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Abstract 

We denote the class of deterministic top-down tree transformations by DT and the class of 
homomorphism tree transformations by HOM. The sign of a class with the prefix 1- (sl-, nd-) de- 
notes the linear (superlinear, nondeleting) subclass of that class. We fix the set M = {HOM,sl- 
DT, Z-DT, nd-DT, DT) of tree transformation classes. Then consider the monoid [M] of all tree 

transformation classes of the form Xl 0. o X,, where o is the operation composition, m 3 0 and 
the Xi’s are elements of M. As the main result of the paper, we give an effective description 
of the monoid [A41 with respect to inclusion. This means that we present an algorithm which 
can decide, given arbitrary two elements of the monoid, whether some inclusion, equality or 

incomparability holds between them. 

1. Introduction 

Top-down tree transducers were introduced in [ 181 with the motivation of studying 
abstract properties of syntax-directed compilers. A top-down tree transducer induces 
a tree transformation, which consists of pairs of terms over ranked alphabets. Hence, 
a tree transformation is a binary relation over terms. Terms are called trees in this 
area and a tree transformation is the abstract model of the translation realized by a 
syntax-directed compiler. 

A top-down tree transducer translates an input tree by applying so-called rules at 
nodes of the input tree processing the tree from the root to the leaves. Each rule has 
the form q(a(xl,. . . ,x,,,)) + c, where d is an input symbol of rank m that labels a 
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node of the input tree, q is a state of the tree transducer and r is a term consisting of 

output symbols and terms of the form p(q), where 1 Q i<m and xi refers to the ith 

descendant and p is a state of the tree transducer. A top-down tree transducer is said 

to be deterministic if, for any state q and symbol IS, there is at most one rule of the 

above form. In this paper we consider only deterministic top-down tree transducers. 

A top-down tree transducer is called linear (nondeleting) if, for every rule of the above 

form, for each 1 <i<m, a term of the form p(xi) appears at most once (at least once) 

in 5. As a result of this condition, the translation of any direct subtree ti of a tree 

dh,..., t,) appears at most once (at least once) in the translation of o(ti, . . . , t,). The 

linear and the nondeleting subclasses of the class of top-down tree transformations 

were intensively studied in the papers [5] and [l]. Recently, an even more special 

subclass of deterministic top-down tree transducers was considered in [4]. It is called 

super-linear and defined as follows. A top-down tree transducer is superlinear if it is 

linear and, for any input symbol CJ of rank m and integer i with 1 < i <m, each term 

of the form p(Xi) may appear in the right-hand side r of at most one rule of the form 

q(&, . . .,&a)) + r. 

In our sense, a tree transformation class is a class consisting of tree transformations 

having a certain property. Thus, one can speak about the class of top-down tree trans- 

formations and its subclasses such as linear top-down tree transformations, nondeleting 

top-down tree transformations, etc. The operation composition, denoted by o, is defined 

for tree transformations and models applying two translation devices to a language af- 

ter each other in such a way that the output of the first device is the input of the 

second one. The concept of composition is extended for tree transformation classes. 

The composition of two classes Ci and CZ is denoted by Ci o CZ and is defined as the 

class of all tree transformations of the form 71 o ~2, where ri E Ci and ~2 E C2. 

The main task of this paper is studying compositions and decompositions of top- 

down tree transformation classes. 

The motivation of considering composition comes from the fact that applying tree 

transducers in succession can yield an extra transformational power in the sense that 

the composition of the tree transformations induced by them cannot be induced in 

general by a single tree transducer. Hence, some tree transformation classes of the 

form Cl o . . . o C,,,, where Cl,. . . , C, are tree transformation classes of some types, 

cannot be characterized as the class of tree transformations induced by tree transducers 

of a certain type. At the same time one may want to know, given some tree transducers, 

whether the consecutive application of them can still be substituted by a single one 

of some type. In the language of tree transformation classes, this problem can also 

be expressed as whether Cl o . . o C, C C holds, where Cl,. . . , C,,, and C are tree 

transformation classes of some types. In particular, if C o C c C holds for some class 

C, then we say that C is closed under composition. 

Decomposition is motivated as follows. Given a top-down tree transducer of a certain 

type, one would like to know whether the tree transformation defined by it could also be 

obtained by applying two or more tree transducers of some simpler types in succession. 

If this is the case, then the working mechanism of the original tree transducer can be 
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understood more clearly. In terms of tree transformation classes, this can be expressed 

as whether C&C, o...oC,,,, where C is the class of tree transformations induced by 

tree transducers of the original type, while Ct , . . . , C,,, are proper subclasses of C. In 

this case we say that C can be decomposed into Cl,. . . , C,,,. Of course, decomposition 

equations like C=Ci o ... 0 C, are also of potential interest. 

We denote the class of deterministic top-down tree transformations by DT and its 

subclass induced by one-state deterministic top-down tree transducers by HOM. The 

sign of a class with the prefix I- (sl-, nd-) denote the linear (superlinear, nondeleting) 

subclass of that class. 

Up to now, several decomposition equations and inclusions have been obtained for 

different subclasses of deterministic top-down tree transformations. For example DT = 

nd-HOM o I-DT and DTond-HOM=DT were proved in [5] and [l]. For superlinear 

top-down tree transducers DT= nd-HOMO sl-DT was obtained in [4]. If one has some 

decomposition equations like the above ones, then further ones can be derived from 

them. For example, we also obtain DT2 = nd-HOMosl-DT2, because 

DT2=DToDT 

= DT o nd-HOM o sl-DT (by DT= nd-HOMO sl-DT) 

= DT o sl-DT 

= nd-HOM o sl-DT2 

(by DT o nd-HOM= DT) 

(by DT= nd-HOMO sl-DT). 

Then it is natural to raise the question whether the set of decomposition equations 

and inclusions we already know are sufficient or not to derive all other ones. 

The above problem can be formed more generally as follows. Given a finite set M 

of tree transformation classes and two tree transformation classes of the form 

x, OX,O~~~OX, and Yi o Y2 o . . . o Y, 

such that Xi and Yj are in M for every i, j with 1 <i <m and 1 <j < n, we would 

like to know whether inclusion of some direction or equality or incomparability holds 

between them. Note the tree transformation classes of the form Xl 0 X2 o . . . o X, forms 

a monoid, called the monoid generated by M with composition. Hence the problem 

can alternatively be stated as follows. Given M, present an algorithm that decides the 

inclusion between the elements of the monoid generated by M. (Of course, by standard 

arguments, a slight modification of this algorithm can also decide whether equality holds 

or not.) This question was already investigated and a general method was proposed for 

developing such an algorithm in [12]. A description of that general method is presented 

also in [ 141. In the works [lo], [ 121, and [ 131 the general method was implemented 

for a set M consisting of DT and six of its subclasses. Moreover, the method was 

also applied for a set consisting of deterministic bottom-up tree transformation classes 

in [8]; for a set of deterministic top-down tree transformation classes with regular 

look-ahead (see [6]) in [19]; and recently for a set which consists of deterministic 

top-down tree transformation classes both with look-ahead and without look-ahead and 
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of deterministic bottom-up tree transformation classes in [15]. So it seems that the 

general method successfully applies to different choices of M. The significance of 

this method lies in the fact that an exhaustive answer can be given to all questions 

concerning inclusion or equality between any two elements obtainable from a fixed 

set of tree transformation classes by composition. Especially, all problems concerning 

composition and decomposition of the elements of that fixed set can be solved. 

In the present paper we slightly modify the general method and apply it to the set 

A4 = (HOM, sl-DT, I-DT, nd-DT, DT}. We chose this particular M because we want 

to examine how the new class sl-DT behaves when composing it with known deter- 

ministic top-down tree transformation classes. The implementation of the method for 

this choice of M involves the following activities. We collect some known decompo- 

sition equations, especially from the recent ones appearing in [4], and show that all 

other equalities can be derived from them. We represent the tree transformation classes 

obtainable by composition from elements of A4 as strings over the free monoid M*. 

With this we achieve that we can exploit the reduction techniques developed in the 

theory of string rewriting systems for compositions of tree transformation classes. We 

give a direction to each equality so that a terminating and confluent rewriting system 

R over M is obtained. We construct the inclusion diagram of the tree transformation 

classes represented by the normal forms of R. Then the inclusion can be decided be- 

tween the tree transformation classes Xi o X2 0. . . OX, and Yi o Y2 0. . . o Y, obtained from 

elements of M by composition in the following way. We take the strings representing 

them and reduce these strings by rules of R to normal forms u and u, respectively. 

Then, inclusion holds between Xi o X2 o . . . OX,,, and YioY2o...oY,, ifandonlyif 

the corresponding inclusion holds between tree transformation classes represented by 

the normal forms u and u. This latter one, however, can be read from the mentioned 

inclusion diagram immediately. 

