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1. INTR~OUCTI~N 

Throughout the paper M will be a C” compact m-dimensional connec- 
ted Riemannian manifold with a C” Riemannian metric ( , ), aA4 = q4 
called the configuration space. The dimension m of A4 is called the degree 
of freedom, the tangent bundle 7’44 of M the velocity phase space and the 
cotangent bundle T*M of A4 the momentum phase space. The vector 
bundle isomorphism p: TM + T*M defined by p(u) w = (v, w ) is a C” 
diffeomorphism and will be referred to as the mass operator otherwise 
called the Legendre transformation. The function K: TM--+ R defined by 
K(v) = + (v, v ) is called the kinetic energy of the system. 

The constraint Z is a C” mapping qHZq which assigns to each qE M 
an n-dimensional subspace C, c T,M. The subvector bundle XM of TM 
defined by the vectors of all Z,, q E M, is a regular submanifold of TM, and 
if C,’ is the orthogonal complement of C,, in T,M, the same is true for the 
subvector bundle ZiM defined by the distribution q H Zi. The bundles 
CM, ELM have dimensions m + n, 2m - n and there are canonically 
defined C” bundle mappings P: TM + CM, P’ : TM + 2” M defined by 
Pv, =: va, P’v, =: v,’ where vi, v: are the orthogonal projections of v, on 
C,, Zi. By means of the mass operator one can translate EM, Z’M, P, 
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P’ to corresponding objects C*M, C’*M, P*, P’*. In fact, ,?Y*M = 
p(CM), C’*M= p(C’M), P* = pPp-‘, and P’* = pP’p-‘. 

By a motion compatible with C we mean a C2 function t + q(t) from 
some open interval Zc R into M which satisfies g(t) E zqcl) for all t E I. The 
derivative 4 is called the velocity of the motion and ~(4) its momentum. 
We define the acceleration to be the covariant derivative V,Q of 4 (see 
c5, 8, 141). 

The active field of force is a Ck function F: TM + T*M, k > 1, such that 
F(u,) E T,*M. We let 9’ be the Frechet space of all such F endowed with 
the Whitney topology. We also need to consider fields of force defined only 
on CM. The space of these fields of force can be identified with the sub- 
space F: of 9’ defined by the condition F(u) = F(Pu). A field of force is 
said to be positional if it is constant on T,M, Vq E M. An important special 
case of positional field of force is the so called conservative field of force 
given by vy -+ dV(q) where V: M --) R is a Ck+ ’ function. This field of force 
is said to be conservative with potential V. 

A mechanical system with constraints is a triplet (M, E:, F) and we want 
to distinguish between holonomic (m = n) and nonholonomic (0 <n < m) 
constraints. We single out two particular cases that are of special 
mechanical interest, namely the semi-holonomic and the true non- 
holonomic case; C is said to be semi-holonomic if the distribution q H Z, 
is completely integrable [6] and C is true nonholonomic if given any 
neighborhood U of any point in M, the field qw C, is not completely 
integrable in U. 

We say that a field of force D EF’ is dissipative with respect to C if 
P*D(v)(u) < 0 for each u E CM, strictly dissipative if P*D(u)(u) = 0 implies 
u = 0, strongly dissipative if there is a continuous function c: M -+ R+\ (0) 
such that P*D(u)(u)< -cIu12. We say that (M, z, F) is a dissipative 
mechanical system if the active field of force F is the sum of a conservative 
field of force dV and of a field of force D dissipative with respect to C. 

If a system (M, C, F) is holonomic, that is, CA4 = TM, their motions 
have to satisfy the Newton law 

P(Vq4) = F(4) (see [8, 14, 201). 

But, in the nonholonomic case, in order to get motions compatible with 
z, we have to introduce a reactive field of force R E 9: depending on M, Z 
and to consider a generalized Newton law 

,4V4 4) = V’+ 4 (4). 

In many examples p - ‘R(u,) E Ci for all uq E TM and all external fields of 
force FEDS; such systems are called systems with perfect constraints. 
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We will not deal, in the present paper, with cases in which ,K’R(u,) is 
not necessarily orthogonal to the constraint C,; cases like constraints with 
friction, as well as the case of constraints obtained by means of control 
apparatus and also cases describing motions of systems corresponding to 
the displacement in an electric field of piezoelectric matter are classical 
examples of nonperfect constraints; see [9, 10, 11, 12, 133 and also [27], 
for more examples and references. 

We will be restricted to the consideration of dissipative mechanical 
systems (M, C, F) in which F= dV+ D, C is a C” perfect constraint and M 
is a compact conliguration space. 

Let us denote by 4, the dynamical system (flow) that a system of this 
kind defines on CM. We will be interested in the set d of all bounded (in 
.ZCM) orbits. This is a compact set usually referred to as the attractor 
because it attracts all other orbits. Clearly d contains the set of equilibria. 
One of the results is that, under the hypothesis that the center manifold of 
each equilibrium point coincides locally with the set of equilibria, then the 
a and w-limit sets of any orbit in d are points. From this it follows that, 
under the same hypothesis, JZ! is the union of the unstable manifolds of all 
equilibrium points. 

Then we turn our attention to the relations between d and the con- 
figuration space M. We prove that the natural projection r: TM+ M 
always projects d onto M. Another result in this direction is that if d is a 
differential manifold, and provided that some genericity conditions hold, 
then d and M have the same dimension. 

The configuration space M can naturally be identified with the zero sec- 
tion 0 c TM. When the conservative field of force is zero, then all points in 
M are equilibrium configurations for the mechanical system and correspon- 
dently all points in 0 are points of equilibrium for the dynamical system 4,. 
In this case it is also true that d coincides with 0 and therefore is dif- 
feomorphic to M. By using perturbation techniques from the theory of nor- 
mally hyperbolic sets [l, 2, 31 we prove that, if a certain parameter E 
which is a measure of the importance of conservative versus dissipative 
forces is sufficiently small, then the attractor dc4” is diffeomorphic to 0 and 
thus to M and approaches 0 as E -+ 0. 

By means of the diffeomorphism between d” and M the flow & restric- 
ted to dsl” can be conjugated to a flow & on M. The vector field X” 
associated with this flow converges to zero as E -+ 0, therefore we consider 
the vector field Y = E-‘X’ which has the same orbits as X” and show that 
as E + 0 it converges to a limit vector field P which can be explicitly com- 
puted in terms of the given conservative and dissipative fields of force. This 
fact has a special importance when I”’ is a structurally stable vector field; 
in fact when this is the case all relevant information on the dynamics of X”, 
E >O small, can be recovered by studying a vector field on the con- 
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figuration space M instead of a vector field on the submanifold CM of the 
phase space. 

