If the latter 
condition holds, close the list of)extreme points and exit; otherwise proceed. 

(2) Find the intersection of the line from the current origin through 
the constraint point and the line segment just found, one end of which 
violates the constraints. 

(3) Find the nearest lattice point that gives a line segment to the current 
origin, which crosses neither ~J nor o(J -~ E). Put this point in the extreme 
point list, and make it the current origin. Return to step 1. 

To generalize this procedure to images with concavities, we find inter- 
sections of expanded segments of ~(J + e) at concave vertices of oj. Clearly, 
extreme points can now be on or close to ~J as well as o(J -}- e). 

This procedure is repeatable, like that of SCH for the MPP. It is not 
necessarily convergent to a single limiting polygon; nor is it independent of 
direction of application (clockwise or counterclockwise), selection of original 
vertex, or rotation or reflection of the original (or sampled) figures. It should 
be less efficient in computational complexity and more parsimonious of 
representation than that of Ramer (1972). 

What it does do very well is to allow separate control of sampling and 
registration error, and of representation or transmission accuracy. It  is a 
natural method for studies of fidelity of area-oriented representations. 

An Alternate Procedure 

A computationally simpler method for E-approximation may be found by 
noting that the vertical and horizontal portions of a 4-connected cellular 
boundary are fairly insensitive to smooth boundary changes. It  is the nearly 
diagonal elements that are very sensitive. One can perform a half-cell 
expansion, as described in Sklansky (1972c) on the boundary. One can then 
perform a polygonal approximation similar to the above, using the outer 
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boundary points as extreme points, and the inner convex corners as 
constraints. This avoids the necessity of solving simultaneous equations, 
followed by searching for a lattice point that satisfies the constraints. No 
operations need to be performed on a finer scale than e/2. 

Bounds for Sampling and Representation on the Same Net 

I t  is desirable to apply our theory to the intuitively appealing and compu- 
tationally well-investigated case of both sampling and representation on an 
e-net or rectangular mosaic. There are (at least) two problems associated 
with such an application. First, in an extreme case, both OJ and O(J + e) 
could force approximation errors of almost (but not quite) be on a be-net. 
Thus, we have an approximation 

e~ __~ e(1 - -  2b) (21) 

in some cases. Since e and % are nonnegative by assumption, this suggests 
that the theory might not apply for b >/ 1/2. Bolour and Cover (1972) used 
b ~- 1/4, and found eb = e/2 in calculating set entropy. 

The second problem, more subtle, though well known, is that the 
uncertainty in boundary location is e for horizontal or vertical segments, 
but it is smaller for oblique segments, approaching zero for diagonal or 
4-45 ° segments. From Fig. 9, we see ttlat 

d = e(cos 0 - -  sin 0), 0 ~< 0 ~< ~r/4. (22) 

Similar equations hold for other ranges of 0. 

FIG. 9. 
gular grid. 

i E 
F 
I 

Illustration of the effect of slope on boundary approximation on a rectan- 

We assume uniform probability distributions over both spatial location 
and angle. We are aware of no assumption that is to be preferred. This 
assumption gives an average angular-dependent e a of 

ea = (4/~r)(21/2 - -  1)e ~ e/2. (23) 
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Considering the average over a large number of figures sampled on an 
E-mosaic, we further assume that the average sampling quantization error is 
near E/2, and that the truncation error is about 1/2 of the quantization error. 
Thus, we are led to the inference that an effective ~, 

~s ~ (E/2)(1 - -  1/2)(1/2), (24) 

may be used either in the perimeter or area bound inequalities to determine 
the average behavior of the MPP algorithm as an efficient shape descriptor. 
It  should be noted that this average assumes some type of optimum recoding 
of MPP vertices, which even Sklansky's (1972a) "spine code," for example, 
does not fully employ. The  spine code improves Freeman's chain code 
(Freeman, 1961) by giving horizontal and vertical run lengths, but this is 
still more points than the vertices of the NIPP require. 

Since ~ enters the bound on the number of extreme points to the --½ power 
in both the perimeter and area bounds, Eq. (24) implies that the "average" 
behavior of an E-net sampling and encoding is at least 2~/2 less parsimonious 
than the upper bound on precise E-approximation, where parsimony is 
measured by number o f  points needed for representation. Since the extreme 
example we have found, the circle, is 21/3 more parsimonious than this bound, 
the worst case of precise encoding is wobably a factor of 4 more parsimonious 
than the average for E-sampling and encoding. 

Because a factor of 4 is not overpowering, and this section's analysis is 
imprecise at best (l), the conclusions that we feel should be drawn from this 
section are the following: 

(1) With proper encoding, an E-sampled blob should be encodable 
to within 1 or 1½ orders of magnitude of the perimeter bound of Bolour and 
Cover, or of the area bound given here. 

(2) With a factor of 4 or 8 oversampling and processing, it should be 
possible to obtain a representation that is both more accurate and more 
efficient than sampling at the precision desired. 