The paper is organized as follows. In Section 2, we have collected the notions 

and preliminary results that are necessary for understanding the paper. In Section 3, 

we describe the problem of deciding the inclusion in a monoid generated by tree 

transformation classes and present a general method for the solution. In Section 4, we 

apply this method to the monoid generated by the set M = (HOM, sl-DT, EDT, nd- 

DT, DT} of tree transformation classes. However, the proof of the correctness of the 

inclusion diagram of the tree transformation classes represented by the normal forms 

is postponed to Section 5. 

2. Preliminaries 

In this section we introduce the notions and notations which are necessary for un- 

derstanding the paper. Moreover, we recall some preliminary results referred to in our 

proofs. 

Sets, strings: For arbitrary sets A and B, we denote by A c B that A is a subset of B, 

by A c B that A is a proper subset of B and by A w B that A and B are incomparable. 
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Let H be a set of sets partially ordered by the inclusion relation C . By the inclu- 
sion diagram of H we mean the Hasse diagram [3] of H with respect to the partial 

order c. 

An alphabet A is a finite nonempty set. The set of strings over A is denoted by 

A*. The empty string is denoted by e and the length of a string w E A* is denoted 

by length(w). Recall that A* is the free monoid generated by A with the operation 

concatenation. 

Relations. Given two sets A and B, any subset 8 of the Cartesian product A x B is 

called a relation from A to B. For a E A and b E B, we write aeb to mean that (a, b) E 8 

and we put e(a) = {b 1 aeb}. Th e set {a E A 1 aeb, for some b E B} is called the domain 
of 8 and is denoted by dam(8). We say that 9 is total, if dom(fI) = A. 

A relation from A to A is also called a relation over A. The identity relation 

{(a, a) ( a E A} over A is denoted by Id(A). 
Let 8 be a relation from A to B and let p be a relation from B to C. The composition 

of tI and u is the relation 6 o p from A to C defined by 8 o p = {(a, c) 1 a0b and b,uc, 
for some b E B}. Moreover, let B be a relation over A. The n-fold composition 8” of 

8 is defined by induction as follows: 8O = Id(A) and 8” = 8 o en-‘, where n > 0. The 
rejexive, transitive closure of 0 is the relation 8* = UnaO 8”. 

We extend the concepts of domain and composition for classes of relations. Let Y 

and Z be classes of relations, the domain of Y is defined by dom( Y) = (dam(8) 1 B E Y} 

and the composition of Y and 2 is the relation class Y o 2 = { 8 o cr ) i3 E Y and D E 2). 

Moreover, let Y’=Y and Y”=YoY”-l, where n>l. 

A class Y of relations is said to be closed under the composition if Y2 C Y holds. 

The closure of Y under the composition is the class Y+ = Un> 1 Y”. 

Finally, we introduce the concept of a hierarchy. A family of classes { Ck 1 k > 1) is 

called a hierarchy if Ck & Ck+l holds for each k 2 1. A hierarchy is said to be proper 
if each inclusion is proper, i.e. Ck C &+I holds for every k> 1. 

Trees: A ranked alphabet C is a finite alphabet in which every symbol has unique 

rank in the set of nonnegative integers. For each m > 0, the set of symbols in z having 

rank m is denoted by C,. We write C = {~(lm’), . . . , cirnn’} meaning that C = {crl, . . . , 0,) 
is a ranked alphabet and the symbol oi has rank mi, for each 1 <i <n. 

For a set H, disjoint with C, the set of terms (or rather trees) over C indexed by 

H is denoted by Tz(H) and it is defined as the smallest set U satisfying the following 

two conditions: 

(i) H u CO C U, 

(ii) 44, . . . . tm)EU whenever m>O, ~EC,,, and tl,..., t,,,EU. 

The set Tz(0) is written as Tz and it is called the set of ground trees over C. 

The trees can be written as expressions with parentheses, e.g. if C = {6c2), a(‘), #co)} 

then 6(0(#), #) E Tz. A “chain” tree, like o(. . . a(#). _ .), where o occurs i times, is 

abbreviated by ei(#). For example, a3(#) denotes the tree a(o(cr(#))). 

Let z be a ranked alphabet and let 0 E z,,, where n 2 1. Moreover, let 151,. . . ,L, C T,. 
The set defined as {a(tl,...,tn)lt;ELi, for l<i<n} is denoted by the expression of 

Gl ,...,L). 
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Tree transformations: Let C and A be ranked alphabets. A tree transformation 

from Tz to TA is a relation from TX to TA. Since tree transformations are relations, 

the concept of their composition and domain should be clear. 

We put I={ld(Tz)]Z is a ranked alphabet}. Now, it is possible to define the 

reflexive closure of a tree transformation class Y as Y* = UnaO Y”, where Y” =I. If, 

for a class Y of tree transformations, Z C: Y holds, then Y2 C_ Y if and only if Y2 = Y. 

We specify a countable set X = {xl ,x2,. . .} o s m o s called variables and we set f y b 1 

& = {Xl , . . . ,xm}, for every m 20. The expression T&8&) will be abbreviated by Tz,,,,. 

We distinguish a subset ?z,,, of Tz,, as follows: a tree t E TX,,,, is in fz,, if and 

only if each variable in X, appears in t exactly once and the order of the variables in 

t is just xi,...,~,. 

The set Var(t) of variables occurring in a tree t E Tz,,, is defined by induction as 

follows: 

(i) if t =.q EX~, then Var(t) = {xi}, 

(ii) if t = o E ZO, then Var(t) = 0, 

(iii) if t = a(tl ,. . ., t,), where m > 0, o EC, and tl,. . ., Tz, then Var(t) = lJlGi9,, 

Vai(ti). 

Finally, we introduce the concept of tree substitution. Let m >O, t E Tz,,,, and 

hi,..., h, E H where H is an arbitrary set of trees. We denote by t[hl,. . . ,h,] the 

tree which is obtained from t by replacing every occurrence of xi in t by hi, for every 

1 < i < m. Clearly, t[hl, . . . , h,] f Tx( H) holds. 

Tree transducers: A top-down tree transducers is a 5-tuple T = (Q, C, A,qo, R), 

where: 

l Q is an unary ranked alphabet, meaning that Q = Qr, called the set of states, such 

that Qn(ZuAUX) = 0, 
l C and A are ranked alphabets, called the input and the output ranked alphabet, 

respectively, 

l qo is a distinguished element of Q, called the initial state, 

l R is a finite set of rules of the form q(a(xl,. . . ,x,)) + t[ql(xi,), . . . ,qn(xin)] where 

m,n>O, aE&, l<ij<m for every lbj<n, q,ql,..., q,,EQ and tE?A,,. 

A rule as above will be referred to as a q-rule for a or shortly as a (q,a)-rule. We 

say that T is deterministic if, for every q E Q and a E C, there is at most one (q, a)-rule 

in R. The expression “deterministic top-down tree transducer” will be abbreviated by 

“dt transducer” in the rest of the paper. 

Consider the above (q, a)-rule. The term t[q, (xi, ), . . , qn(Xi,)] will be called the right- 

hand side of the rule. We note that the order of the variables from left to right occurring 

in the right-hand side of that rule is Xi,, . . . ,xl,, because the order of the ones from 

left to right occurring in t is xi,. . . ,x,. When we speak about dt transducers and the 

details are uninteresting, we just write rhs(q, a) to specify the right-hand side of a 

(q, a)-rule. 

The rules in R induce a relation +r, called derivation, over the set G(Q(Tz)). It 

is defined as follows. For r, s E Td(Q( TX)), r +r s holds if and only if there is a rule 

q(+i, . . . ,h)) -+ t[ql(xi, 1,. . . , qn(xi, )] in R such that the tree s is obtained from Y by 
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replacing an occurrence of a subtree q(a(tl,. . . , t,)) of r by t[ql(ti,), . . . ,qn(tin)], for 

some tl, . . . , tm E Tz. 

Now we define the tree transformation Zr induced by T as 

TT = {(r,s) E Tz X TA ) qo(r) + s}. 

A tree transformation r is called a dt tree transformation if there exists a dt trans- 

ducer T so that r = rr holds. The class of dt tree transformations is denoted by DT. 

Special types of deterministic top-down tree transducers: We introduce some special 

types of dt transducers. The types (a), (b), (d) and (e) are well known from the theory 

of tree transducers, while (c) is investigated in [4] recently. 

Let T = ($2, Z, A, q0,R) be a dt transducer. We say that T is 

(a> 

(b) 

cc> 

(4 

Total (t) if for every m 2 0, a E Z;, and q E Q, there is a (and hence exactly one) 

(q,a)-rule in R. Note that in this case rr is a total tree transformation. 