2. GENERAL THEORY 

As for C we can describe CL in a neighbourhood of any point in M by 
giving r = m -n C” vectorfields Yi such that for each q E U the vectors 
Y,(q) form a basis of the vector space Ct. Then the condition of being 
compatible with C for a motion t + q(t), can be expressed in the form 

(4, Y;)=O (1 Gi6r). (2.1) 

We shall assume, as we can, that the vector fields Yi are orthonormal. 
The following theorem justifies the definition of a mechanical system with 
constraints: 

THEOREM 2.1. Given a mechanical system with perfect constraints 
(M, C, F) there is a unique field of force R E 9$, the reactive field of force, 
such that 

(i) P*R=O. 
(ii) For each vy E ZM the (maximal) motion t + q(t) that satisfies the 

generalized Newton law 

AV44) = V’+ R) (41% (2.2) 

and the initial condition q(0) = vy, is compatible with C. Moreover the 
following is true: 

(iii) the motion in (ii) is of class Ck+= and is uniquely determined by 
vy E CM. 

(iv) there is a field of force Q E & “p depending only on C such that 

WV,) + p’*F(v,) = Q(v,h vu, E CM. (2.3) 

Q is given locally by 

Q(v,, = -P(<v,, Vuq Yi> Y,(q)). (2.4) 

Proof. If we let F= pP ’ 0 F then Eq. (2.2) is equivalent to 

V@Q = (P+ W) (4). (2.5) 
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Therefore, if t + q(t), Q(O) = uq, is a motion that satisfies (2.2), by 
applying PL to (2.5) and by setting t = 0 we get 

PLV+j= PV(u,) + W(0,). (2.6) 

Since we have assumed that the Y, are orthonormal, then we can write 
locally 

Pygj= (V,lj, Yi) Y,; (2.7) 

on the other hand, if t + q(t) is compatible with Z, differentiating (2.1) 
yields 

Cv443 yi) = -(Q, V, Yf). (2.8) 

Therefore we can write 

p’vuq4= -(“q, vuq yi> yi(q). (2.9) 

If we introduce this equation into Eq. (2.6) and apply p, we get Eq. (2.3) 
with Q defined by (2.4). Thus we have proved that if (i), (ii) hold then R is 
uniquely determined. 

To complete the proof we need to prove that if R E 5: is the field of 
force defined by (i) and (2.3), then the motion t + q(t) that satisfies (2.2) 
and the initial condition 4(O) = uq is compatible with Z. Let us start by 
introducing the lifting operator PI9 namely the operator 
Cou: T,M + T,,( TM) defined by 

C,( WJ =: 2 (?I4 + SW& 
s=O 

(2.10) 

The operator CUs is a linear map which is an isomorphism onto its range. 
Moreover, it is easily seen that if (q, u) = (ql ,..., q,,,, ui ,..., u,) are local 
natural coordinates in TM (by abuse of notation we use the same symbol q 
both for a point in M and for the vector of its coordinates in a generic 
chart), then CUP has the local expression 

(4, w) + ((43 uh (0, WI). (2.11) 

From this and the local expression of the covariant derivative [8] 

we get 

C,(y$) = 4 - S(Q), (2.13) 
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where we have indicated by S the geodesic spray, that is, the vector field on 
TM locally expressed by (q, v) + ((q, v), (u, 7)) with yk =: -I’$UiVj* 

Since C, is injective, Eq. (2.2) is equivalent to the equation obtained by 
applying C, to (2.2). This and Eq. (2.13) imply that (2.2) is equivalent to 

q = E(Q) =: S(Q) + C,((F+ R)(d)), (2.14) 

therefore we only need to prove that if R E 9: is the field of force defined 
by (i) and (2.3), then vq E Z’, implies E(v,) E TJCM). To see this we note 
that for vg E CM we have 

C”,(PWJ =; (vq + SPW,) 
s=O 

= 2 P(v, + SW,) 
s=O 

= TP.-$v,+sw,) = TP. CvJwq), 
s=O 

(2.15) 

where TP is the tangent linear map to P. From (2.15) it follows that we can 
write 

Rv,) = S(u,) + C”,p(~=+ mv,)) + c”pw+ fw,)) 

= TP. CSb,) + C,((F+ &Nl 
+ S(v,) - TP. S(v,) + C+(P’(p+ &(o,)). (2.16) 

By (2.3) and the previous part of the proof we have 

c,,pv+ mu,)) = c”qwv”q@) (2.17) 

for any motion t -p(t) satisfying d(O) = U, and compatible with C. On the 
order hand by (2.13) (2.15) one has 

c”pLv,d) = c”qP”pIj) - c”q(pv”qd) 

=p-S(v,)-TP+-S(Q). (2.18) 

Since t -+ p(t) is compatible with Z it results p = TP. ii. Therefore from 
(2.16), (2.17), (2.18) it follows that E(v,) belongs to TJZM) for 
V,Eml. 1 

DEFINITION 2.1. t -+ q(t) is called a motion of the mechanical system 
with constraints (M, C, F) if it is compatible with C and satisfies (2.2) with 
R defined by (i), (2.3). 

On the basis of Theorem 2.1, finding the motions of a mechanical system 

SO5/63/3-6 
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with constraints amounts to the determination of the flow defined on CM 
by the vector field 

m,) = W,) + c”q((p~+ m,N9 v, E CM. (2.19) 

We shall call this vector held on ZA4 the GMA vector field.’ Since S and 
Q do not change if F is changed, two different choices Fi, i = 1,2, of F give 
rise to the same GMA vector field if and only if 

qm)(v,)) = G4wwy)). (2.20) 

From this and the fact that CUq and ~1 are injective it follows 

THEOREM 2.2. Two mechanical systems (M, L, F,) and (M, C, F2) have 
the same motions if and only if 

P*F, = P*F,. (2.21) 

The determination of the flow of the GMA vector field is locally the 
same as to find the solutions of a system of differential equations that we 
now derive for later reference. 

The condition of being in Xi!4 for a vector v, E TM can be expressed in 
terms of the local coordinates (q, O) by saying that r = m -n of the com- 
ponents of 0, for instance 

vL =: (0 ,,..., v,), 

are linear combinations of the remaining 

v” =: (v,, I)...) v,). 