CONCLUSIONS 

We have found that convex sets can be E-approximated by polygons with 
considerably fewer sides than had been previously shown. The  number of 
sides necessary to E-approximate a convex figure is no more than a constant 
times the fourth root of its area. 

I t  has been shown that concave (nonconvex) figures can be decomposed 
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into convex or nearly convex subfigures. A slight extension of the convex set 

coding bound applies to the nearly convex figures. I t  is then shown that 
any closed figure can be e-approximated by a polygon having a number  of 

sides bounded at most by the area of the figure's convex hull times twice the 
sum of inflection points, cusps, and maximum winding number.  The result 

appears to be applicable to most continuous curves, with the area defined by 
closing the curves by one (or at most two) straight line segments. 

A procedure for approaching such bounds on e-approximation is given. 
One important result found is that in order to approach these bounds in 
practice, it is necessary to sample and to represent the figure on a finer grid, 
less than one-half the size of the approximation parameter, e. I t  is found that 
the effective parameter % is substantially smaller than the chosen parameter E 

unless the sampling-representation grid is considerably smaller than E/2. 
Finally, a heuristic argument is given to find the effective % of the tradi- 

tional sampling, representation, and approximation on the same scale. 
From this analysis, the worst case that we have been able to find for E- 

approximation with sampling and representation on an e/4-net is four times 
as efficient as the average behavior of the traditional method on an e-net in a 
number-of-quanti t ies sense. If  the encoded sets are larger than about 4 × 4 
on an e-grid, the same statement holds in a number-of-bits  sense. 

RECEIVED: April 30, 1975; REVISED: July 1, 1975 

REFERENCES 

BOLODR, A., AND COVER, T. M. (1972), "On the Number of Convex Subsets of the 
Unit Square," Technical Report No. 2 (NSF Grant GK-34363), Department of 
Statistics, Stanford University, Stanford, Calif. 

DUDA, R. O., AND HART, P. E. (1973), "Pattern Classification and Scene Analysis," 
Wiley-Interscience, New York. 

EDEN, M. (1960), A two-dimensional growth process, in "Proceedings of the Fourth 
Berkeley Symposium on Mathematical Statistics and Probability," University of 
California Press, Berkeley, Calif. 

EDEN, M. (1968), "On a Procedure for Coding Connected Figures in a Picture," 
Quarterly Progress Report No. 91, Research Laboratory of Electronics, Massachu- 
setts Institute of Technology, Cambridge, Mass. 

FREEMAN, H. (1961), On the encoding of arbitrary geometric figures, LR.E.  Trans. 
Electronic Comput. EC-10, 260-268. 

FREEMAN, H., AND GLASS, J. M. (1969), On the quantization of line-drawing data, 
IEEE Trans. Syst. Sci. Cybern. SSC-5, 70-79. 

GRAHAM, D. N. (1967), Image transmission by two-dimensional contour coding, 
Proc. IEEE 55, 336-346. 



186 ELLIS AND EDEN 

HUANG, T. S., SCHREIBER, W. F., AND TRETIAK, O. J. (1971), Image processing, Proc. 
IEEE 59, 1586-1609. 

MINSKY, M., AND PAPERT, S. (1972), "Perceptrons: An Introduction to Computational 
Geometry" (2nd printing), MIT Press, Cambridge, Mass. 

MONTANARI, U. (1968), A method of obtaining skeletons using a quasi-Euclidean 
distance, J. Ass. Comput. Mach. 15, 600-624. 

MONTANARI, W. (1969), Continuous skeletons from digitized images, J. Ass. Comput. 
Mach. 16, 534-549. 

MONTANARI, G. U. (1970), On limit properties in digitization schemes, J. Ass. Comput. 
Mach. 17, 348-360. 

PAN, J. W. (1962), "Reduction of Information Redundancy in Pictures," Sc. D. 
Thesis, MIT, Cambridge, Mass. 

RAMER, V. (1972), An iterative procedure for the polygonal approximation of plane 
curves, Comput. Graphics Image Process. 1,244-256. 

SKLANSKY, J. (1970), Recognition of convex blobs, Pattern Recog. 2, 3-10. 
SKLANSKY, J., CHAZIN, R. L., AND HANSEN, B. J. (1972a), Minimum-perimeter 

polygons of digitized silhouettes, IEEE Trans. Comp. C-21, 260-268. 
SKLANSKY, J., AND NAHIN, P. J. (1972b), A parallel mechanism for describing sil- 

houettes, IEEE Trans. Comp. C-21, 1233-1239. 
SKLANSKY, J. (1972c), Measuring concavity on a rectangular mosaic, IEEE Trans. 

Comp. C-21, 1355-1364. 
WALPERT, G. (1970), "Image Bandwidth Compression by Contours," Sc. D. Thesis, 

MIT, Cambridge, Mass. 
YOUNG, I. T. (1966), "Television Bandwidth Compression Using Area Properties," 

S. M. Thesis, MIT, Cambridge, Mass. 