Linear (1) if, for every rule q(a(x,, . . . ,xm)) -+ t[ql(Xi,), . . .,q,,(xi,,)] in R, each of 

the variables xl,. . . , x, appears at most once in the right-hand side. Note that in 

this case m >, n. 

Superlinear (sl) if it is linear and, for every a E C, with m b 0 and two different 

states q, q’ E Q, Var(rhs(q, a))nVar(rhs(q’, a)) = 0 holds. Equivalently, T is sl-dt 

if it is linear and, for every a E C, with m 2 0 and 1 <i <m, there is at most one 

q E Q such that Xi occurs in rhs(q, a). 

Nondeleting (nd) if, for every rule q(a(x,, . . . ,xm)) --f t[ql(xi,), . . . ,qn(xin)] in R, 

each of the variables xl,. . . , x, appears at least once in the right-hand side. Note 

that in this case m <n. 

(e) A homomorphism tree transducer (horn) if it is total and Q is singleton set. 

These attributes can be combined. For example, by an 1-nd-dt transducer, we mean 

a linear and nondeleting deterministic top-down tree transducer. 

Let x be a combination of some of the modifiers in {t, 1, sl,nd}, such as 1-nd, etc. 

A dt tree transformation is said to be an x-dt transformation if it can be induced by an 

x-dt transducer. The class of x-dt tree transformations is denoted by x-DT. (Note that 

if x and y are combinations such that y is a permutation of x, then x-DT = y-DT.) 

We simply write horn instead of horn-dt. For example, the 1-nd-horn transducer 

means a linear and nondeleting homomorphism dt transducer. The class of x-horn tree 

transformations is denoted by x-HOM, respectively. 

We note that, for any combination x of modifiers, Z cx-DT and Z &x-HOM hold. 

Observe that if C and D are tree transformation classes and Z G D, then C G C o D. 

This is because every tree transformation r in C can be decomposed as z = r o 1, where 

1 is a suitable identity in D. Specially, x-DT” cx-DT”+’ and x-HOM” Cx-HOM”+’ 

hold for every n > 0. 

Recognizable tree languages: A top-down tree transducer T = (Q, C, A, qo, R) is called 

tree recognizer if ,Y = A and each rule in R is of the form 
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where m20, a EZ, and q,q, , . . . , qm E Q. In addition, if T is deterministic, then it is 

called deterministic tree recognizer. Obviously, if T is a tree recognizer, then ZT is a 

partial identity over Tz. The tree language recognized by T is dom(zT). 

We say that a tree language L 2 Tz is recognizable (deterministic recognizable) if 

there is a tree recognizer (deterministic tree recognizer) T such that L = dom(zT). The 

class of all recognizable (deterministic recognizable) tree languages is denoted by MC, 

(DREC). 

It is an well-known result that DREC c REC. Moreover, we recall from [ 1 l] that 

DREC = dom(DT”) = dom(l-DT”) = dom(nd-DT) hold for every n 2 1. 

String rewriting systems: A string rewriting system R over an alphabet A is a finite 

relation over A*. The elements of R are called rewriting rules. The reduction relation 
over A* induced by R, denoted by + R, is defined as follows: for w, w’ E A*, w JR w’ 
holds if and only if there exist u, v E A* and a rule x + y in R such that w = U.XV and 

w’=uyv. We write +R to denote *il. 

The symmetric, reflexive and transitive closure of +R, denoted by H:, is a con- 

gruence over A* [3]. Informally speaking, w *g w’ holds if and only if there is a 

chain WO,. . . , w,,, for some n 20, such that wo = w, w, = w’ and, for every 1 < i<n, 

Wj-1 =k’, Wj Or Wi JR Wi_1 holds. 

We say that a string rewriting system R is terminating if there is no infinite chain of 

the form w1 +,w2+R ... Moreover, R is said to be conjuent if for all v, w, w’ E A*, 
v +z w and VJ~ w’ imply that there exists a string x EA* such that w +,*x and 

w’ =$ x hold. 

A string w E A* is called an R-normal form (or simply normal form, if R is under- 

stood) if there is no w’ E A* such that w JR w’. The set of R-normal forms is denoted 

by NF(R). A string w’ is a normal form of w if w +i w’ and w’ is a normal form. 

We recall that a terminating term rewriting system R is confluent if and only if each 

word of A* has exactly one normal form. In other words, considering the partitions of 

A* by the congruence H;, a terminating R is confluent if and only if each partition 

contains exactly one normal form (see [16]). 

We now mention a sufficient condition for a string rewriting system R to be ter- 

minating. A weight function is a mapping p : A + { 1,2,. . .}, where p(a) is the weight 

of a E A. It can be extended to a mapping p : A* -+ { 1,2,. . .} by letting p(c) = 0 and 

p(wa) = p(w) + p(a), for every w E A* and a EA. We say that R is weight reducing 
if there exists a weight Cmction p such that, for each rule x+y, p(x) >p( y) holds. It 

should be clear that a weight reducing string rewriting system is necessarily terminating. 

3. The problem and the outline of the solution 

In this section we specify the problem that will be solved in the rest of the paper. 

Then we present the outline of the solution. 

In [4] we already stated several inclusions and decomposition equations concerning 

sl-DT. Such an inclusion and decomposition are sl-DT c I-DT and HOMosl-DT = DT, 
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respectively. On the other hand, several other inclusions and equations concerning 

tree transformation classes are known from the literature. For example, we recall the 

inclusion DT c DT2 from [18] and HOM o I-DT = DT from [7]. We observe that 

we can obtain some new inclusions and equations from the above ones, for example 

HOM o sl-DT c DT2 and HOM o sl-DT = HOM o I-DT, by “substituting equal for 

equal” in the corresponding expressions. This observation motivates us to determine an 

abstract method, with which all inclusions and equations are derivable that are valid 

among tree transformation classes obtained from some fundamental tree transformation 

classes by composition. Since we are interested in the compositions of sl-DT with the 

well-known subclasses of DT, we shall choose HOM, sl-DT, I-DT, nd-DT and DT 

as fundamental classes. 

We now describe the problem in a more exact way. Let us fix the set 

M = (HOM,&DT, l-DT, nd-DT, DT). 

We generalize the problem of inclusion and equality as follows. Whenever given two 

tree transformation classes 

x,ox,o...oxm and Yl o Y2 o . . . o Y,, 

such that Xi, Yj E M for 1 < i <m and 1 <j 6 n, we would like to know whether proper 

inclusion of some direction, equality or incomparability holds between them. We ob- 

serve that we can answer the question if we can decide whether the inclusion XI 0x2 o 
. . . OX,&Y~OY20... o Y, holds or not. (Really, if we can decide this inclusion, then 

we can also decide whether Yl o Y2 o . . . o Y, G XI o X2 o . . . o X,. Then, for example, 

X,OX,O.~ *ox,cY~oY2o.~~ o Y,,, if and only if Xt 0 X2 0.. . o X, G Yt o Y2 0. ’ . o Y, 

and not Yr o Y2 o . . . o Y, C_ Xl 0 X2 o . . . o X,.) 

So we conclude that we have solved the problem if we present an algorithm which 

decides for any two tree transformation classes as above, whether XI 0x2 0. . .oX, G Y, o 

Y, 0 . . . o Y,, holds or not. 

We now describe how such an algorithm can be developed. We observe that the 

tree transformation classes of the form Xl 0 X2 o e . . OX,,,, where m&O and Xi EM, for 

1 < i Q m, form a monoid with the operation composition. The identity element of the 

monoid is I resulting by the empty composition in case m = 0. We denote this monoid 

by [Ml. Hence our problem is to find an algorithm that decides the inclusion in [Ml. 

We also consider the free monoid M* generated by M with the operation concate- 

nation, which will be denoted by . in this paper. The identity relation over M can 

uniquely be extended to a homomorphism ( I: M* + [Ml. Then 1 1 has the property 

that, for every element Xr . X2 . . . . . X,,, of M*, it holds 

IX, .x2.... ~xm]=x~ox~o...ox,, 

in particular, ICI =I. Let us denote the kernel of I I by 0. Then certainly, for any two 

elementsXroX2o...oX, and YroY2o...oY, of[M],wehave 

x,0x20... ox,=Y,oY2o...oY, 
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in [Ml, if and only if 

IX, .x, * . . . .X,]=lY,.Y2...:Y,] 

or equivalently 

X,.X,...:X,eY,.Y2...:Y, 

in M*. 

Our algorithm rests on the following two comer-stones. 

1. We present a confluent and terminating rewriting system R 2 M* x M* such that 

%$* =tI. 

2. Mo;eover, we present the inclusion diagram of the set 

P’(R)1 = +I b E NWV). 