That is, ui = Au” for some r x n matrix A. It follows that if t + v,(t) E ZA4 
is a curve on CM then 

duo 
dt 

has the local representation 

(2.22) 

1 GMA stand for Gibbs, Maggi, Appell, who first derived the equations for mechanical 
systems with nonholonomic constraints [9, lo]. 
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If v = (Vi,..., v,) are the components of F+W with respect to the local 
basis a/aqi (16 i 6 m), then from (2.11), (2.14) and the definitions of S we 
get that E has the local expression 

(4, u) + ((47 VI9 (4 Y + v)). 

From Theorem 2.1 we know that uy E CM implies 

Eb,) E Cqt,=f). 

This is the same as to say that for u, E CM the local representation of E(u,) 
must be of the type (2.22) say, 

i ‘If 
> (2.23) 

where ($“)i stands for the ith component of the vector (2”). It follows from 
(2.22), (2.23), that (2.14) restricted to CM is locally equivalent to the 
following system of m + n first-order differential equations 

4’ = Au”, 

4” = Uf’> (2.24) 

d” = (y + v)“. 

EXAMPLE 2.1. A rigid body B which beside having a fixed point R is 
constrained to move in such a way that the angular velocity is always 
orthogonal to a straight line 1 fixed in B. A possible realization of this con- 
straint is sketched in Fig. la. 

In this case M = SO(3), n = 2. Let xyz with z = 1 be a positively oriented 
frame fixed in B, then as local coordinates in a neighbourhood of any given 
position of B one can take the angles ql, q2, q3 corresponding to three suc- 

FIGURE 1 
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cessive rotations R, around y, R2 around R,x, and R3 around R2R,z. A 
local basis for ,Z is then given by 

X,2 
ad X,=?+sinq,L 

aq2 aq3’ 

It follows [Xi, X,] = cos q1 a/aq, which is not a linear combination of 
X1, X,. C is then true nonholonomic (see [6]). 

If the constraints are changed to a Cardanic suspension as in Fig. lb 
then the constraints are semi-holonomic and the leaves are parametrized by 
angle u. We note for later reference that for the positions of B with I 
orthogonal to the x, y plane, the subspace Cq is the same as for the 
corresponding positions of the true nonholonomic system considered in 
Fig. la. Let us assume now that B is a gyroscope around 1 and any poten- 
tial function I! If c is the moment of inertia around I and a the moment of 
inertia around any axis through !J orthogonal to 1, then the Riemannian 
metric is defined by the kinetic energy 

K= i(a(# + & cos* ql) + c( -& sin q1 + cj3)*), 

and it is easily seen that Y = c-l’* d/aq, is a unit vector orthogonal to 
X,, X,. To compute Q we note that, as a direct computation shows, it is a 
general fact that the l-form c1 with local expression 

satisfies a(u) = (V4q, v ), u E TM Therefore we have 

- (4, v, Y) = (P’V& Y) = (V&’ Y) 

d aK aK 
=---q---=~‘i2(-q2sinq,+q,)‘. 

aq3 
(2.25) 

3 

On the other hand, in the present case Eq. (2.1) becomes 

-q2sinq,+q3=0, 

that together with (2.25) implies Q=O. 
For many other interesting examples see [7]. 

Remark. The previous example, with V the gravity potential, can be 
also used to show that if q is an equilibrium position for a conservative 
mechanical system with perfect semi-holonomic constraints and q is 
Liapounov stable, then, if one changes the constraints making them true 
nonholonomic in the class of .Z that leave the subspace 2, unchanged, the 
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position q may become an unstable equilibrium. To see this we note that 
all positions of B such that 1 is vertical and the center of mass G of B is 
under Sz are stable equilibria when B is constrained by a Cardanic suspen- 
sion as described in the last example 2.1. On the other hand it is well 
known that among the motions of a gyroscope that moves under the action 
of gravity there exist precessions around the vertical with the property that 
the angular velocity always stays orthogonal to the gyroscopic axis. 
Moreover, the angular speed that realizes this kind of motion depends on 
the angle v between the vertical and the gyroscopic axis and goes to zero 
with v. It follows that, in the case of true nonholonomic constraints the 
positions of B with G on the vertical under 52 are unstable equilibria. 

THEOREM 2.3. Zf (M, L, F) is a mechanical system with (perfect) con- 
straints and XF is the vector field on TM corresponding to Newton’s law 
p(V4g) = F(4), then the GMA vector field E on CM associated with (M, C, 
F) ii given by 

E=TP.X,. 

Proof Formula (2.19) gives for all vy E CM: 

E(v,) = S(v,) + Gq(P~~vq)) + C,(&,)), 

&4-(v,) = WJ + c”*mv,))? 

and then 

TP9&(v,) = TP. S(v,)+ C,(P&I,)) 

= TP. S(Q) + E(v,) - C&b&) - S(v,). 

But formula (2.27) applied to P=O shows that 

i-p. S(v,) = S(v,) + Gy@(uqN 

and then formula (2.26) is proved. 1 

3. THE ATTRACTOR AND THE SET OF EQUILIBRIA 
OF A DISSIPATIVE SYSTEM 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

In the discussion of the qualitative behavior of the flow 4: SS c CM x 
[w + CM defined by the GMA vector field corresponding to a dissipative 
system, we shall focus our attention on the set d = (x E Z:MI 4(x, t) is 
defined for t E (- CO, 00) and is bounded}. The reason for this is that 
globally defined and bounded orbits, for instance critical points, are usually 
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the most interesting from a mechanical point of view. Moreover, as we 
shall see, strictly dissipativeness implies that d is a global attractor. 
Therefore we may conclude that d contains most of the relevant infor- 
mation about the dynamical system $. We shall usually consider strictly 
dissipative systems because otherwise d may coincide with the all Z:M as 
for Hamiltonian systems and the study of d is then of no interest. 

Before giving a characterization of Lpe we present some results on critical 
points of GMA and give related results on the asymptotic behavior of 
trajectories. 