Recall that M’(R) denotes the set of normal forms of R. 

Having the inclusion diagram for INF(R)J, we can decide for any two normal forms 

U, u E NF(R) whether IuI & IuI holds or not. 

Then the algorithm works as follows. Let us be given two elements 

x,ox,o~~~ox, and Yi o Y2 o f . . o Y, 

of [Ml. Take the corresponding elements 

xi *x2*..: X,,, and Yi . Y2 . . . . . Y, 

of M*, and compute the normal forms U, u E IF(R) such that 

x,.x,...: X,,, $j u and Yi . Y2 . . . . . Y,, + v, 

respectively. Since R is terminating and confluent, u and u exist and unique. Moreover, 

1x,.x,.... .Xm]=]ul and IYr.Y,...: Y,I=]uI because we have =+-,*&@i=fGJ and f3 

is the kernel of I I. Then, by the definition of I 1, the inclusion 

x,0x,0... ox,~Y,oY,o~~~oY, (*) 

holds, if and only if, 

IX, .x2.... .x,1 c IY, . Y2. . . . . Y,]. 

On the other hand, this latter inclusion is equivalent to ]u] C Iu]. However, we can 

decide by a direct inspection of the inclusion diagram whether 1~1 G JuI or not. Hence, 

we can also decide whether (*) holds or not. 

4. The decidability of inclusions in the composition monoid 

Let A4 = {HOh4,sl-DT, E-DT, nd-DT, DT}. In this section we present an algorithm 

that decides the inclusion in [A41 in the way described in the previous section. We 
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start by giving a rewriting system R over M*. Later on, we will show that R is 

terminating, confluent and that H; = 8. 

Let R consist of the following 22 rewriting rules: 

(1) I-DT2 . HOM -i I-DT . HOM 

(2) HOM ’ HOM -+ HOM 

(3) DT . HOM --+ DT2 

(4) sl-DT . I-DT . HOM + I-DT . HOM 

(5) I-DT3 + I-DT2 

(6) I-DT . sl-DT 4 l-DT2 

(7) I-DT . DT + DT2 

(8) HOM ’ I-DT + DT 

(9) HOM - sl-DT + DT 

(10) HOM.DT+DT 

(11) DT . I-DT + DT2 

(12) DT . sl-DT + DT2 

(13) DT3 + DT2 

(14) sl-DT + I-DT2 + I-DT2 

(15) sl-DT . DT2 + DT2 

(16) nd-DT - HOA4 + DT2 

(17) nd-DT . sl-DT + DT2 

(18) nd-DT . I-DT + DT2 

(19) nd-DT . nd-DT + nd-DT 

(20) nd-DT . DT --f DT2 

(21) I-DT . HOM ’ nd-DT --+ l-DT2 . nd-DT 

(22) DT . nd-DT + DT 

First we prove the following. 

Lemma 4.1. The inclusion @i C b’ holds. 

Proof. To prove the lemma it is sufficient to show that, for every ti + v E R, we have 

]u] = 101, or equivalently z&u. In words, we say that the elements of R are valid in [Ml. 

Indeed, if elements of R are valid in [Ml, then JR C 8 which can be seen as follows. 

Let w,z E R* such that w +Rz. Then, by the definition of +R, there are strings x and 

y in M* and there is a rule U+UER so that w=x.u.y and z=x.u.y. Then we 

can compute as follows: 

Iw] = Ix. t4. yJ 

= 1x1 o IuI o Iy( (because 1 I is a homomorphism) 

= 1x1 o Ju] o ]yj (because ]uj = 1~1) 

= ]x.u.yl (because I I is a homomorphism) 

= IZI, 
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proving that w&z. Analogously, we can prove that JR’ & 8, which yields that also 

%R & e. Finally, we get HR* C O* = 0. 

So we should prove that all elements of R are valid in [Ml. As a matter of fact, 

most of them were already proved in earlier works. For example, the validity of (8), 

i.e., that HOM o I-DT = DT was proved in [l] and [5]. A lot of the others also follow 

implicitly from the results of [I] and [5], but we refer the reader to [9] for the proofs 

because in this latter paper the proofs are explicit. Thus, the validity of (2), (lo), (19) 

and (22) are consequences of Lemma 3 in [9]. Moreover, (5) and (13) are proved in 

Consequence 7, while (3) (7) (1 l), (16) (18) and (20) in Lemma 11 of the same 

paper. 

Rules (1) and (21) can be proved using Table 1 of [9] as follows. From Table 1, it 

turns out that I-DT2 o HOM = I-nd-DT o HOM and also that I-DT o HOM = I-nd-DT o 

HOM, hence I-DT20HOM = I-DToHOM. The validity of (21) can be shown similarly. 

Note that the rest of the rules, namely (4), (6), (9), (12), (14), (15), and (17) all 

contain sl-DT. 

We now can prove (4) as follows. Obviously, 1-DT o HOM 2 sl-DT o 1-DT o HOM. 

As for the conversed inclusion, we have sl-DT o I-DT o HOM c I-DT2 o HOM, because 

sl-DT G I-DT. On the other hand (1) is valid, hence I-DT2 o HOM = I-DT o HOM, 

which proves the validity of (4). 

For (6), we use I-DT2 = I-DTo I-HOM (see Lemma 11 in [9]). Then I-DT2 = 1-DTo 

I-HOM G I-DTosl-DT, because I-HOM =sl-HOM C sl-DT, by Observation 3.1 of [4]. 

Finally, I-DT o sl-DT C l-DT2. These altogether prove the validity of (6). 

We note that the validity of (9) was proved in Theorem 3.6 of [4]. 

Next, (12) can be shown quite similarly to the proof of (6); however here we should 

use the equation DT2 = DT o I-HOM, which comes again from Lemma 11 of [9]. Also 

( 14) and (15) are obvious, because (5) and ( 13) are valid. Finally, (17) can be proved 

using DT2 = nd-DT o 1-HOM, which was verified in Lemma 11 of [9]. 0 

Next we prove that R is terminating. 

Lemma 4.2. The rewriting system R is terminating. 

Proof. A weight function can easily be defined for R so that R is weight reducing. In 

fact, let ~:M-+{1,2,...} be such that 

p(HOM) = 3 

p(sl-DT) = 3 

p(l-DT) = 2 

p(nd-DT) = 2 

p(DT) = 1. 

It is a routine to check that R is weight reducing, hence it is terminating as well. 

0 
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We now want to give NF(R). This happens in three steps, First we present a set 

NF GM*, second we present the inclusion diagram of the tree transformation classes 

represented by the elements of NF and finally we show that NF(R) = NF. 

So let NF be defined in the following way: 

NF = (I-DT’, 1-DT . HOM, I-DT2 . nd-DT,DT2] 

u {sl-DT” In 2 0) 

u{sZ-DT”.HOMln20} 

u {sl-DT” . I-DT In 2 0) 

u {sl-DT” . nd-DT In 2 0} 

U (sl-DT” . I-DT o nd-DT In 2 0} 

u {sl-DT” . DTjn 20) 

Recall that sl-DT” = e, the empty string. 

Lemma 4.3. The diagram in Fig. 1 is the inclusion diagram of the set INFl = { IuI Iu E 

NF) 

Proof. (Actually, the involved diagram is a bit more than the inclusion diagram of 

INFl because it also contains the suprema of the six hierarchies appearing in INFI. We 

inserted these suprema into the diagram because it becomes more complete in this a 

way.) 
The proof is rather technical and long, hence we have separated it into Section 5. 

0 

Corollary 4.4. For any u, w E NF, we have Iul = IwI if and only if u = w. 

Proof. The statement is shown by the diagram. 0 

Lemma 4.5. NF(R) = NF. 

Proof. It is easy, although tedious, to show that NF G NF(R). If we consider the 

elements of NF one-by-one, then we realize that there is no element such that a rule 

is applicable to it. 

The proof of NF(R) C NF is strongly based on Fig. 2, which is organized as follows, 

Although the table is divided into two parts because of space limitations, it should be 

considered as one with 10 rows and 5 columns. The 10 rows are labeled, on the one 

hand, by the 4 elements of the first union member forming NF and, on the other hand, 

by typical elements from any of the remaining 6 members forming NF. The columns of 

the table are labeled by the elements of M. We now describe how an entry determined 

by a row u and a column C is defined. If u . C is also an element of NF, then the 

entry is u. C and nothing else. However, if u. C is not in NF, then the entry consists 
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sl-DT’ollT 

* , 

sl-DT” 

Fig. 1. 

of an element v of NF and some number denoting rules in R such that u . C JR* v by 

applying the rules appearing in the entry. 

For example, if u = sl-DT” . HOM and C = nd-DT, then the corresponding entry is 

sl-DT" . HOM and-DT, because this latter is in NF itself. However, if u = sl-DT” . 1-DT 
and C = sl-DT, then the entry consists of I-DT2 and the numebrs (6) and (14), because 

sl-DT” . I-DT . sl-DT +R sl-DT” . I-DT2 by Eq. (6) and sl-DT” . 1-DT2 +-i 1-DT2 by 

applying n times the Eq. (14). 

We now prove that, for every x E M*, the inclusion x E NF(R) implies that x E NF. 

The proof is performed by an induction on length(x). 
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nd-DT 

sl-/IT” . l-LIT . nd- 

Fig. 2. 

If length(x) = 0, then certainly x = e. Since e E NF, we have nothing to prove. 

Now let x EM* be such that length(x) = n + 1 and suppose that the statement is 

true for every word in M* with length at most n. Then x = y . C, for some y EM* 

with length n and C EM. Assume now that x E NF(R). Then certainly y E NF(R) and 

thus, by the induction hypothesis, y E NF, too. 

Considering the definition of NF, 10 cases are possible, each of which corresponds 

to a row of the table. These are as follows. 
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Case 1: y = I-DT2 and n = 2. Then we can see from the table that C can only 

be nd-DT because in any other cases x = y. C = I-DT2 . C can be reduced with some 

rule(s) of R, hence cannot be in NF(R). (For example, in case C = HOM, y*C = I-DT2. 
HOM reduces to I-DT . HOA with rule (l), hence is not irreducible.) However, if 

C = nd-DT, then x = y . C = I-DT2 1 nd-DT is in NF, what we wanted to 

prove. 

Cases 2-4: Here y = I-DT ’ HOA and n = 2, y = I-DT2 . nd-DT and n = 3, finally 

y = DT2 and n = 2, respectively. We can see easily from Fig. 2 that, for every such y 

and every C EM, x = y + C cannot be in NF(R), hence we have nothing to prove. 

Case 5: y = sl-DT”. We see from Fig. 2 that, for every C EM, x = sl-DT” . C is in 

NF. 
Since Cases 6-10 can be handled similarly, we left the rest part of the proof for an 

exercise. 0 

Lemma 4.6. The equality b’ = & holds. 

Proof. Since we have already proved in Lemma 4.1 that $ G 8, it is sufficient to 

show the conversed inclusion Q G +$. 

Thus, let x, y EM* be such that xey. Since R is terminating, see Lemma 4.2, there 

are u, u E NF(R) with x +$ u and y =$ v. Then, again by Lemma 4.1, xtIu and yt?v 

and thus z&v. On the other hand, by Lemma 4.5, u and u are also in NF. Hence, by 

Corollary 4.4, we have u = v. We have obtained XJ~U = v x=: y meaning that x @$y. 

This completes the proof. 0 

Lemma 4.7. R is conjuent. 

Proof. By Lemma 4.2, R is terminating. Thus, by Proposition 1.1.25 in [12], it is 

sufficient to show that every $-class contains exactly one R-normal form. (For the 

proof of this fact, see also [2].) Since R is terminating, there is at least one normal form 

in every G-class. Assume now, that u, v E NF such that u & v. Then, by ~2 = 8, 

we have z&u. By Corollary 4.4, this implies u = u. q 

Theorem 4.8. For any two tree transformation classes XI 0x2 0. . . OX, and Yl o Y2 
o... o Y,, in [AI], it is decidable whether the inclusion Xl oXj.0.. .0X, C Yl oY20+. SOY,, 
holds. 

Proof. Takethewordsx=Xt.&...:X, and y=Yt.Yt.....Y,. Then ]x]=Xto&o...o 

X,,, and Iy]=YtoY2o...oY,,. 

Then, let u and u be R-normal forms of x and y, respectively. Since R is terminating 

and confluent, u and u can be computed in linear time, with respect to length(x) and 

length(y), just reducing x and y, respectively, as long as possible. Then, by Lemma 4.6, 

also xeu and yeu. Hence Ix]~]yl, if and only if IuIcIv]. However, it is decidable by 

considering the diagram whether Iu] & 1 VI holds. 0 
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We finish the section with an example. We would like to know the inclusion relation 

between the classes sl-DT30HOMol-DT o nd-DT and sl-DT20HOMosl-DToHOMo 

nd-DT. Then we compute as follows: 

sl-DT3.HOM.1-DT.nd-DT JR,8 sl-DT3.DT.nd-DT 

+@l-DT3. DT, 

where we wrote +R,i to denote that we applied the ith rule in that step of the compu- 

tation. On the other hand, 

sl-DT2.HOM,sl-DT.HOM.nd-DT JR,9 sl-DT2.DT.HOM.nd-DT 

+R,J sl-DT2.DT2.nd-DT 

+,,,, sl-DT’. DT2 

=$I5 DT2. 

Since both sl-DT3.DT and DT2 are in NF, we can see from the inclusion diagram 

that sl-DT3 o DT c DT2. Hence, c holds between the two classes we started from. 

5. The inclusion diagram of normal forms 

In this section we show that the inclusion diagram of [NFj is the diagram appearing 

in Fig. 1. We recall that INFl is the set of tree transformation classes represented by 

NF, with NF being the set of normal forms of R defined at the beginning of Section 4. 

However, to present the inclusion diagram we need some preparations. 

First, we define some further special types of dt transducers. A dt transducer 

T=(Q,Z,A,qo,R) is said to be 

(a) Order-preserving (op) if, for every rule q(a(xl,. . .,x,)) + t[ql(xi,), . . . , qn(Xi,)] in 

R, the order il< . . . <i, holds. 

(b) Nonreducing (nr) if there is no rule of the form q(a(xl,. . . ,x,,,)) -+ q’(Xi) in R. 

(A rule being of the mentioned form is called reducing rule.) 

(c) Nonincreasing (ni) if, for every rule q(a(xl,. . . ,xm)) --) t[ql(xi, ), . . . , qn(xi,)] in R, 
either t =x1 or t = 6(x1,. . . ,xn) holds, for some 6 E A,. 

Certain composition and decomposition results on these types have been studied in 

[4]. Moreover, others can easily be derived from the results of [9]. In the following 

proposition, we summarize some results we need in the rest of this section. 

Proposition 5.1. The following equations hold: 

(1) sl-DT = op-ni-sl-DTonr-1-nd-HOM 
(2) nr-l-nd-HOMosl-DT = sl-DT 
(3) nr-l-nd-HOMoDT = DT 
(4) nd-HOMond-DT = nd-DT 
(5) I-HOM = sl-HOM 
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(6) t-nr-sl-DTosl-DT =sl-DT 
(7) t-nr-op-ni-sl-DToop-ni-sl-DT = op-ni-sl-DT. 

Proof. (1) This is (4) of Corollary 3.12 in [4]. 

(2) Since nr-I-nd-HOMQI-DT, the statement follows from Lemma 3.11 in [4] and 

Lemma 3 in [9]. 

(3) We observe that all elements of nr-l-nd-HOM are total. Hence, we are done by 

Lemma 3 in [9]. 

(4) See also Lemma 3 in [9]. 

(5) See Observation 3.1 in [4]. 

(6) This is (3) of Corollary 3.12 in [4]. 

(7) Letting C = t-nr-op-ni-sl-DT o op-ni-sl-DT, we have op-ni-sl-DTCC. More- 

over, C G sl-DT holds by Lemma 3.11 of [4]. On the other hand, by the proof of 

that lemma, it is easy to see that C g op-ni-sl-DT holds as well. 0 

Combining (l)-(4) we can easily conclude the following statements. 

Corollary 5.2. Let n 2 0. Then 

(1) sl-DT”oDT =op-ni-sl-DT”oDT and 
(2) sl-DT”ond-DT = op-ni-sl-DT”ond-DT. 

Moreover, we need the main results of [4]. 

Proposition 5.3. (1) The hierarchy {dom(sl-DT”) 1 n 20) is proper. 

(2) For each n 20, dom(sl-DT”) cDREC holds. 

(3) I-DT - sl-DT* # 0. 
(4) sl-DT* c I-DT’. 

Proof. The statements (1) and (2) are in Theorem 4.3 of [4]. Moreover, (3) is exactly 

Theorem 3.13 and (4) in (2) of Corollary 3.14 in the same paper. 0 

We shall also need the following stronger version of (2) of Proposition 5.3. 

Theorem 5.4. dom(sl-DT*) c DREC. 

Proof. Let Z = (0 (ll,#(O)}. Define the tree language 

L = {a’(#) 1 i > 0 is an even integer} 

over C. Informally speaking, L is the set of even-length chains over Z. Note that 

obviously LEDREC. We prove L $! dom(sl-DT*). 