Since GMA is the restriction to .Z:M of a second order equation, the 
critical points lie on the zero section 0: M + CM and can be identified 
with the equilibria of the underlying mechanical system. When this is a 
dissipative system, since 

P*D(O)(u) = lim A-‘P*D(lv)(lu) Q 0, il>o, VE2lA4, (3.1) 
A+0 

implies P*D(O)(u) =0 or equivalently P&O)(o) = 0 for each VECM, and 
on the other hand S and Q vanish on the zero section, we see from (2.19) 
that, if we let X, = P&= P grad V, the set of critical points of GMA coin- 
cides with the intersection X, n 0 of the section X,: M + ZM with the 
zero section. We may therefore quote from [15, 18, 191 the following 
result. As usual, if A, B are submanifolds of a manifold C, by A fi B we 
mean transversal intersection that is: at each point XE A n B, T,A and 
T, B span T, C. 

THEOREM 3.1. (i) The set Gk+’ of potential functions VE Ckf1(A4, R) 
(k> 1) such that Xy iii 0 is open and dense in Ckf ‘(M, W); 

(ii) Zf VeGk+', then the set C, of the critical points of GMA or 
equivalently the set E” of the equilibria of the underlying dissipative system is 
a Ck compact submanifold of dimension r = m - n ; 

(iii) C,, &y depend Ck continuously on VE Gk+‘. 

From this theorem if follows that generically for a holonomic mechanical 
system the set of equilibria is made of a finite number of points; when r = 1 
as in the case of the rigid body in Example 2.1, the set of equilibria is 
generically the union of a finite number of circles. 

For fixed M and L the number of connected components in Cy, E y has a 
minimum m(M, Z) for V in G k + ‘. for instance in the holonomic case if 
M= S2, this minimum is 2; if i = T2 this minimum is 4. It may be 
interesting to find relations between m(M, Z) and M, Z; for general M and 
Z. We now turn to the asymptotic behavior of the trajectories t -+ u(t) of 
GMA. 
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THEOREM 3.2. The trajectories t + u(t) of the GMA vector field 
associated with a dissipative system are globally defined in the future and 
bounded. If the system is strictly dissipative all trajectories approach the set 
C, of the critical points as t -+ CO. Moreover, if t -+ v(t) is defined also for 
negative time and bounded, then v(t) approaches Cy as t + --co. 

Proof From (2.2) it follows 

f K(v(t)) = (v(t), v”(tpw = (v(t), F(v(t))) 

= (v(t), grad WV(t))> + (4th @v(t))>. (3.2) 

Since GMA is the restriction to CM of a second-order equation, u(t) 
coincides with the derivative with respect to t of m(t), therefore we have 

$(m(t))= (u(t), grad V(zv(t))). 

Moreover, we can write 

(v(t), mw = (4th pmw = P*D(v(t))(v(t)). (3.4) 

From (3.2) (3.3) (3.4) it follows that 

$ (v(t)) = P*D(u(t))(v(t)) GO, (3.5) 

where H(v) =: K(v) - V(zv). 
Since M is compact and K is nonnegative the open set Ba = 

{u&TMIH( ) }’ 1 b v < a IS a so ounded. Thus, if H, is the value of H(v(t)) at 
some initial time t,, v(t) remains in the bounded set aHo in its maximal 
interval of existence (to, t I ). This and the continuation theorem imply 
t,=co. 

Since M is compact H is bounded below therefore from (3.5) we get that 
H(o(t)) approaches some constant H, as t -+ co. Therefore if v, is a point 
in the o-limit set of t -+ v(t) and t + w(t) is the trajectory through v, we 
have H(w(t)) = H,. Equation (3.5) implies then P*D(w(t))(w(t)) = 0 and 
therefore if D is strictly dissipative w(t) is in the zero section. From this and 
the fact that w(t) is the derivative of zw(t) it follows that w(t) must be con- 
stant and therefore equal to u, which is then a critical point of GMA. The 
last part of the theorem is proved in a similar way. 1 

Strictly dissipativeness implies that all trajectories of GMA approach the 
set of critical points but it is not a sufficient condition in order that the 



374 FUSCO AND OLIVA 

o-limit set of any orbit contains just one point. For instance, when M is a 
circle Cc [w3, s the curvilinear abscissa along C, T the unit vector tangent 
to C at S, V= 0, D(oT)(wT) = --v%, Vu, w E Iw, Eqs. (2.24) take the form 
S = v, d = --v3. From these equations it follows that u + 0 as t + co while s 
grows unboundedly if the initial value of D is not zero. Therefore the 
w-limit set of any orbit through any point in Tc\O is the all 0. 

The main point in this example is the nongenericity of V; in fact we 
know from Theorem 3.1 that for r = 0 and VE Gk+ ’ the critical points of 
GMA are isolated and then the o-limit set of any orbit must be a single 
point if the system is strictly dissipative. In the case r = 1 even for VE Gk + ’ 
the critical points are not isolated. 

Using a general theorem in transversality theory we will prove the next 
result for r = 1. For this, call J*(M, R) the manifold of 2-jets of the Ckf ’ 
real-valued functions on M, k 2 2. For every VE Ck+‘(, R) let jz V: 
M -+ J*(M, R) be the Ck- ’ map such j2 V(p) = ji V is the 2-jet of V at p. 
Recall that VE Ck+‘(M, R) is a Morse function if dV(p) = 0 for p E M 
implies &V(p) is a nondegenerate quadratic form on T,M. Call ck+ ’ = 
{ VE Gk+ ’ ( V is a Morse function}. It is well known that ck+ ’ is open and 
dense and this fact will follow also in the sequel of the next arguments. 

Define now the sets 

W, = { ji Ve J*(M, R): dV, = 0} 

and 

W2= {jiVeJ*(M, R): VEG k+l.dVp#O;dV&&,=O;dV~~Tp~y=O}. , 

Remark that W, is a closed embedded submanifold of J*(M, R) of 
codimension m. In the definition of W,, since VE Gk + ‘, the condition 
dV, 1 C, = 0 is equivalent to say that p E E y, the codimension (m - 1) sub- 
manifold of M of all critical points of P grad V; dV, and Tpc y depend on 
C, ( , ) and ji V, thus W, is well defined. Let us show now that W2 is a 
closed embedded codimension m submanifold of J*(M, R). For a given 
VE Gk+i, assume s-+ q(s) be the arc length parametrization of Cy, 
q(s,) = p. If u,, (a/84,), v = 1,2 ,..., m, is a local basis for C, the definition of 
W, is equivalent to 

f”(P) = [ 1 %,$ (p)=O, 

and 

(3.6) 
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Since [u, (av/aqj)](q(s)) = 0 one obtains at s = so 

[ 

8V av au. 
u .-+--.A 

‘1 aqj aqk aqj aqk 1 ljk(SO)=M&(SO)=O (3.8) 

the matrix M,, with maximum rank. Besides, (3.7) and (3.8) imply 

(3.9) 