To see this, suppose the contrary, i.e., that LEdom(sl-DTR), for some n> 1. Then 

there are sl-dt transducers q , . . . , T,,, such that L = dom(rr, 0. . -OTT,). Without loss of 

generality, we may assume n to be minimal. 
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Let Tl = (Q,Z, A,q, R). We investigate the rules in R. Since #EL, there must be a 

rule of the form 

in R, for some t# E T,. 

The tree a(a(#)) is also in L, hence there should be a (q,o)-rule in R. It is easy to 

see that rhs(q, CJ) cannot be a ground tree. On the other hand, Tl is linear, hence the 

(q, a)-rule is of the form q(a(xl)) + t[q’(xl )] in RI, for some q’ E Q and t E FE,]. 

Similar to the previous argumentation, it is easy to show that there must be a rule 

of the form q’(o(xl)) 4 t’[q”(xl)] in R, where q” E Q and t’ E ~z,J. However, since 

Ti is superlinear, this is possible if and only if q = q’ = q”, meaning that 

q(+ )) 4 t[q(xi )I E R. 

Since C={ r~, #}, there cannot be other useful rules in R. We obtained that i’i is total, 

which implies dom( Tl ) = Tz. Hence, n > 1 must hold. 

Consider the above (q,o)-rule of R. It is easy to see that t =x1 would imply 

rr,(&(#)) = t# for every i 20. Hence t # xi, meaning that Tl is nonreducing. 

We now have that 8 is t-nr-sl-dt, that is L E dom(t-nr-sl-DTosl-DT”-‘), where 

n > 1. Hence, by (6) of Proposition 5.1, L E dom(sl-DT”-‘) holds, which contradicts 

that 12 is minimal. 0 

Moreover, we prove two technical, but very useful lemmas before considering the 

inclusion diagram of JNF]. We know from [4] that any sequence of sl-dt transducers 

has “low” computational power. Roughly speaking, the first lemma shows that the 

computational power does not increase significantly, even if such a sequence is followed 

by a dt transducer. 

Lemma 5.5. Let L c TZ for some ranked alphabet C and let o(~),#(‘) and $(O) be 
new ranked symbols. Put C’ = C u {CT(~), #co), $(O)} and A = {#(O), $(O)}. Define the 
tree transformation z G T_w x TA as follows: 

r={(o(t,s),s)ItEL,sET~}. 

If z E sl-DT”oDT for some n 2 1, then L E dom(sl-DT”) holds for some m such that 
1 <m<n. 

Proof. To be short, we put K = TA = {#, $}. Observe that dim(r) = a(L, K). 
Since r E sl-DT” oDT, the inclusion r E op-ni-sl-DT”oDT holds by (1) of Corol- 

lary 5.2. That is, there exist op-ni-sl-dt transducers &, . . . , T,, and a dt transducer T,+l 
such that z = rr, 0. . *OTT, OZT,,~. 

pUt x = (Qi, A(‘-‘), A(‘), q, Ri), where 1 < i <n+ 1. Observe that A(‘) = 2’ and A(“+‘) = 
A. Moreover, we may assume that the initial state of all z’s is q. 

Consider the dt transducer T,,+l . Its output alphabet is A, which consists of sym- 

bols having rank 0. Therefore, each rule of T n+l either must be reducing or it has $ 
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or # on its right-hand side. That is, T,,+l should be an op-ni-1-dt transducer. Hence 

t E op-ni-sl-DT”oop-ni-l-DT. 

For every 1 < i <n + 1, we define the type of the sequence Tr,. . . , T by induction on 

i. This type can be (1 ), (2) or undejined. 

(i) The type of 3 

l is (1 ), if there is a rule of the form 

q(@x1,x2)) -+ m(Pl(xl)m(x2)) 

in RI, where pl,ql E Ql and crl E dy), 

l is (2), if there is a rule of the form 

4(4x1,x2)) -+ m(q1(x2)) 

in RI, where q1 E Ql and 01 E A(,‘) U {xl}, and 

l is undejined otherwise. 

(Note that q is the initial state of 8.) 

(ii) Let i>2. Assume that the type of the sequence Tl,. . . , Ti;:-1 has already been 

defined. The type of Tr,...,7; 

l is (l), if the type of Tl,..., Ti_1 is (1) and there is a rule of the form 

in Ri, where pi,qi E Qi and oi E A?), 

l is (2), if the type of Tl,..., Ti-1 is (1) and there is a rule of the form 

q(~i-l(xl,x2)) + ~i(qi(X2)) 

in Ri, where qi E Qi and cri E A(,” U {XI}, and 

l is undejined otherwise. 

(Here q is the initial state of I;.) 

We finish the proof as follows. First we make two observations. Observation 1 is 

on the domains of translations generated by sequences. Then, in Observation 2, we 

characterize the translations generated by sequences of types (1) and (2). Following 

this, in Step 1 we show that if there is an integer i with 1 < i <n + 1 such that 

r,,..., z is of type (2), then L=dom(rM,o...~r~~_, ) holds for some sl-dt transducers 

MI,..., Mi-1. Finally, in Step 2, we prove that actually there is a sequence Tl, . . . , T 
of type (2), for some 1 <i<n+ 1. 

Observation 1. Consider the transducer Tr. Since the root of each input tree in the 

translation r is g, there must be a (q, o)-rule in RI. On the other hand, since 0 appears 

only as root in the input trees of T, we may suppose that this is the only rule containing 

the state q. (Otherwise, we would take a new initial state for Tr.) Then we can also 

suppose that dom(rr, ) = o(Lr , K1 ) holds for some Lr , K1 CTzt. 
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Clearly, dom(trl 0. ..or~+I)Cdom(rl;o. . . Ott ), for every 1 < i < n. Hence, we get 

dom(rr, 0. ..ozr,)=o(Li,Ki), for each i such that l<i<n + 1. Moreover, Li+i CLi, 

Ki+i CKi, for every 1 <i<n. Specially, L,+i =L and K,,+l =K. 

Observation 2. Let 1 d i <n + 1. If the sequence G, . . . , I;: is of type (1 ), then 

rr,o” .ozr, consists of all pairs of the form (o(t,s), ci(t’, s’)), where there exist trees 

to,~a E &co), . . . , ti, si E Tdct, such that 

- to = t, SO =s, ti = t', St =s' and 

- for every 1 <j,<i, pj(tj-1) +F, ti and qi(sj-1) +-gj si 

hold. (Note that ci and the states pl,ql,. . . , pi,qi are defined in the definition of the 

sequence of type (1 ).) 

Now suppose that the sequence 3,. . . , Z is of type (2). Then rr, o + . * o zr, is the set 

of all pairs (o(t,s), gi(s’)), where there exist trees ~o,soET~co),. . . , ti-l,si_1 E T&u,si 

E T,w such that 

- to = t, SO =A', Si =S' and 

- for every 1 <j<i - 1, pj(tj-1) +E tj and qi(si-1) +E Sj, and 

- qi(Si-1) *F, Si 

hold. 

Step 1: By the above observations, it is easy to see that if c, . . . , T is of type (2), 

for some 1 <i<n + 1, then dom(rr, 0.. . o rT, ) = O(Li_ 1, Ki). Moreover, for every j, 

such that i<j4n+ 1, dom(rr,o. . .OTT,) = a(Li-1, Kj) should hold. On the other hand, 

dOm(rr, 0.. 'OTT,,, ) = dam(r) = o(L,K), hence we have obtained that Li-1 = L. (This 

note provides that Tl cannot be of type (2). If it were, then L = TZI would follow, 

which is a contradiction.) 

NOW, for each 1 < j<i - 1, let Mj = (Qi, d(j-‘), d(j), pj,Rj) be constructed from 

Tj such that we let pj be the initial state instead of q. (Recall that, since the se- 

quence G,..., q-1 is of type (1 ), there must be a rule of the form q(Gj_i(xt,X2)) 4 

Uj(pj(xi),qj(xz)) in Rj.) By the result of the previous paragraph, in this case dom(rM,o 

"'"rM,_, ) = Li-1 = L holds. Note that Tj is superlinear transducer, hence so Mj is. 

Step 2: Consider the transducer G. By the shape of r, it is obvious that Ti, as a 

sequence, cannot be of type undefined. We have seen that it cannot be of type (2) 

either, hence it is of type (1). 

Let 1 <i<n. Suppose that q,... , z is of type (1). By Observation 2, it can be seen 

that the transducer Ti+l should have a (q, oi)-rule. Moreover, by the definition of r, 

rhs(q, ai) should contain ~2. (Otherwise, Ti+l would loose information about the second 

direct subtree of the input tree.) Recall that T. 1+1 is order-preserving, nonincreasing and 

linear, and hence 8,. . . , 1;:+1 must be of type (1) or (2). 