Conversely, if V E Gk + ‘, (3.6) and (3.9) imply (3.6) and (3.7). It is 
enough now to remark that dfv and d# are linearly independent at each 
point of f(M, R) which is not too difficult but tedious. The map euP, 

(V,+Ck+‘xM e”p bjpkP(M,R) 

is a CkP1 map which is onto with onto derivative at each point; this means 
that 

PI VEG~+‘+~~VEC~-‘(M,J~(M,R)) 

is a Ck-’ -representation (see [8, p. 461). We are now able to apply the 
transversality theory (openness and density theorems) to show that the sets 

A,= {VEG~+~;~~V, W,} and A,= {F%Gk+‘;j2Vfi W2f 

are open and dense in Gk + ‘, then in Ck + ‘(M, R). 
The meaning of these transversalities is the following: if VE A I and 

j; I/E W,, the condition j* V iii W,, p E M, implies that V is a Morse 
function (A I = Gk + r ) and there exist just a finite number of points p E M 
with that property for a given V; if V E A, and ji .VE W, (also for at most a 
finite number of points), the transversality conditionj2 V ifiP W, means that 
E” is tangent at p to XP with a generic kind of tangency. For each V in the 
open and dense set Al n A2 there is at most a finite number of points of Cy 
for which 

dV(Q(s)) =$ V(q(s)) = 0. 

THEOREM 3.2. 
AlnA2cGk+‘, 

Let r = m - n = 1, then there is an open and dense set 
k > 2, such that if VE A, n A,, V is a Morse function and 

there are at most a finite number of points of C, for which VJ C, is not 
strictly monotonic. Moreover, if the system is strictly dissipative, then the 
o-limit set of any orbit of the GMA contains just one point. The same is true 
for the u-limit set of any negatively bounded orbit. 
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The next theorem concerns the case of a generic value of r and gives con- 
ditions in order that the w-limit set of any orbit contains just one point. 

We state the theorem without specific reference to the GMA vector field 
because the result can be applied to any evolutionary equation (e.g., 
gradient systems) that satisfies the property that the o-limit set of any 
bounded orbit contains only critical points. The result we present includes 
as special cases theorems of Malkin [26], Hale and Massatt [22] concern- 
ing the situation where the set of critical points is a one-dimensional 
manifold. With standard notation, if x is a critical point of a vector field 
XE C’ (Q, R”), then WY, P;, W;, PX”, WY we mean local stable, cen- 
terstable, center, center unstable, unstable manifold of X. For a definition of 
these concepts as well as standard theory see, for instance, [l, 23, 241. 

THEOREM 3.4. Stzppose that the o-limit set o(y) of a bounded orbit y of a 
vector field XE C’ (~2, R”) contains only critical points. Then a sufficient 
condition in order that o(y) contains just one point is that the local center 
manifold W: at each critical point coincides locally with the set of critical 
points. A similar result holds true for the a-limit set of a negatively bounded 
orbit. 

The proof of this theorem is a plain consequence of the following fun- 
damental result stated in Henry [23]. 

LEMMA 3.1. Let x be a critical point of XE C’ (Jz, R”) and 
4: 9 c Q x R + Sz be the local dynamical system defined by X. Then there 
exist Co fibrations zn: Ii + WY n U, U an open neighborhood of x in 52, 

: u,+ wcnuo, 
Z”yx, = wis 

U. an open neighborhood of x in WY, such that 
n U; n; ‘(x) = W,” n U, are C’ mantfolds and n commutes 

with 4 in the sense that for each y E U there is an interval (aI, CQ) c [w such 
that z(I$( y, t)) = 4(ny, t), t E (a,, a2) and a, is either - 00 (a2 is either + CO) 
or &y, a,) E aU (or 4( y, az) E aU) and similarly for x0. 

Proof of Theorem 3.4. Suppose z~Q is such that the orbit y(z) through 
z is bounded and o(y) is contained in the set of critical points C. If x E w(y) 
then there are fibrations rc, rco as in Lemma 3.1. We may assume that 
U. = WY n U and define a new tibration i?: U -+ WC, n U by letting 
5 = rro 0 7t. By Lemma 3.1, as long as all expressions are meaningfull, we 
have 

W$(Y, t)) = Xo(4(4Y), t)) = 4(3Y), t); (3.10) 

on the other hand, since by assumption W; coincides locally with C we 
have 4(5(y), t) = E( y). Therefore from (3.10) it follows that 

5(4(Y, t)) = 3Y); (3.11) 
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that is, the fibers of i are locally invariant manifolds. Given y E WC, n U let 
V’(y) &se closure of the fiber izP ‘(y) over y and let d, be the distance 
between Z-‘(y) n 817 and C n D, the set of critical points in the closure of 
U. Since ii is a tibration and PX and C are locally coincident, by reducing 
the sets U,,, U if necessary, we may assume that d, > 6 > 0 with 6 indepen- 
dent of y. 

Since x E o(y) there is a divergent sequence tk such that xk =: +4(z, tk) 
converges to x as k -+ co. Let JJ~ =: E(xk) and suppose that for each k there 
is a tb > t, such that 

x;=:d(z, t+au. 

Let x’ be the limit of a convergent subsequence of xi, then x’ E 8U and 
d(x’, C n 0) > 6. Thus x’ is a point in o(y) which is not a critical point in 
contradiction with the hypothesis w(y) c C. It follows that there is a value 
k of k such that #(z, t) stays in ii -’ (yn) for all t > tf. Since o(y) c C and xf - 
is the only critical point in it- ’ (yc) it must be w(y)= {yn} = {x}. 1 

We now begin the study of d by giving a characterization of the attrac- 
tor and some of its properties. We need the following lemma that was 
originally proved by La Salle and Billoti [21]. The version we quote is 
more or less the one in [ 161 where a complete proof is also given. 

LEMMA 3.2. Let (S, d) be a complete metric space and 52 a bounded open 
set in S. Suppose $1 S + S is completely continuous and such that 

(i) given x E S, I/I”(X) E Q for all sufficiently large n; 
(ii) Il/ocQ; 

then $$ = Oiao 11/‘(Q) . ts a nonempty compact +-invariant set, it is connected 
if Q is connected and contains every compact $-invariant set. Given E > 0 
there is an integer n, such that for all n >n, @‘(a) is contained in the 
E-neighborhood of 9,. 