Finally, we show that the whole sequence G, . . . , Tn+l cannot be of type (1). This 

follows from the fact that the output alphabet A”+’ of T,,+l consists of symbols having 

rank 0 only. Hence there is a sequence Tl, . . . , E type (2), for some 1 d i < n + 1. 0 

Now let us apply the previous lemma. To present the inclusion diagram of JNFJ, we 

shall need the following results. 
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Corollary 5.6. Let n 20 integer. Then 

(1) sl-DT”+’ ol-HOM $ sl-DT”oDTand 

(2) sl-DTnf2 $ sl-DT”oDT. 

Proof. (1) Let L E dom(sZ-DT”+’ ) - dom(sl-DT”) (such an L exists by (1) of Propo- 

sition 5.3). Define z as in Lemma 5.5. It is an easy exercise to show that z E si-DT”+‘o 

I-HOM. Suppose r E sl-DT”oDT. Then, by Lemma 5.5, L E dom(sl-DT”‘) holds for 

some 1 <m<n, which is a contradiction. We have that r # sl-DT”oDT. 

Since 1-HOMQl-DT (see (5) of Proposition 5.1), statement (2) follows from (1) 

immediately. 0 

The next technical lemma shows that there exist an I-dt transformation which cannot 

be induced by a sequence of sl-dt transducers followed by an nd-dt transducer. 

Lemma 5.7. I-DT $Z sl-DT*ond-DT. 

Proof. Let C = {cr (2),#(o)}. Define the 1-dt transducer 

T=({40,419q2),ZC - {a},qo,R), 

where 

R = {qo(4v,m)) +41(x1), q1(4x1,x2)) -+ q2h), 

q2(4m,x2)) + qoh), 40(#) -+ #). 

Let us investigate the set dom(zr). (Since the output ranked alphabet of T is 

{#(O)}, one can guess that the proof is actually concerned with domains.) Define the 

set H~?z,J of environments as H = {cr(a(o(tl,xl), tz), t3) 1 tl, t2, t3 E Tz}. It is easy to 

check that dom(rr) = {hr [. . . h,[#] . . .] 1 n 2 0, hl, . . . , h, E H}. Informally speaking, start- 

ing from qo, T steps to the left twice and to the right once on OS, and reaches qo 

again. Moreover, T accepts # also starting in state qo. The transducer rejects every 

other tree not in H. 

We show that rr @ sl-DT* ond-DT, which implies the lemma immediately. To prove 

this, suppose the contrary, i.e., that there exist sl-dt transducers Tl,. . . , T,, and an nd-dt 

transducer T,,+l such that Tr = zr, 0. . .oZTnOZT,,+, . We abbreviate the right-hand side of 

the previous equation by z. Suppose n to be minimal. By (2) of Corollary 5.2, it can 

be assumed that the transducers q, . . . , T,, are op-ni-sl-dt. 

We note that T,,+I is nondeleting and that, obviously, the transformation zr cannot 

be induced without deleting capacity. Hence n > 1 holds. 

Let us assume that Tr = (Qr, C, A, p, RI). (The input alphabet of Tt can be supposed 

to be Z without loss of generality.) 

Consider the trees given in Fig. 3. 
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Fig. 3. 

Since r = rr is supposed, it is easy to check that the following statement holds. 

Statement. tl, t2 E dam(r), tg $2 dam(z). 

We investigate the rules of T,. Considering the Statement and that Tl is nonincreas- 

ing, we have that there should be a rule of the form 

P(#) + #l (1) 

in RI, where #t E do. 

By the Statement, there should be a (p, o)-rule in RI. The transducer Zj is op-ni-sl-dt, 

hence this rule is of one of the following forms: 

(a) p(o(xt,x~)) -+ at(p’(xt)), where 01 E Al U{xl} and p’ E Q1. In this case, by the 

Statement, it is easy to see that there should be (p’, a) rule in RI. Moreover, rhs(p’, g) 

must contain x1, otherwise t2 E dam(r) would imply 4 E dam(r), which contradicts the 

Statement. By the sl property of Tl, it is possible if and only if p’ = p. However, in 

this case t2 E dam(r) also implies b E dam(r). We have that this form is not acceptable 

for the (p, a)-rule. 

(b) p(@q,x2))+01(p’(x2)), where crt E AtU{xt} and p’~Q1. In this case t2E 

dam(r) implies t3 E dam(z), hence this form contradicts the Statement as well. 

(c) p(a(xi,xz)) -+ a1(p’(xl), p”(x2)), where 01 E 42 and p’, p” E Ql. We have that 

this form is the only possible form of (p, 0). 

Suppose that p’ # p in (c). Then, by the Statement, there should be a (p’, o)-rule 

in RI. By the sl property of T, , rhs( p’, 0) must be a ground tree. However, in this case 

t2 E dam(z) implies t3 E dam(r), which contradicts the Statement. We have obtained 

pt = p. 

Now suppose p’ = p and p” # p. Similar to the previous observations, one can 

easily conclude that a (p”, o)-rule should be in R1 and rhs(p”, u) must be a ground 

tree. But in this case t3 E dam(r) follows contradicting the Statement. 

Summarizing up, we have obtained that 

(2) 
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By the rules (1) and (2), it can be supposed that there are no other rules in RI. 

Moreover, Qi = {p} and A = {CJ, (2),#(10)} should hold. We have that Ti is total and 

nomeducing, that is t-nr-op-ni-sl-dt transducer. Hence, zr = rr, o . . . o 7~. o zr”+, implies 

rr E t-nr-op-ni-nd-sl-DT o op-ni-sl-DT”-’ o nd-DT, for some n 2 1. 

Assume n = 1, then rr E t-op-ni-nr-nd-sl-DT o nd-DT = nd-DT holds, which is 

obviously not true. 

Assume n > 1, then, by (7) of Proposition 5.1, rr E op-ni-sl-DT”-’ o nd-DT follows, 

which contradicts the minimality of n. 
We have that suitable transducers T1, . . . , T,+l cannot exist. 0 

Corollary 5.8. I-DT o nd-DT 9 sl-DT* o nd-DT. 

We now begin to prove Lemma 4.3, which states that the diagram depicted in Fig. 1 

is the inclusion diagram of INFI. First we show that all the six hierarchies appearing 

in lNF[ are proper. 

Let H be a set of tree transformation classes defined as 

H = (I, I-DT, nd-DT, HOM, I-DT o nd-DT, DT). 

Observe that the hierarchies in INFl are of the form {sl-DT” o X 1 n >O}, where 

X E H. We prove the following. 

Lemma 5.9. Let X E H be arbitrary. Then {sl-DT” OX ( n 2 0) is a proper hierarchy. 

Proof. Let n 20 and X E H. Recall sl-DTni2 $ sl-DT” o DT from (2) of Corollary 

5.6. Since X G DT, we get sl-DTnf2 o X $2 sl-DT” o X. On the other hand, sl-DT” o 

X C sl-DT”+’ o X should be clear. Hence sl-DT” o X c s~-DT”+~ o X holds. 

Now suppose that sl-DT” o X = sl-DT”+’ o X. Then sl-DT”+’ o X =sl-DTni2 o X 

also holds, which implies sl-DT” o X =s~-DT”+~ o X. However, this contradicts the 

result of the previous paragraph. 

We have sl-DT” o X c sl-DT”+’ o X, for every n 2 0 and X E H. 0 

Let X E H and consider the classes sl-DT” o X = U,,.JSI-DT” o X), which are 

the suprema of the corresponding hierarchies. Note that, for every n 20, sl-DT” o 

X c sl-DT* OX holds by Lemma 5.9. Although the suprema are not elements of IiVFI, 

we found them very useful to prove certain inclusions in I?#‘(. Moreover, they make 

the inclusion diagram of lNF[ more complete and clear. Therefore, we represented 

them in the diagram. 

In the following lemma we prove the inclusions relations between the suprema of 

the hierarchies. 

Lemma 5.10. The diagram in Fig. 4 is the inclusion diagram of the set (sl-DT* o 

X IX E H}, i.e., of the set of suprema of the hierarchies in INFI. 
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Fig. 4. 

Proof. Observe that all inclusions depicted in Fig. 4 are obvious, except sl-DT* o 

HOA C sl-DT* o nd-DT and sl-DT* o I-DT o nd-DT G sl-DT* o DT. Hence, to prove 

the lemma, it is enough to show that the following statements hold: 

(1) sl-DT* o 1-DT $ sl-DT* o nd-DT 

(2) sl-DT* o HOM $ sl-DT* o 1-DT 

(3) sl-DT* o HOM C sl-DT* o nd-DT 

(4) sl-DT* o I-DT o nd-DT c sl-DT* o DT. 

(1) This follows from Lemma 5.7 immediately. 