Moreover, if $ is uniformly continuous on an n-neighborhood N, of G? for 
some n > 0, then given E > 0 there is a 6 > 0 such that for any $1 S --f S that 
satisfies (i), (ii), and d($(x), $(x)) < 6 on N, the set $$ is contained in a 
&-neighborhood of da,. 

To apply Lemma 3.2 to our situation we identify II/ with the time one 
map d1 associated with 4. The existence of d1 is assured by Theorem 3.2. 
Furthermore we note that, since H(0,) = V(q) for 0, E CO, compactness of M 
implies that H is bounded on the zero section and therefore that, if a is suf- 
ficiently large, the zero section is contained in the set $AY~. Let 52, be the 
connected component of ga containing Co. If the system is strictly dis- 



378 FUSCO AND OLIVA 

sipative, then Eq. (3.5) implies b,(Q,) cSZ,. Since by Theorem 3.2 the 
o-limit set of any orbit is in 0 c 52,, 4, and Q, satisfy also condition (i). 
Therefore we can apply Lemma 3.2 and obtain a set J+& with the property 
stated in the lemma. It is easy to check ,,$, = d. In fact it is quite obvious 
that J&’ c y&. On the other hand if x is in &, then 4(x, .) is globally 
defined because &, is invariant; moreover, it is also bounded because 
4(x, -n) E y6, c Q, and 9, is a positively invariant bounded set. From 
Lemma 3.2 it also follows that &’ is uniformly asymptotically stable. 
Remark that 0, = $#a since A4 is connected. We have, then, the following 

THEOREM 3.5. Zf 4: 9 c ZMx R -+ ZM is the dynamical system 
associated with a strictly dissipative mechanical system and 
zd= {xEZM(#(X, t) is definedfor tE(--a, a) and bounded}, then 

(i) d is compact, connected, invariant, and maximal. 

(ii) d is a untformly asymptotically stable set for the flow 4. 

(iii) d is an upper semicontinuous function of the potential V and of 
the dissipative field of force D. 

(iv) Zf 4, is the time one map associated with 4 and 
~!8 = (x E CM1 H(x) < a} with a sufficiently large a > 0, then 

It is interesting to remark that, if the a-limit set of any negatively boun- 
ded orbit contains just a point, as for instance in the cases described in 
Theorems 3.2, 3.3, 3.4, then 

EXAMPLE 3.1. For a pendulum that beside gravity is subjected also to a 
dissipative force of viscous-type equations (2.24) take the form 

ti = I], 

ri= -g/lsin v-cq, 
(3.12) 

where 1 is the length of the pendulum, g the gravity acceleration, c > 0 a 
constant and v the anomaly from the stable equilibrium. Since there are 
only two equilibria (0, 0) and (rc, 0) we have d = W;b,o, u WTZ,OJ. For any 
c, w;bo, contains only the point (0, 0); WTE,o, contains the unstable 
equilibrium (7c, 0) and two orbits connecting (K, 0) with (0,O) therefore d 
is a cicle homeomorphic to the zero section (see Fig. 2a). The influence of c 
is on the smoothness of d. In fact for c 2 2&, & is a P-differential 
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FIGURE 2 

manifold diffeomorphic to 0, for c < 2~‘& (0,O) is a stable focus and & 
looses its differential structure at (0,O) (see Fig. 2b). 

4. RELATIONSHIPS BETWEEN THE ATTRACTOR AND THE 
CONFIGURATION SPACE 

One of the basic questions in the description of the structure of the 
attractor which is a subset of ZM is to see how this structure is related to 
the basic manifold M, the configuration space of the mechanical system 
under study. The following theorem says that d is at least as large as M. 

THEOREM 4.1. Let d be the attractor of a strictly dissipative system; then 
the image of d under the natural projection t: TM -+ M is the all con- 
figuration space. 

Proof. Since d is compact and z is continuous z(d) is also compact, 
therefore to prove that z(d) = A4 it suffices to show that r(a) is dense in 
M. We can regard M and CM as metric spaces with distance dM, d,, then 
given E>O, by Theorem 3.5(ii) there is a t, such that the image 4,,(O) of 
the zero section under dr, is contained in the s-neighborhood U, of d 
defined by 

UE=: {X,IX,E~ZM, dz(X,, d)<~}. 

Since r is continuous it is uniformly continuous on U, and therefore given 
E’ > 0 we can choose E so small that d,(X,, A’,) -C E implies d,,,Jq, p) < E’. 
Let I,+: M + A4 be the map defined by $(q) =: z~,JO,), 0, E 0. Then $ is 
onto M. This follows from the observation that, as a consequence of the 
general theorem on continuous dependence on initial data, the map $ is 
homotopic to tiO = r&, = id,. In fact, since M is a manifold without boun- 
dary, the homotopy between $ and id, implies that J/ and id, have the 
same topological degree, that is d(ll/, M, q) = d(id, M, q) for any given 
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qE M. Since d(id, M, q) = 1 this implies that e-‘(q) is nonempty and 
therefore onto-ness of @. From the definition of $ we have then 
M= $(M) = r~,#) and therefore for any given q E M there is an 
X, E q5,,(S). Since q5,,(0) is in U, there is an XP E L&’ such that d,(X,, X,) <E 
thus by the remark about uniform continuity of z we have d,(q, p) <E’. 
This concludes the proof because it means that given q E M and E’ > 0 there 
is a point p E r(a) the distance of which from q is less than E’. 1 

It may be interesting to remark that Theorem 4.1 implies that given any 
point qEA4 there is a u, ECU such that the orbit of GMA through uy is 
globally defined and bounded. 

The following theorem gives conditions in order that the attractor and 
the configuration space have the same dimension. 

THEOREM 4.2. Zf V is a Morse function, D is strongly dissipative and d 
is a differential mantfold, then 

dim d = dim M. (4.1) 

To prove this theorem we use two lemmas. 

LEMMA 4.1. Given a critical point O4 E C, there are local natural coor- 
dinates such that the (m +n) x (m + n) matrix L corresponding to the 
linearization of the GMA vector field at O4 is given by 

L= 

Mm-----+ c-n- 

-T 
0 r 

I 
0 

I 
Z n 

I 

T 
F G H n 

-1 
c-r*+-n---+-n- 

(4.2) 

where F is some n x r matrix and the n x n matrices G, H are defined in terms 
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of the potential V, of the components Di (1 < i < m) of D and of certain con- 
stants ok” (l< j<m; 1 <h, k<n) by 

G hk 

Hnk 

a2v 
r+h a%+k 

aD r+h 

=r’ rfk 

+ 
av 
dq,' 

(4.3) 

Proof. In deriving Eqs. (2.24) we used for E(u,) the expression (2.16). 
We could as well use the equivalent expression (2.19); therefore we may 
also regard the vi as the components of PP+ 0; moreover 0 contributes to 
v, with a term that depends quadratically on u. Since also yi depends 
quadratically on u, it follows that, in computing the linear part of the right- 
hand side of the third of the Eqs. (2.24) the only term we need to consider 
is the contribution of PF to vi. The result follows in a standard way. B 

LEMMA 4.2. Suppose V is a Morse function and D is strongly dissipative. 
Then if a is a point of minimum of V the matrix L corresponding to 0, has n 
eigenvalues with negative real part and n eigenvalues with positive real part. 

Proof. The eigenvalues of L are 0 with multiplicity r and the 2n eigen- 
values of the 2n x 2n matrix 

0 I 
L’ = [11 GH’ 

When 4 is a point of minimum, G reduces to the positive definite symmetric 
matrix 

Gfik= 
a2v 

a4 r+h a%+k’ 

Moreover, it is easy to check that strongly dissipativeness implies 
v”~Hv” < 0, Vv” E KY\{ 0}, that is, the symmetric part of H is a negative 
definite matrix. 

Since 

det [y-A] =det [T&j-G]? 
for an eigenvalue A of L’ we have 

det(L’-;IZ)=(-l)“det(-R21$AH+G)=0. 
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Thus 2 is an eigenvalue of L’ if and only if there is a nonzero w E @” such 
that 

~2~-~Hw-Gw=0. (4.4) 

If w* is the conjugate transpose of w, then w*Gw is real and positive 
because G is a symmetric positive matrix. On the other hand since the sym- 
metric part of H is negative definite the real part of w*Hw is negative. 
Therefore (4.4) implies the existence of ~1, /?, y E R, c(, y > 0 such that 

A2 + (a + i/l) A- y = 0. (4.5) 

and a, y > 0 implies that (4.5) has no roots in the imaginary axis; the same 
is true for EH instead of H, 0 < E d 1. The result follows just computing the 
eigenvalues of L’ when H = 0. 1 

Proof of Theorem 4.2. Since d is compact there is a point uq E d such 
that the energy function H = K- V satisfies H(u,) < H(u,), u, E d. Clearly 
o4 E 0 because otherwise from (3.5) and strictly dissipativeness would 
follow fi(u,) < 0 and therefore the orbit y(u,) c d though us would contain 
a point uq such that H(u,) > H(u,) in contradiction with the maximality of 
H(u,). Thus uq= 0, and H(0,) = -V(q). It follows that V restricted to 
t(d) attains its minimum at 4. Since for each critical point p of V the point 
0, is a critical point of GMA and therefore belongs to ,rQ, V(g) is the 
absolute minimum of V (this can also be derived from the fact that 
Theorem 4.1 imply r(d) = M). Therefore 0, is a critical point of GMA 
and the hypothesis and Lemma 4.2 imply 

dim Ws( 0,) = n. (4.6) 

The maximality of H(0,) and (3.5) yield W’(0,) n d = (0,). This, the 
hypothesis on d and (4.6) imply 

dim d < dim CM - dim W”(0,) < m. (4.7) 

On the other hand by Theorem 4.1 we have z(d) = M and therefore 

dimdam. (4.8) 

In fact ~1.~ is a C’ mapping onto M, thus by Said’s theorem there is a 
regular value q of z. It follows that if uq E r-‘(q) n d the linear map 
TT(,(u,): Tuqd + T,M has maximal rank. This implies 

dim T,,d > dim T,M. (4.9) 

and therefore (4.8). Equations (4.7), (4.8) imply (4.1). 1 

Remark. In order that Theorem 4.2 holds it suflicies to require that I/ is 
nondegenerate at 4 and that D is strongly dissipative at 0,. 
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In the remaining part of the section we shall discuss some aspects of the 
dependence of attractor on the potential and on the dissipative field of 
force. First, let us note that I/=0 implies that d is coincident with 0 and 
thus diffeomorphic to M. In fact, every point of A4 is then a point of 
equilibrium; vice versa, since the orbit y(u,) though a point rq E S has by 
Theorem 3.2 its a and o limit sets in 0 and the energy H is constant on 0 
because I’= 0, Eq. (3.5) implies A= 0 and therefore uq E 0 by strict dis- 
sipativeness. One main result is the following perturbation theorem that 
roughly speaking says d is a smooth object close to 0 for V close to 0. 

THEOREM 4.3. Given a strongly dissipative field offorce D E yk there is a 
neighborhood N of o E Ck+ ‘(M) such that, tf dv is the attractor 
corresponding to V E Af and the given D, then 

(i) dv is a Ck differential mantfold and T/.&V is a Ck dtffeomorphism 
of dv onto M. 

(ii) ~4” depends Ck continuously on VE Jf and do = 0. 

From Theorem 4.3 we can derive the following result that applies to 
situations where V is not necessarely small. 

THEOREM 4.4. Given BE C k+’ M and a strongly dissipative fieId of ( ) 
force D E fk that satisfies D(Av,) = AD(v,), A > 0, vq E ZM, let .BP-~ be the 
attractor corresponding to V = Q F, D = PD, ~12 0, /I > 0. Then there is E > 0 
such that for a/P’ < E 

(i) LZ@ is a Ck differential mantfold and 71dU,~ is a diffeomorphism of 
s&‘“,~ onto M. 

(ii) N-P depends Ck continuously on a, /? and ~?‘-fi = Lo. 

Theorem 4.4. generalizes to a large class of dissipative mechanical 
systems the situation occuring for the pendulum in Example 3.1. In fact for 
c > 2&l the attractor ~2’ is a circle that approaches the zero section for 
C--roO. 