(2) Recall HOM $ I-DT2 from Fig. 2 of [2], hence sl-DT* o HOM $ I-DT2. 

Since sl-DT* o I-DT C I-DT2 o I-DT = l-DT2 (see (4) of Proposition 5.3 and Table 2 

of [9]), the statement holds. 

(3) Recall the decomposition HOM = I-HOMond-HOM (see (29) of [9]). Since 

l-HOM G sl-DT holds by (5) of Proposition 5.1 and nd-HOM c nd-DT is obvious, we 

have sl-DT* oHOM C sl-DT* osl-DTond-DT =sl-DT* ond-DT. The horn transducers 

are total, which implies dom(sl-DT* o HOM) = dom(sl-DT*) C DREC (see Theorem 

5.4). On the other hand, dom(nd-DT) = DREC implies dom(sl-DT* ond-DT) = DREC, 

hence the proper inclusion holds. 

(4) Since 1-DT o nd-DT G DT (see Lemma 3 in [9]), sl-DT* o I-DT o nd-DT 5 sl- 
DT* o DT holds. Moreover, sl-DT* o 1-DT* ond-DT c I-DT2 o 1-DT ond-DT c I-DT2 o 

nd-DT (see (4) of Proposition 5.3 and Table 2 of [9]), and DT $Z I-DT20nd-DT (see 

Fig. 2 of [14]), hence the inclusion is proper. 

Observe that the inclusion relation between any two elements depicted in Fig. 4 can 

be determined using the statements (l)-(4). 

For example, we show sl-DT* c sl-DT* o I-DT. The inclusions sl-DT* C sl-DT* o 

I-DT and sl-DT* C_ sl-DT* o nd-DT should be obvious. Then considering (1) we have 

the desired result immediately. 0 

Besides the hierarchies, there are the classes I-DT2, I-DT o HOM, l-DT2 o nd-DT and 

DT2 in ]A!F]. In the following lemma we attach them to the inclusion diagram of the 

suprema of the hierarchies. 

Lemma 5.11. The diagram in Fig. 5 is the inclusion diagram of the set consisting of 
I-DT2, I-DT o HOM, I-DT2 o nd-DT, DT2 and the suprema of the six hierarchies. 
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sl-DT’oDT 

Fig. 5 

Proof. The inclusion relations between the suprema of the hierarchies are clear by 

Lemma 5.10. 

In [14] it has been proved that the new four classes obey the following inclusion 

relations (see Fig. 2 in that paper): 

I-DT2 c I-DT o HOM c I-DT2 o nd-DT c DT’. 

First we show that none of the suprema (hence none of the elements of the hierar- 

chies) includes any of the new classes. To prove this, it is enough to show that the 

least new element I-DT2 is not included in the largest supremum, i.e., that 

I-DT2 $ sl-DT* o DT 

holds. By Theorem 5.4, there exists a tree language L such that L E DRECAom(sl- 

DT*). Construct r as defined in Lemma 5.5. Then it should be clear that r $ sl-DT” o 

DT for every n > 0, hence z 4 sl-DT* oDT. On the other hand, L f DREC = dom( I-DT), 

therefore z E l-DT2 should be obvious. 

Now we prove that the new elements are the topmost elements in the inclusion 

diagram of INFI. We define the set G of transformation classes as 

G = (I-DT, HOM, 1-DT o nd-DT, DT}. 

Note that the set of new four elements of liVZ+‘] is exactly {1-DT o X IX E G} (for 

I-DT o DT = DT2 see Table 2 of [14]). Let X E G be arbitrary. Observe that I-DT2 o 

X = l-DToX holds (see Table 2 of [14]). This implies the inclusion sl-DT*oX C I-DTo 

X, because sl-DT* o X C I-DT2 o X = I-DT o X (see (4) of Proposition 5.3). More- 

over, the inclusion should be proper by the result of the previous paragraph, 

that is 

sl-DT* o X c I-DT o X 

holds, for each X E G. 

Finally, we state that there are no other edges corresponding to the topmost elements 

in the inclusion diagram of INFI, besides the ones depicted in Fig. 5. To show this, it 
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is enough to prove the following statements: 

HOM $ I-DT=, (1) 

nd-DT $I$ I-DT o HOM and (2) 

DT $ 1-DT= o nd-DT. (3) 

For example, we can show that sl-DT* ond-DT $ 1-DT2. For, if sl-DT* ond-DT c 

I-DT2, then by HOM C sl-DT* o HOM and sl-DT* o HOM s sl-DT* o nd-DT, we get 

HOM C sl-DT2, which contradicts (1). 

However, (l)-(2) have already been proved in [14] (see Fig. 2 in that paper). With 

this, we have proved Lemma 5.11. q 

We should still prove the inclusions between the elements of the hierarchies. The 

following corollary shows that, roughly speaking, there can be edges descending only 

from right to left in the inclusion diagram of INF]. 

Corollary 5.12. Denote the bottom elements of the hierarchies as Xl = 1, X2 = 1-DT, 

X3 = HOM,Xd = nd-DT, X5 = I-DTond-DT and X6 = DT. Let i, j be arbitrary integers 

such that 1 <i < j 66. Then Xj $ sl-DT* oXi holds. 

Proof. By statements (l)-(3) in the proof of Lemma 5.11, we have most of these 

results immediately. Only the following two cases should be checked: 

(1) 1-DT $ sl-DT* follows from (3) of Proposition 5.3 and 

(2) 1-DT o nd-DT $Z sl-DT* o nd-DT holds by Corollary 5.8. 0 

We now can finish the proof of Lemma 4.3. 

Proof of Lemma 4.3. Recall that the inclusion relations between the topmost elements 

and the suprema of the six hierarchies have been clarified in Lemma 5.10. 

First we prove that the inclusions depicted in Fig. 1 hold. Let n 2 1. All inclusions 

should be clear, except the following ones: 

(1) sl-DT”-’ o HOM c sl-DT” o nd-DT, 

(2) sl-DT”-’ o I-DT o nd-DT 2 sl-DT”-’ o DT. 

(1) Recall the decomposition HOM = I-HOM o nd-HOM (see (29) of [9]). Since 

I-HOM C sl-DT holds by (5) of Proposition 5.1 and nd-HOM G nd-DT is obvious, 

we have sl-DT”-’ o HOM c sl-DT”-’ o sl-DT o nd-DT = sl-DT” o nd-DT. 

(2) The inclusion I-DT o nd-DT C DT follows from (a) of Lemma 3 in [9]. 

Observe that, by Lemma 5.9 and Corollary 5.12, the inclusions depicted in Fig. 1 

are necessarily proper. 

Finally, we show that there cannot be other inclusions. To prove this, it is enough 

to consider Corollary 5.12 and the following statements: 

(3) I-DT $ sl-DT* o nd-DT (by Lemma 5.7), 

(4) sl-DT” o HOM $ sl-DT”-’ o DT (by (1) of Corollary 5.6), 

(5) sl-DT”+’ $Z sl-DT”-’ o DT (by (2) of Corollary 5.6). 
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We have now obtained that the relations between any two elements depicted in 

Fig. 1 can be determined using Corollary 5.12 and the statements (l)-(5). 

For example, we show sl-DT3 o HOM c sl-DT’ o nd-DT. It should be clear that 

sl-DT3 o HOM c sl-DT6 o HOM. By statement (1 ), we have sl-DT6 o HOM c sl-DT’ o 

nd-DT. Hence sl-DT3 o HOM c sl-DT’ o nd-DT should hold. 0 

With this, we finished the proof of the Lemma 4.3. 

6. Conclusions 

In this paper we have considered a monoid [M] generated by the tree transformation 

classes HOM, sl-DT, I-DT, nd-DT and DT with composition. This is the first work, 

where sl-DT is taken as a generator element of a tree transformation monoid. Using 

term rewriting techniques, we have developed an algorithm which, given any two 

elements Xr o X2 0. . . OX,,, and Yr o Y, 0. f . o Y, of [Ml, can decide whether the inclusion 

X,0X,0.. .oX,&Y,oY20... o Y, holds. Of course, it is also decidable whether 2, = 

or incomparability holds. We have represented elements of [M] by strings, and have 

given a terminating and confluent string rewriting system R as well as the inclusion 

diagram of the normal forms with respect to R. The inclusion between two elements 

of [M] can be decided in the following way. We reduce the strings representing the 

tree transformation classes Xr o X2 o . . . o X,,, and Yr o Y2 o . . . o Y, to normal forms 

with respect to R. The string rewriting system R is constructed in such a way that 

G (2, = , incomparability) holds between the two tree transformation classes if and 

only if the same relation holds between the tree transformation classes represented by 

the corresponding normal forms. This latter, however, can be read from the inclusion 

diagram depicted in Fig. 1. 
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