To see that Theorem 4.4 follows from Theorem 4.3 let vp, vD, vQ be the 
contributions to v in Eq. (2.24) due to the conservative field of force 
corresponding to V, to the dissipative field of force d and of the field force 
Q in Theorem 2.1, respectively. Then Eq. (2.24) corresponding to V = av, 
D = jD are 

4’ = Au”, 

4” = vfl, 

d” = f”(4, u”) + c+(q) + &(q, ?I”), 

(4.10) 

505/63/3-l 
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where we have set y^ = y + vo. Since y^ is quadratic in v” and vD is 
homogeneous of degree 1 with respect to Y” because d is, the transfor- 
mation u”= Bwa, t=s//I applied to (4.10) yields 

dq” 
z = WI’, (4.11) 

g = ‘y^(q, w”) + + vi(q) + v;;(q, w”), 

These equations may be interpreted as Eqs. (2.24) for V= (a/p’) V, 
D =6. It follows that the diffeomorphism Q: ZM-+ CM defined by 
0,) = P&p transform orbits of the GMA vector field corresponding to 
V= or//?‘P, D =d into orbits of the GMA vector field corresponding to 
V= tl F, D = pd. This implies 

and therefore our claim. 

The proof of Theorem 4.3 may be based on general theorems on nor- 
mally hyperbolic sets such as Theorem 4.1 in [ 1 ] (see also [ 17, 231). 

5. THE GMA VECTOR FIELD RESTRICTED TO THE ATTRACTOR 

Since all orbits of GMA approach the attractor as t + co, once d is 
known an important step towards understanding the flow of GMA is the 
description of the flow on the attractor. When, as in the situations 
described in Theorems 4.3, 4.4, d is diffeomorphic to M, to study the flow 
on d is the same as to study a first-order equation on M. To see how this 
equation is related to the potential and dissipative field of force we consider 
a potential of the type EV with VE C’(M), E 2 0 a strongly dissipative field 
of force DEB’, then, for E sufficiently small, Theorem 4.3 implies the 
attractor d” is a C’ differential manifold diffeomorphic to 0 and 
approaches 0 in the C’ sense as E + 0. This implies that the restriction rIdz 
of the natural projection to && is then a diffeomorphism of zJ4” onto M if E 
is sufficiently small. It follows that given a point qe M there is a unique 
point 
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in C, n ~2’. Therefore t + gE(t) is an orbit of GMA in d” if and only if 

4,(t) = (d.&- l (q,(t))? 

that is, if and only if the corresponding motion t -+ qE(t) is a solution of the 
first-order equation 

ljE = J?(q) =: (Z(&&’ (4). (5.1) 

The vector field X” depends on d” and cannot be computed explicitly 
unless one knows d” which is not the case in general. Therefore one may 
try to get informations on the orbits of (5.1) by studying the behavior of 
X’(q) for E + 0. Since d” approaches 0 as E + 0 we have 

lim xE(q) =0 
E--t0 

thus we consider the vector field Y” =: EK’X’ which has the same orbits as 
(5.1) and study the limit of Y” for E + 0. The importance of this study stays 
in the fact that, if this limit exists and if the limit Y(’ is a structurally stable 
vector field, then provid E sufficiently small, the flow of (5.1) and the flow 
of Q = p(q) are topologically equivalent, that is there is a homeomorphism 
h”: M -+ A4 that approaches the identity for E -+ 0 and takes orbits of (5.1) 
into orbits of 4 = Y”(q) preserving orientation. 

If (q, u) are local natural coordinates on TM, then the function 
CI’: 0 -+ ZA4 describing the attractor &02” has a local representation of the 
type q + (&E, q), U(E, q)) and q(s, .), U(E, .) are C’ functions such that 
q(~, .) + id; U(E, .) -+ 0 with respect to the C’ topology as E + 0. Moreover 
q(e, . ) has a C’ inverse because ~1 ,olc is a C’ diffeomorphism and the same is 
true for 0&. 

THEOREM 5.1. Zf ~2’ is a smooth function of E in the sense that, 4, V and 
their first derivatives with respect to q are continuously differentiable with 
respect to E, then as E + 0 Y” converges in C’ to the C’ vector field p 
defined by 

Y”= -(PFD)-’ Pgrad V, (5.2) 

where P, b are defined as in part 2 and FD is the fiber derivative [S] of d. 

Proof From (5.1) it follows that X” has the local expression 

4 + (4, C(E, 4-k q))), (5.3) 

therefore the local expression of Y” is 

4 -+ (4, E13G 9-k 4))). (5.4) 
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The hypothesis on 4, V imply that the function 

ME, 4) =: fi(F, $(E, 4)) 

is continuously differentiable and moreover ~(0, q) = 0 because $0, q) = 0 
and q- ‘(0, q) = q. Therefore we have 

lim E-%(E, q)=g(O, q)=g(&, q-l(&, q) 
E-+0 

+; (&, q-Y&, q)) ~(E)O))/E~O=~(odd 

that shows the existence of Y”. To show that Y” has the expression (5.2) we 
observe that any solution t + qE(t) of (5.1) is a motion of the mechanical 
system under examination and thus a solution of Eq. (2.5) this equation for 
a dissipative system with potential EL’ may be written as 

Vq4 = EP grad V(q) + Pfi(4) + Q(g). (5.5) 

From Eq. (5.1) we have 4 = &Y’(q) and therefore (5.5) implies 

E2V yECqj Y”= EP grad V(q) + P&&Y’(q)) + e2&( Y’(q)). (5.6) 

Dividing this equation by E and taking the limit for E + 0 yields 

0 = P grad V-t- PF& p), (5.7) 

from which (5.2) follows because strongly dissipativeness implies that the 
vector bundle map PFb: CM -+ CM is a diffeomorphism. 1 

Remarks. As Theorem 4.3 implies Theorem 4.4, from Theorem 5.1 one 
may obtains corresponding conclusions for the case when the potential and 
dissipative field of force are of the type aI’, PD. 

A simple example of a situation where Theorem 5.1 applies is the pen- 
dulum in Example 3.1. In this case we have 

P(o)= -isine (5.8) 

which is a structurally stable vector field on S’. 
Finally we remark that some results on dissipative systems were obtained 

by Shahshahani in [20] for the holonomic case (without constraints). He 
proved that for a given Morse function V there is an open and dense set of 
strictly dissipative fields of force for which the corresponding holonomic 
mechanical system is O-stable (in fact, 52 consists of a finite number of 
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hyperbolic zeros), TM is the union of stable manifolds and at every zero 
the dimension of the stable manifold is at least as large as the dimension of 
the unstable manifold. 

After the present paper was finished I. Kupka and W. M. Oliva proved 
that for a given Morse function V there is an open and dense set of strictly 
fields of force for which the corresponding holonomic mechanical system is 
Morse-Smale, then structurally stable (see [ 16, 173, for the stability of 
Morse-Smale maps). 
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